

Zephyr 项目中文文档

提示

当前版本的中文版正在翻译当中，您可以在 这里 [http://zephyr-doc.readthedocs.io/zh_CN/latest/] 查看其它版本。

关于早期发布的其它版本的信息，请查阅 Release Notes。

Zephyr OS 的主体代码遵循开源协议 Apache 2.0 license [https://github.com/zephyrproject-rtos/zephyr/blob/master/LICENSE] ，您可以通过查看 GitHub 仓库 [https://github.com/zephyrproject-rtos/zephyr] 中的 LINCENSE 文件查看该协议的具体内容。除此之外，Zephyr OS 还导入/引用了一些软件包、脚本以及其它文件，这些文件遵循协议 Licensing of Zephyr Project components。

Zephyr 项目的源代码维护在 GitHub 仓库 [https://github.com/zephyrproject-rtos/zephyr] 中。

目录

	Introducing Zephyr

	Getting Started Guide

	Contributing to the Zephyr Project

	Zephyr Kernel Primer

	Zephyr Project Security

	Developer Guides

	Device and Driver Support

	Subsystems

索引和表格

	Glossary of Terms

	索引

Introducing Zephyr

The Zephyr OS is based on a small-footprint kernel designed for use on
resource-constrained systems: from simple embedded environmental sensors and LED
wearables to sophisticated smart watches and IoT wireless gateways.

The Zephyr kernel supports multiple architectures, including ARM Cortex-M, Intel
x86, ARC, NIOS II, Tensilica Xtensa and RISC V. The full list of supported
boards can be found here.

Licensing

Zephyr uses the Apache 2.0 license [https://github.com/zephyrproject-rtos/zephyr/blob/master/LICENSE] (as found in the LICENSE file in the
project’s GitHub repo [https://github.com/zephyrproject-rtos/zephyr]). There are some
imported or reused components of the Zephyr project that use other licensing,
as described in Licensing of Zephyr Project components.

Distinguishing Features

The Zephyr kernel offers a number of features that distinguish it from other
small-footprint OSes:

	Single address-space. Combines application-specific code
with a custom kernel to create a monolithic image that gets loaded
and executed on a system’s hardware. Both the application code and
kernel code execute in a single shared address space.

	Highly configurable. Allows an application to incorporate only
the capabilities it needs as it needs them, and to specify their
quantity and size.

	Compile-time resource definition. Allows system resources
to be defined at compile-time, which reduces code size and
increases performance.

	Minimal error checking. Provides minimal run-time error checking
to reduce code size and increase performance. An optional error-checking
infrastructure is provided to assist in debugging during application
development.

	Extensive suite of services. Offers a number of familiar services
for development:
	Multi-threading Services for priority-based, non-preemptive and
preemptive threads with optional round robin time-slicing.

	Interrupt Services for compile-time registration of interrupt handlers.

	Memory Allocation Services for dynamic allocation and freeing of
fixed-size or variable-size memory blocks.

	Inter-thread Synchronization Services for binary semaphores,
counting semaphores, and mutex semaphores.

	Inter-thread Data Passing Services for basic message queues, enhanced
message queues, and byte streams.

	Power Management Services such as tickless idle and an advanced idling
infrastructure.

Community Support

The Zephyr Project Developer Community includes developers from member
organizations and the general community all joining in the development of
software within the Zephyr Project. Members contribute and discuss ideas,
submit bugs and bug fixes, and provide training. They also help those in need
through the community’s forums such as mailing lists and IRC channels. Anyone
can join the developer community and the community is always willing to help
its members and the User Community to get the most out of the Zephyr Project.

Welcome to the Zephyr community!

Resources

Here’s a quick summary of resources to find your way around the Zephyr Project
support systems:

	Zephyr Project Website: The https://zephyrproject.org website is the
central source of information about the Zephyr Project. On this site, you’ll
find background and current information about the project as well as all the
relevant links to project material. For a quick start, refer to the
Zephyr Introduction [https://www.zephyrproject.org/doc/introduction/introducing_zephyr.html] and Getting Started Guide [https://www.zephyrproject.org/doc/getting_started/getting_started.html].

	Releases: Source code for Zephyr kernel releases are available at
https://zephyrproject.org/downloads. On this page,
you’ll find release information, and links to download or clone source
code from our GitHub repository. You’ll also find links for the Zephyr
SDK, a moderated collection of tools and libraries used to develop your
applications.

	Source Code in GitHub: Zephyr Project source code is maintained on a
public GitHub repository at https://github.com/zephyrproject-rtos/zephyr.
You’ll find information about getting access to the repository and how to
contribute to the project in this Contribution Guide [https://www.zephyrproject.org/doc/contribute/contribute_guidelines.html] document.

	Samples Code: In addition to the kernel source code, there are also
many documented Sample and Demo Code Examples [https://www.zephyrproject.org/doc/samples/samples.html] that can help show you
how to use Zephyr services and subsystems.

	Documentation: Extensive Project technical documentation is developed
along with the Zephyr kernel itself, and can be found at
https://zephyrproject.org/doc. Additional documentation is maintained in
the Zephyr GitHub wiki [https://github.com/zephyrproject-rtos/zephyr/wiki].

	Issue Reporting and Tracking: Requirements and Issue tracking is done in
our JIRA system: https://jira.zephyrproject.org. You can browse through the
reported issues and submit issues of your own.

	Mailing List: The Zephyr Mailing Lists [https://lists.zephyrproject.org/] are perhaps the most convenient
way to track developer discussions and to ask your own support questions to
the Zephyr project community.
You can also read through message archives to follow
past posts and discussions, a good thing to do to discover more about the
Zephyr project.

	IRC Chatting: You can chat online with the Zephyr project developer
community and other users in our IRC channel #zephyrproject on the
freenode.net IRC server. You can use the http://webchat.freenode.net web
client or use a client-side application such as pidgin.

Fundamental Terms and Concepts

See Glossary of Terms

Getting Started Guide

Use this guide to get started with your Zephyr
development.

Set Up the Development Environment

The Zephyr project supports these operating systems:

	Linux

	Mac OS

	Windows 8.1

Use the following procedures to create a new development environment.

	Development Environment Setup on Linux

	Development Environment Setup on Mac OS

	Development Environment Setup on Windows

Checking Out the Source Code Anonymously

The code is hosted in a GitHub repo that supports
anonymous cloning via git.

To clone the repository anonymously, enter:

$ git clone https://github.com/zephyrproject-rtos/zephyr.git

You have successfully checked out a copy of the source code to your local
machine.

Building and Running an Application

Using the ‘Hello World’ sample application as a base model, the following
section will describe the pieces necessary for creating a Zephyr application.

The processes to build and run a Zephyr application are the same across
operating systems. Nevertheless, the commands needed do differ from one OS to
the next. The following sections contain the commands used in a Linux
development environment. If you are using Mac OS please use the appropriate
commands for your OS.

Building a Sample Application

To build an example application follow these steps:

	Make sure your environment is setup by exporting the following environment
variables. When using the Zephyr SDK on Linux for example, type:

$ export ZEPHYR_GCC_VARIANT=zephyr
$ export ZEPHYR_SDK_INSTALL_DIR=<sdk installation directory>

	Navigate to the main project directory:

$ cd zephyr-project

	Source the project environment file to set the project environment
variables:

$ source zephyr-env.sh

	Build the hello_world example project, enter:

$ cd $ZEPHYR_BASE/samples/hello_world
$ make

The above invocation of make will build the hello_world sample application
using the default settings defined in the application’s Makefile. You can
build for a different board by defining the variable BOARD with one of the
supported boards, for example:

$ make BOARD=arduino_101

For further information on the supported boards go see
here. Alternatively, run the following command to obtain a list
of the supported boards:

$ make help

Sample projects for different features of the project are available at
at $ZEPHYR_BASE/samples.
After building an application successfully, the results can be found in the
outdir sub-directory under the application root directory, in a
subdirectory that matches the BOARD string.

The ELF binaries generated by the build system are named by default
zephyr.elf. This value can be overridden in the application
configuration The build system generates different names for different use cases
depending on the hardware and boards used.

Using Custom and 3rd Party Cross Compilers

The Zephyr SDK is provided for convenience and ease of use. It provides
cross-compilers for all ports supported by the Zephyr OS and does not require
any extra flags when building applications or running tests.

If you have a custom cross-compiler or if you wish to use a vendor provided SDK,
follow the steps below to build with any custom or 3rd party cross-compilers:

	To avoid any conflicts with the Zephyr SDK, enter the following commands.

$ unset ZEPHYR_GCC_VARIANT
$ unset ZEPHYR_SDK_INSTALL_DIR

	We will use the GCC ARM Embedded [https://launchpad.net/gcc-arm-embedded] compiler for this example, download the
package suitable for your operating system from the GCC ARM Embedded [https://launchpad.net/gcc-arm-embedded] website
and extract it on your file system. This example assumes the compiler was
extracted to: ~/gcc-arm-none-eabi-5_3-2016q1/.

	Navigate to the main project directory:

$ cd zephyr-project

	Source the project environment file to set the project environment
variables:

$ source zephyr-env.sh

	Build the example hello_world project and make sure you supply the
CROSS_COMPILE on the command line, enter:

$ export GCCARMEMB_TOOLCHAIN_PATH="~/gcc-arm-none-eabi-5_3-2016q1/"
$ export ZEPHYR_GCC_VARIANT=gccarmemb
$ cd $ZEPHYR_BASE/samples/hello_world
$ make CROSS_COMPILE=~/gcc-arm-none-eabi-5_3-2016q1/bin/arm-none-eabi- BOARD=arduino_due

The above will build the sample using the toolchain downloaded from
GCC ARM Embedded [https://launchpad.net/gcc-arm-embedded].

Alternatively, you can use the existing support for GCC ARM Embedded:

$ export GCCARMEMB_TOOLCHAIN_PATH="~/gcc-arm-none-eabi-5_3-2016q1/"
$ export ZEPHYR_GCC_VARIANT=gccarmemb
$ cd zephyr-project
$ source zephyr-env.sh
$ cd $ZEPHYR_BASE/samples/hello_world
$ make BOARD=arduino_due

Running a Sample Application in QEMU

To perform rapid testing of an application in the development environment you
can use the QEMU emulation board configuration available for both X86 and ARM
Cortex-M3 architectures. This can be easily accomplished by calling a special
target when building an application that invokes QEMU once the build process is
completed.

To run an application using the x86 emulation board configuration (qemu_x86),
type:

$ make BOARD=qemu_x86 run

To run an application using the ARM qemu_cortex_m3 board configuration, type:

$ make BOARD=qemu_cortex_m3 run

QEMU is not supported on all boards and SoCs. When developing for a specific
hardware target you should always test on the actual hardware and should not
rely on testing in the QEMU emulation environment only.

Development Environment Setup on Linux

This section describes how to set up a Linux development system.

After completing these steps, you will be able to compile and run your Zephyr
applications on the following Linux distributions:

	Ubuntu 16.04 LTS 64-bit

	Fedora 25 64-bit

Where needed, alternative instructions are listed for Ubuntu and Fedora.

Installing the Host’s Operating System

Building the project’s software components including the kernel has been
tested on Ubuntu and Fedora systems. Instructions for installing these OSes
are beyond the scope of this document.

Update Your Operating System

Before proceeding with the build, ensure your OS is up to date. On Ubuntu,
you’ll first need to update the local database list of available packages
before upgrading:

$ sudo apt-get update
$ sudo apt-get upgrade

On Fedora:

$ sudo dnf upgrade

Note that having a newer version available for an installed package
(and reported by dnf check-update) does not imply a subsequent
dnf upgrade will install it, because it must also ensure dependencies
and other restrictions are satisfied.

Installing Requirements and Dependencies

Install the following with either apt-get or dnf.

Install the required packages in a Ubuntu host system with:

$ sudo apt-get install git make gcc g++ ncurses-dev \
 doxygen dfu-util device-tree-compiler python3-ply python3-pip

Install the required packages in a Fedora host system with:

$ sudo dnf group install "Development Tools"
$ sudo dnf install git make gcc glibc-static \
 libstdc++-static ncurses-devel \
 doxygen dfu-util dtc python3-pip \
 python3-ply python3-yaml dfu-util dtc python3-pykwalify

Install additional packages required for development with Zephyr:

$ pip3 install --user -r scripts/requirements.txt

Installing the Zephyr Software Development Kit

Zephyr’s SDK contains all necessary tools
and cross-compilers needed to build the kernel on all supported
architectures. Additionally, it includes host tools such as a custom QEMU and
a host compiler for building host tools if necessary. The SDK supports the
following architectures:

	X86

	X86 IAMCU ABI

	ARM

	ARC

	NIOS II

	Xtensa

Follow these steps to install the SDK on your Linux host system.

	Download the latest SDK self-extractable binary.

Visit the Zephyr SDK archive [https://zephyrproject.org/downloads/tools] to find all available SDK versions,
including the latest version.

Alternatively, you can use the following command to download the
desired version (0.9.1 can be replaced with the version number you
wish to download).

$ wget https://github.com/zephyrproject-rtos/meta-zephyr-sdk/releases/download/0.9.1/zephyr-sdk-0.9.1-setup.run

	Run the installation binary, follow this example:

重要

Make sure you have installed all required packages for your host
distribution as described in the previous section
linux_required_software otherwise the SDK installation will fail.

$ chmod +x zephyr-sdk-<version>-setup.run
$./zephyr-sdk-<version>-setup.run

There is no need to use sudo if the SDK is installed in the current
user’s home directory.

	Follow the installation instructions on the screen. The
toolchain’s default installation location is /opt/zephyr-sdk/.
To install in the default installation location, you will need to use sudo. It is recommended
to install the SDK in your home directory and not in a system directory.

	To use the Zephyr SDK, export the following environment variables and
use the target location where SDK was installed, type:

$ export ZEPHYR_GCC_VARIANT=zephyr
$ export ZEPHYR_SDK_INSTALL_DIR=<sdk installation directory>

To use the same toolchain in new sessions in the future you can set the
variables in the file $HOME/.zephyrrc, for example:

$ cat <<EOF > ~/.zephyrrc
export ZEPHYR_GCC_VARIANT=zephyr
export ZEPHYR_SDK_INSTALL_DIR=/opt/zephyr-sdk
EOF

Development Environment Setup on Mac OS

This section describes how to set up a Mac OS development system.

After completing these steps, you will be able to compile and run your Zephyr
applications on the following Mac OS version:

	Mac OS X 10.11 (El Capitan)

	macOS Sierra 10.12

Developing for Zephyr on macOS generally requires you to build the
toolchain yourself. However, if there is already an macOS toolchain for your
target architecture you can use it directly.

Using a 3rd Party toolchain

If a toolchain is available for the architecture you plan to build for, then
you can use it as explained in: Using Custom and 3rd Party Cross Compilers.

An example of an available 3rd party toolchain is GCC ARM Embedded for the
Cortex-M family of cores.

Installing Requirements and Dependencies

To install the software components required to build the Zephyr kernel on a
Mac, you will need to build a cross compiler for the target devices you wish to
build for and install tools that the build system requires.

注解

Minor version updates of the listed required packages might also
work.

Before proceeding with the build, ensure your OS is up to date.

First, install the Homebrew (The missing package manager for
macOS). Homebrew is a free and open-source software package management system
that simplifies the installation of software on Apple’s macOS operating
system.

To install Homebrew, visit the Homebrew site [http://brew.sh/] and follow the
installation instructions on the site.

To complete the Homebrew installation, you might be prompted to install some
missing dependency. If so, follow please follow the instructions provided.

After Homebrew was successfully installed, install the following tools using
the brew command line.

Install tools to build Zephyr binaries:

$ brew install dfu-util doxygen qemu dtc python3
$ curl -O 'https://bootstrap.pypa.io/get-pip.py'
$./get-pip.py
$ rm get-pip.py
$ pip3 install --user -r scripts/requirements.txt

Install tools needed for building the toolchain (if needed):

$ brew install gettext help2man mpfr gmp coreutils wget
$ brew tap homebrew/dupes
$ brew install grep --with-default-names

To build the toolchain, you will need the latest version of crosstool-ng (1.23).
This version was not available via brew when writing this documentation, you can
however try and see if you get 1.23 installed:

$ brew install crosstool-ng

Alternatively you can install the latest version of crosstool-ng
from source. Download the latest version from the crosstool-ng site [http://crosstool-ng.org]. The
latest version usually supports the latest released compilers.

$ wget http://crosstool-ng.org/download/crosstool-ng/crosstool-ng-1.23.0.tar.bz2
$ tar xvf crosstool-ng-1.23.0.tar.bz2
$ cd crosstool-ng-1.23.0/
$./configure
$ make
$ make install

Setting Up the Toolchain

Creating a Case-sensitive File System

Building the compiler requires a case-sensitive file system. Therefore, use
diskutil to create an 8 GB blank sparse image making sure you select
case-sensitive file system (OS X Extended (Case-sensitive, Journaled) and
mount it.

Alternatively you can use the script below to create the image:

#!/bin/bash
ImageName=CrossToolNG
ImageNameExt=${ImageName}.sparseimage
diskutil umount force /Volumes/${ImageName} && true
rm -f ${ImageNameExt} && true
hdiutil create ${ImageName} -volname ${ImageName} -type SPARSE -size 8g -fs HFSX
hdiutil mount ${ImageNameExt}
cd /Volumes/$ImageName

When mounted, the file system of the image will be available under
/Volumes. Change to the mounted directory:

$ cd /Volumes/CrossToolNG
$ mkdir build
$ cd build

Setting the Toolchain Options

In the Zephyr kernel source tree we provide two configurations for
both ARM and X86 that can be used to pre-select the options needed
for building the toolchain.
The configuration files can be found in $ZEPHYR_BASE/scripts/cross_compiler/.

Currently the following configurations are provided:

	i586.config: for standard ABI, for example for Galileo and qemu_x86

	iamcu.config: for IAMCU ABI, for example for the Arduino 101

	nios2.config: for Nios II boards

$ cp ${ZEPHYR_BASE}/scripts/cross_compiler/i586.config .config

You can create a toolchain configuration or customize an existing configuration
yourself using the configuration menus:

$ export CT_PREFIX=/Volumes/CrossToolNG
$ ct-ng menuconfig

Verifying the Configuration of the Toolchain

Before building the toolchain it is advisable to perform a quick verification
of the configuration set for the toolchain.

	Open the generated .config file.

	Verify the following lines are present, assuming the sparse image was
mounted under /Volumes/CrossToolNG:

...
CT_LOCAL_TARBALLS_DIR="/Volumes/CrossToolNG/src"
CT_SAVE_TARBALLS is not set
CT_WORK_DIR="${CT_TOP_DIR}/.build"
CT_PREFIX_DIR="/Volumes/CrossToolNG/x-tools/${CT_TARGET}"
CT_INSTALL_DIR="${CT_PREFIX_DIR}"
Following options prevent link errors
CT_WANTS_STATIC_LINK=n
CT_CC_STATIC_LIBSTDCXX=n
...

Building the Toolchain

To build the toolchain, enter:

$ ct-ng build

The above process takes a while. When finished, the toolchain will be available
under /Volumes/CrossToolNG/x-tools.

Repeat the step for all architectures you want to support in your environment.

To use the toolchain with Zephyr, export the following environment variables
and use the target location where the toolchain was installed, type:

$ export ZEPHYR_GCC_VARIANT=xtools
$ export XTOOLS_TOOLCHAIN_PATH=/Volumes/CrossToolNG/x-tools

To use the same toolchain in new sessions in the future you can set the
variables in the file $HOME/.zephyrrc, for example:

$ cat <<EOF > ~/.zephyrrc
export XTOOLS_TOOLCHAIN_PATH=/Volumes/CrossToolNG/x-tools
export ZEPHYR_GCC_VARIANT=xtools
EOF

Development Environment Setup on Windows

This section describes how to configure your development environment and
to build Zephyr applications in a Microsoft Windows environment.

This guide was tested by building the Zephyr hello_world sample
application on Windows versions 7, 8.1, and 10.

Update Your Operating System

Before proceeding with the build, ensure that you are running your
Windows system with the latest updates installed.

Installing Requirements and Dependencies

Using MSYS2

The Zephyr development environment on Windows relies on MSYS2, a modern UNIX
environment for Windows. Follow the steps below to set it up:

	Download and install MSYS2. Download the appropriate (32 or
64-bit) MSYS2 installer from the MSYS2 website [http://www.msys2.org/] and execute it. On the
final installation screen, check the “Run MSYS2 now.” box to start up an
MSYS2 shell when installation is complete. Follow the rest of the
installation instructions on the MSYS2 website to update the package
database and core system packages. You may be advised to “terminate MSYS2
without returning to shell and check for updates again”. If so, simply
close the MSYS2 MSYS Shell desktop app and run it again to complete the update.)

	Launch the MSYS2 MSYS Shell desktop app from your start menu (if it’s not still open).

注解

Make sure you start MSYS2 MSYS Shell, not MSYS2 MinGW Shell.

注解

There are multiple export statements in this tutorial. You can avoid
typing them every time by placing them at the bottom of your
~/.bash_profile file.

	If you’re behind a corporate firewall, you’ll likely need to specify a
proxy to get access to internet resources:

$ export http_proxy=http://proxy.mycompany.com:123
$ export https_proxy=$http_proxy

	Install the dependencies required to build Zephyr:

$ pacman -S git make gcc dtc diffutils ncurses-devel python3

	Install pip and the required Python modules:

$ curl -O 'https://bootstrap.pypa.io/get-pip.py'
$./get-pip.py
$ rm get-pip.py
$ pip install --user -r scripts/requirements.txt

	The build system should now be ready to work with any toolchain installed in
your system. In the next step you’ll find instructions for installing
toolchains for building both x86 and ARM applications.

	Install cross compiler toolchain:

	For x86, install the 2017 Windows host ISSM toolchain from the Intel
Developer Zone: ISSM Toolchain [https://software.intel.com/en-us/articles/issm-toolchain-only-download]. Use your web browser to
download the toolchain’s tar.gz file.

You’ll need the tar application to unpack this file. In an MSYS2 MSYS
console, install tar and use it to extract the toolchain archive:

$ pacman -S tar
$ tar -zxvf /c/Users/myusername/Downloads/issm-toolchain-windows-2017-01-15.tar.gz -C /c

substituting the .tar.gz path name with the one you downloaded.

注解

The ISSM toolset only supports development for Intel® Quark™
Microcontrollers, for example, the Arduino 101 board. (Check out the
“Zephyr Development Environment
Setup” in this Getting Started on Arduino 101 with ISSM [https://software.intel.com/en-us/articles/getting-started-arduino-101genuino-101-with-intel-system-studio-for-microcontrollers] document.)
Additional setup is required to use the ISSM GUI for development.

	For ARM, install GNU ARM Embedded from the ARM developer website:
GNU ARM Embedded [https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads] (install to c:\gccarmemb).

	From within the MSYS2 MSYS Shell, clone a copy of the Zephyr source into
your home directory using Git:

$ cd ~
$ git clone https://github.com/zephyrproject-rtos/zephyr.git

	Also within the MSYS console, set up environment variables for the installed
tools and for the Zephyr environment (using the provided shell script):

For x86:

$ export ZEPHYR_GCC_VARIANT=issm
$ export ISSM_INSTALLATION_PATH=/c/issm0-toolchain-windows-2017-01-25

Use the path where you extracted the ISSM toolchain.

For ARM:

$ export ZEPHYR_GCC_VARIANT=gccarmemb
$ export GCCARMEMB_TOOLCHAIN_PATH=/c/gccarmemb

And for either, run the provided script to set up zephyr project specific
variables:

$ unset ZEPHYR_SDK_INSTALL_DIR
$ source ~/zephyr/zephyr-env.sh

	Finally, you can try building the hello_world sample to check things
out.

To build for the Intel® Quark™ (x86-based) Arduino 101:

$ cd $ZEPHYR_BASE/samples/hello_world
$ make BOARD=arduino_101

To build for the ARM-based Nordic nRF52 Development Kit:

$ cd $ZEPHYR_BASE/samples/hello_world
$ make BOARD=nrf52_pca10040

This should check that all the tools and toolchain are set up correctly for
your own Zephyr development.

Using Windows 10 WSL (Windows Subsystem for Linux)

If you are running a recent version of Windows 10 you can make use of the
built-in functionality to natively run Ubuntu binaries directly on a standard
command-prompt. This allows you to install the standard Zephyr SDK and build
for all supported architectures without the need for a Virtual Machine.

	Install Windows Subsystem for Linux (WSL) following the instructions on the
official Microsoft website: WSL Installation [https://msdn.microsoft.com/en-us/commandline/wsl/install_guide]

注解

For the Zephyr SDK to function properly you will need Windows 10
build 15002 or greater. You can check which Windows 10 build you are
running in the “About your PC” section of the System Settings.
If you are running an older Windows 10 build you might need to install
the Creator’s Update.

	Follow the instructions for Ubuntu detailed in the Zephyr Linux Getting
Started Guide which can be found here: Development Environment Setup on Linux

Contributing to the Zephyr Project

As an open-source project, we welcome and encourage the community to submit
patches for code, documentation, tests, and more, directly to the project.

	Contribution Guidelines

Contribution Guidelines

As an open-source project, we welcome and encourage the community to submit
patches directly to the project. In our collaborative open source environment,
standards and methods for submitting changes help reduce the chaos that can result
from an active development community.

This document explains how to participate in project conversations, log bugs
and enhancement requests, and submit patches to the project so your patch will
be accepted quickly in the codebase.

Licensing

Licensing is very important to open source projects. It helps ensure the
software continues to be available under the terms that the author desired.

Zephyr uses the Apache 2.0 license [https://github.com/zephyrproject-rtos/zephyr/blob/master/LICENSE] (as found in the LICENSE file in the
project’s GitHub repo [https://github.com/zephyrproject-rtos/zephyr]) to strike a balance between open contribution and
allowing you to use the software however you would like to. There are some
imported or reused components of the Zephyr project that use other licensing,
as described in Zephyr Licensing [https://www.zephyrproject.org/doc/LICENSING.html].

The license tells you what rights you have as a developer, provided by the
copyright holder. It is important that the contributor fully understands the
licensing rights and agrees to them. Sometimes the copyright holder isn’t the
contributor, such as when the contributor is doing work on behalf of a
company.

Developer Certification of Origin (DCO)

To make a good faith effort to ensure licensing criteria are met, the Zephyr
project requires the Developer Certificate of Origin (DCO) process to be
followed.

The DCO is an attestation attached to every contribution made by every
developer. In the commit message of the contribution, (described more fully
later in this document), the developer simply adds a Signed-off-by
statement and thereby agrees to the DCO.

When a developer submits a patch, it is a commitment that the contributor has
the right to submit the patch per the license. The DCO agreement is shown
below and at http://developercertificate.org/.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the
 best of my knowledge, is covered under an appropriate open
 source license and I have the right under that license to
 submit that work with modifications, whether created in whole
 or in part by me, under the same open source license (unless
 I am permitted to submit under a different license), as
 Indicated in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including
 all personal information I submit with it, including my
 sign-off) is maintained indefinitely and may be redistributed
 consistent with this project or the open source license(s)
 involved.

DCO Sign-Off Methods

The DCO requires a sign-off message in the following format appear on each
commit in the pull request:

Signed-off-by: Zephyrus Zephyr <zephyrus@zephyrproject.org>

The DCO text can either be manually added to your commit body, or you can add
either -s or --signoff to your usual Git commit commands. If you forget
to add the sign-off you can also amend a previous commit with the sign-off by
running git commit --amend -s. If you’ve pushed your changes to GitHub
already you’ll need to force push your branch after this with git push -f.

Prerequisites

As a contributor, you’ll want to be familiar with the Zephyr project, how to
configure, install, and use it as explained in the Zephyr Project website [https://zephyrproject.org]
and how to set up your development environment as introduced in the Zephyr
Getting Started Guide [https://www.zephyrproject.org/doc/getting_started/getting_started.html].

The examples below use a Linux host environment for Zephyr development.
You should be familiar with common developer tools such as Git and Make, and
platforms such as GitHub.

If you haven’t already done so, you’ll need to create a (free) GitHub account
on http://github.com and have Git tools available on your development system.

Repository layout

To clone the main Zephyr Project repository use:

$ git clone https://github.com/zephyrproject-rtos/zephyr

The Zephyr project directory structure is described in Source Tree Structure [https://www.zephyrproject.org/doc/kernel/overview/source_tree.html]
documentation. In addition to the Zephyr kernel itself, you’ll also find the
sources for technical documentation, sample code, supported board
configurations, and a collection of subsystem tests. All of these are
available for developers to contribute to and enhance.

Pull Requests and Issues

Before starting on a patch, first check in our Jira Zephyr Project Issues [https://jira.zephyrproject.org]
system to see what’s been reported on the issue you’d like to address. Have a
conversation on the Zephyr-devel mailing list [https://lists.zephyrproject.org/mailman/listinfo/zephyr-devel] (or the #zephyrproject IRC
channel on freenode.net) to see what others think of your issue (and proposed
solution). You may find others that have encountered the issue you’re
finding, or that have similar ideas for changes or additions. Send a message
to the Zephyr-devel mailing list [https://lists.zephyrproject.org/mailman/listinfo/zephyr-devel] to introduce and discuss your idea with
the development community.

It’s always a good practice to search for existing or related issues before
submitting your own. When you submit an issue (bug or feature request), the
triage team will review and comment on the submission, typically within a few
business days.

You can find all open pull requests [https://github.com/zephyrproject-rtos/zephyr/pulls] on GitHub and open Zephyr Project
Issues [https://jira.zephyrproject.org] in Jira.

Development Tools and Git Setup

Signed-off-by

The name in the commit message Signed-off-by: line and your email must
match the change authorship information. Make sure your .git/config is set
up correctly:

$ git config --global user.name "David Developer"
$ git config --global user.email "david.developer@company.com"

gitlint

When you submit a pull request to the project, a series of checks are
performed to verify your commit messages meet the requirements. The same step
done during the CI process can be performed locally using the the gitlint
command.

Install gitlint and run it locally in your tree and branch where your patches
have been committed:

$ sudo pip3 install gitlint
$ gitlint

Note, gitlint only checks HEAD (the most recent commit), so you should run it
after each commit, or use the --commits option to specify a commit range
covering all the development patches to be submitted.

sanitycheck

To verify that your changes did not break any tests or samples, please run the
sanitycheck script locally before submitting your pull request to GitHub. To
run the same tests the CI system runs, follow these steps from within your
local Zephyr source working directory:

$ source zephyr-env.sh
$ make host-tools
$ export PREBUILT_HOST_TOOLS=${ZEPHYR_BASE}/bin
$ export USE_CCACHE=1
$./scripts/sanitycheck

The above will execute the basic sanitycheck script, which will run various
kernel tests using the QEMU emulator. It will also do some build tests on
various samples with advanced features that can’t run in QEMU.

We highly recommend you run these tests locally to avoid any CI failures.
Using CCACHE and pre-built host tools is optional, however it speeds up the
execution time considerably.

Coding Style

Use these coding guidelines to ensure that your development complies with the
project’s style and naming conventions.

In general, follow the Linux kernel coding style [https://kernel.org/doc/html/latest/process/coding-style.html], with the
following exceptions:

	Add braces to every if and else body, even for single-line code
blocks. Use the --ignore BRACES flag to make checkpatch stop
complaining.

	Use spaces instead of tabs to align comments after declarations, as needed.

	Use C89-style single line comments, /* */. The C99-style single line
comment, //, is not allowed.

	Use /** */ for doxygen comments that need to appear in the documentation.

The Linux kernel GPL-licensed tool checkpatch is used to check coding
style conformity. Checkpatch is available in the scripts directory. To invoke
it when committing code, edit your .git/hooks/pre-commit file to contain:

#!/bin/sh
set -e exec
exec git diff --cached | ${ZEPHYR_BASE}/scripts/checkpatch.pl - || true

Contribution Workflow

One general practice we encourage, is to make small,
controlled changes. This practice simplifies review, makes merging and
rebasing easier, and keeps the change history clear and clean.

When contributing to the Zephyr Project, it is also important you provide as much
information as you can about your change, update appropriate documentation,
and test your changes thoroughly before submitting.

The general GitHub workflow used by Zephyr developers uses a combination of
command line Git commands and browser interaction with GitHub. As it is with
Git, there are multiple ways of getting a task done. We’ll describe a typical
workflow here:

	Create a Fork of Zephyr [https://github.com/zephyrproject-rtos/zephyr#fork-destination-box]
to your personal account on GitHub. (Click on the fork button in the top
right corner of the Zephyr project repo page in GitHub.)

	On your development computer, clone the fork you just made:

$ git clone https://github.com/<your github id>/zephyr

This would be a good time to let Git know about the upstream repo too:

$ git remote add upstream https://github.com/zephyrproject-rtos/zephyr.git

and verify the remote repos:

$ git remote -v

	Create a topic branch (off of master) for your work (if you’re addressing
Jira issue, we suggest including the Jira issue number in the branch name):

$ git checkout master
$ git checkout -b fix_comment_typo

Some Zephyr subsystems do development work on a separate branch from
master so you may need to indicate this in your checkout:

$ git checkout -b fix_out_of_date_patch origin/net

	Make changes, test locally, change, test, test again, ... (Check out the
prior chapter on sanitycheck as well).

	When things look good, start the pull request process by adding your changed
files:

$ git add [file(s) that changed, add -p if you want to be more specific]

You can see files that are not yet staged using:

$ git status

	Verify changes to be committed look as you expected:

$ git diff --cached

	Commit your changes to your local repo:

$ git commit -s

The -s option automatically adds your Signed-off-by: to your commit
message. Your commit will be rejected without this line that indicates your
agreement with the DCO. See the Commit Guidelines section for
specific guidelines for writing your commit messages.

	Push your topic branch with your changes to your fork in your personal
GitHub account:

$ git push origin fix_comment_typo

	In your web browser, go to your forked repo and click on the
Compare & pull request button for the branch you just worked on and
you want to open a pull request with.

	Review the pull request changes, and verify that you are opening a
pull request for the appropriate branch. The title and message from your
commit message should appear as well.

	If you’re working on a subsystem branch that’s not master,
you may need to change the intended branch for the pull request
here, for example, by changing the base branch from master to net.

	GitHub will assign one or more suggested reviewers (based on the
CODEOWNERS file in the repo). If you are a project member, you can
select additional reviewers now too.

	Click on the submit button and your pull request is sent and awaits
review. Email will be sent as review comments are made, or you can check
on your pull request at https://github.com/zephyrproject-rtos/zephyr/pulls.

	While you’re waiting for your pull request to be accepted and merged, you
can create another branch to work on another issue. (Be sure to make your
new branch off of master and not the previous branch.):

$ git checkout master
$ git checkout -b fix_another_issue

and use the same process described above to work on this new topic branch.

	If reviewers do request changes to your patch, you can interactively rebase
commit(s) to fix review issues. In your development repo:

$ git fetch --all
$ git rebase --ignore-whitespace upstream/master

The --ignore-whitespace option stops git apply (called by rebase)
from changing any whitespace. Continuing:

$ git rebase -i <offending-commit-id>^

In the interactive rebase editor, replace pick with edit to select
a specific commit (if there’s more than one in your pull request), or
remove the line to delete a commit entirely. Then edit files to fix the
issues in the review.

As before, inspect and test your changes. When ready, continue the
patch submission:

$ git add [file(s)]
$ git rebase --continue

Update commit comment if needed, and continue:

$ git push --force origin fix_comment_typo

By force pushing your update, your original pull request will be updated
with your changes so you won’t need to resubmit the pull request.

Commit Guidelines

Changes are submitted as Git commits. Each commit message must contain:

	A short and descriptive subject line that is less than 72 characters,
followed by a blank line. The subject line must include a prefix that
identifies the subsystem being changed, followed by a colon, and a short
title, for example: doc: update wiki references to new site.
(If you’re updating an existing file, you can use
git log <filename> to see what developers used as the prefix for
previous patches of this file.)

	A change description with your logic or reasoning for the changes, followed
by a blank line.

	A Signed-off-by line, Signed-off-by: <name> <email> typically added
automatically by using git commit -s

	If the change address a Jira issue, include a line of the form:

Jira: ZEP-xxx

All changes and topics sent to GitHub must be well-formed, as described above.

Commit Message Body

When editing the commit message, please briefly explain what your change
does and why it’s needed. A change summary of "Fixes stuff" will be rejected. An
empty change summary is only acceptable for trivial changes fully described by
the commit title (e.g., doc: fix misspellings in CONTRIBUTING doc)

The description body of the commit message must include:

	what the change does,

	why you chose that approach,

	what assumptions were made, and

	how you know it works – for example, which tests you ran.

For examples of accepted commit messages, you can refer to the Zephyr GitHub
changelog [https://github.com/zephyrproject-rtos/zephyr/commits/master].

Other Commit Expectations

	Commits must build cleanly when applied on top of each other, thus avoiding
breaking bisectability.

	Commits must pass the scripts/checkpatch.pl requirements.

	Each commit must address a single identifiable issue and must be
logically self-contained. Unrelated changes should be submitted as
separate commits.

	You may submit pull request RFCs (requests for comments) to send work
proposals, progress snapshots of your work, or to get early feedback on
features or changes that will affect multiple areas in the code base.

Identifying Contribution Origin

When adding a new file to the tree, it is important to detail the source of
origin on the file, provide attributions, and detail the intended usage. In
cases where the file is an original to Zephyr, the commit message should
include the following (“Original” is the assumption if no Origin tag is
present):

Origin: Original

In cases where the file is imported from an external project, the commit
message shall contain details regarding the original project, the location of
the project, the SHA-id of the origin commit for the file, the intended
purpose, and if the file will be maintained by the Zephyr project,
(whether or not the Zephyr project will contain a localized branch or if
it is a downstream copy).

For example, a copy of a locally maintained import:

Origin: Contiki OS
License: BSD 3-Clause
URL: http://www.contiki-os.org/
commit: 853207acfdc6549b10eb3e44504b1a75ae1ad63a
Purpose: Introduction of networking stack.
Maintained-by: Zephyr

For example, a copy of an externally maintained import:

Origin: Tiny Crypt
License: BSD 3-Clause
URL: https://github.com/01org/tinycrypt
commit: 08ded7f21529c39e5133688ffb93a9d0c94e5c6e
Purpose: Introduction of TinyCrypt
Maintained-by: External

Zephyr Kernel Primer

This document provides a general introduction of the Zephyr kernel’s
key capabilities and services. Additional details can be found by consulting
the API Documentation and Application Development Primer documentation, and by examining
the code in the Zephyr source tree.

	Overview
	Source Tree Structure

	Changes from Version 1 Kernel

	Threads
	Lifecycle

	Scheduling

	Custom Data

	System Threads

	Workqueue Threads

	Timing
	Kernel Clocks

	Timers

	Memory Allocation
	Memory Slabs

	Memory Pools

	Heap Memory Pool

	Synchronization
	Semaphores

	Mutexes

	Alerts

	Data Passing
	Fifos

	Lifos

	Stacks

	Message Queues

	Mailboxes

	Pipes

	Other Services
	Interrupts

	Atomic Services

	Polling API

	Ring Buffers

	Floating Point Services

	C++ Support for Applications

	CPU Idling

Overview

The Zephyr kernel lies at the heart of every Zephyr application. It provides
a low footprint, high performance, multi-threaded execution environment
with a rich set of available features. The rest of the Zephyr ecosystem,
including device drivers, networking stack, and application-specific code,
uses the kernel’s features to create a complete application.

The configurable nature of the kernel allows you to incorporate only those
features needed by your application, making it ideal for systems with limited
amounts of memory (as little as 2 KB!) or with simple multi-threading
requirements (such as a set of interrupt handlers and a single background task).
Examples of such systems include: embedded sensor hubs, environmental sensors,
simple LED wearable, and store inventory tags.

Applications requiring more memory (50 to 900 KB), multiple communication
devices (like WiFi and Bluetooth Low Energy), and complex multi-threading,
can also be developed using the Zephyr kernel. Examples of such systems
include: fitness wearables, smart watches, and IoT wireless gateways.

	Source Tree Structure

	Changes from Version 1 Kernel

Source Tree Structure

Understanding the Zephyr source tree can be helpful in locating the code
associated with a particular Zephyr feature.

The Zephyr source tree provides the following top-level directories,
each of which may have one or more additional levels of subdirectories
which are not described here.

	arch

	Architecture-specific kernel and system-on-chip (SoC) code.
Each supported architecture (for example, x86 and ARM)
has its own subdirectory,
which contains additional subdirectories for the following areas:

	architecture-specific kernel source files

	architecture-specific kernel include files for private APIs

	SoC-specific code

	boards

	Board related code and configuration files.

	doc

	Zephyr technical documentation source files and tools used to
generate the http://zephyrproject.org/doc web content.

	drivers

	Device driver code.

	dts

	Device tree source (.dts) files used to describe non-discoverable
board-specific hardware details previously hard coded in the OS
source code.

	ext

	Externally created code that has been integrated into Zephyr
from other sources, such as hardware interface code supplied by
manufacturers and cryptographic library code.

	include

	Include files for all public APIs, except those defined under lib.

	kernel

	Architecture-independent kernel code.

	lib

	Library code, including the minimal standard C library.

	misc

	Miscellaneous code that doesn’t belong to any of the other top-level
directories.

	samples

	Sample applications that demonstrate the use of Zephyr features.

	scripts

	Various programs and other files used to build and test Zephyr
applications.

	subsys

	Subsystems of Zephyr, including:

	USB device stack code.

	Networking code, including the Bluetooth stack and networking stacks.

	File system code.

	Bluetooth host and controller

	tests

	Test code and benchmarks for Zephyr features.

Changes from Version 1 Kernel

The current Zephyr kernel incorporates numerous changes from
kernels found in the 1.5 and earlier releases, and improves
ease of use for developers.

Some of the benefits of these changes are:

	elimination of separate microkernel and nanokernel build types,

	elimination of the MDEF in microkernel-based applications,

	simplifying and streamlining the kernel API,

	easing restrictions on the use of kernel objects,

	reducing memory footprint by merging duplicated services, and

	improving performance by reducing context switching.

The most significant changes are discussed below.

Application Design

The earlier microkernel and nanokernel portions of Zephyr have been merged into
a single entity, which is simply referred to as “the kernel”. Consequently,
there is now only a single way to design and build Zephyr applications.

The task and fiber context types have been merged into a single type,
known as a “thread”. Setting a thread’s priority to a negative priority
makes it a “cooperative thread”, which operates in a fiber-like manner;
setting it to a non-negative priority makes it a “preemptive thread”,
which operates in a task-like manner.

Kernel objects can now be used by both task-like threads and fiber-like
threads. (The previous kernel did not permit fibers to use microkernel
objects, and could result in undesirable busy-waiting when nanokernel
objects were used by tasks.)

Kernel objects now typically allow multiple threads to wait on a given
object. (The previous kernel restricted waiting on certain types of
kernel object to a single thread.)

Kernel object APIs now always execute in the context of the invoking thread.
(The previous kernel required microkernel object APIs to context switch
the thread to the microkernel server fiber, followed by another context
switch back to the invoking thread.)

The MDEF has been eliminated. Consequently, all kernel objects are now defined
directly in code.

Kernel APIs

Most kernel APIs have been renamed or have had changes to their arguments
(or both) to make them more intuitive, and to improve consistency.
The k_ and K_ prefixes are now used by most kernel APIs.

A previous kernel operation that can be invoked from a task, a fiber,
or an ISR using distinct APIs is now invoked from a thread or an ISR
using a single common API.

Many kernel APIs now return 0 to indicate success and a non-zero error code
to indicate the reason for failure. (The previous kernel supported only
two error codes, rather than an unlimited number of them.)

Threads

A task-like thread can now make itself temporarily non-preemptible
by locking the kernel’s scheduler (rather than by locking interrupts).

It is now possible to pass up to 3 arguments to a thread’s entry point.
(The previous kernel allowed 2 arguments to be passed to a fiber
and allowed no arguments to be passed to a task.)

It is now possible to delay the start of a statically-defined threads.
(The previous kernel only permitted delaying of fibers spawned at run time.)

A task can no longer specify an “task abort handler” function
that is invoked automatically when the task terminates or aborts.

An application can no longer use “task groups” to alter the operation
of a set of related tasks by invoking a single kernel API.
However, applications can provide their own APIs to achieve a similar effect.

The kernel now spawns both a “main thread” and an “idle thread” during
startup. (The previous kernel spawned only a single thread.)

The kernel’s main thread performs system initialization and then invokes
main(). If no main() is defined by the application,
the main thread terminates.

System initialization code can now perform blocking operations,
during which time the kernel’s idle thread executes.

Timing

Most kernel APIs now specify timeout intervals in milliseconds, rather than
in system clock ticks. This change makes things more intuitive for most
developers. However, the kernel still implements timeouts using the
tick-based system clock.

The previous nanokernel timer and microkernel timer object types have been
merged into a single type.

Memory Allocation

The microkernel memory map object has been renamed to “memory slab”, to better
reflect its management of equal-size memory blocks.

It is now possible to specify the alignment used by the memory blocks
belonging to a memory slab or a memory pool.

It is now possible to define a memory pool directly in code.

It is now possible to allocate and free memory in a malloc()-like manner
from a heap data pool.

Synchronization

The previous nanokernel semaphore and microkernel semaphore object types have been
merged into a single type. The new type can now be used as a binary semaphore,
as well as a counting semaphore.

An application can no longer use a “semaphore group” to allow a thread to wait
on multiple semaphores simultaneously. Until the kernel incorporates a
select() or poll() capability an application wishing
to wait on multiple semaphores must either test them individually in a
non-blocking manner or use an additional mechanism, such as an event object,
to signal the application that one of the semaphores is available.

The previous microkernel event object type is renamed to “alert” and is now presented as
a relative to Unix-style signaling. Due to improvements to the implementation
of semaphores, alerts are now less efficient to use for basic synchronization
than semaphores; consequently, alerts should now be reserved for scenarios
requiring the use of a callback function.

Data Passing

The previous microkernel FIFO object type has been renamed to “message queue”,
to avoid confusion with the nanokernel FIFO object type.

It is now possible to specify the alignment used by the data items
stored in a message queue (aka microkernel FIFO).

The previous microkernel mailbox object type no longer supports the explicit message
priority concept. Messages are now implicitly ordered based on the priority
of the sending thread.

The mailbox object type now supports sending asynchronous
messages using a message buffer. (The previous kernel only supported
asynchronous messages using a message block.)

It is now possible to specify the alignment used by a pipe object’s
buffer.

Threads

This section describes kernel services for creating, scheduling, and deleting
independently executable threads of instructions.

	Lifecycle

	Scheduling

	Custom Data

	System Threads

	Workqueue Threads

Lifecycle

A thread is a kernel object that is used for application processing
that is too lengthy or too complex to be performed by an ISR.

	Concepts
	Thread Creation

	Thread Termination

	Thread Aborting

	Thread Suspension

	Thread Options

	Implementation
	Spawning a Thread

	Terminating a Thread

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of threads can be defined by an application. Each thread is
referenced by a thread id that is assigned when the thread is spawned.

A thread has the following key properties:

	A stack area, which is a region of memory used for the thread’s stack.
The size of the stack area can be tailored to conform to the actual needs
of the thread’s processing. Special macros exist to create and work with
stack memory regions.

	A thread control block for private kernel bookkeeping of the thread’s
metadata. This is an instance of type struct k_thread.

	An entry point function, which is invoked when the thread is started.
Up to 3 argument values can be passed to this function.

	A scheduling priority, which instructs the kernel’s scheduler how to
allocate CPU time to the thread. (See Scheduling.)

	A set of thread options, which allow the thread to receive special
treatment by the kernel under specific circumstances.
(See Thread Options.)

	A start delay, which specifies how long the kernel should wait before
starting the thread.

Thread Creation

A thread must be created before it can be used. The kernel initializes
the thread control block as well as one end of the stack portion. The remainder
of the thread’s stack is typically left uninitialized.

Specifying a start delay of K_NO_WAIT instructs the kernel
to start thread execution immediately. Alternatively, the kernel can be
instructed to delay execution of the thread by specifying a timeout
value – for example, to allow device hardware used by the thread
to become available.

The kernel allows a delayed start to be canceled before the thread begins
executing. A cancellation request has no effect if the thread has already
started. A thread whose delayed start was successfully canceled must be
re-spawned before it can be used.

Thread Termination

Once a thread is started it typically executes forever. However, a thread may
synchronously end its execution by returning from its entry point function.
This is known as termination.

A thread that terminates is responsible for releasing any shared resources
it may own (such as mutexes and dynamically allocated memory)
prior to returning, since the kernel does not reclaim them automatically.

注解

The kernel does not currently make any claims regarding an application’s
ability to respawn a thread that terminates.

Thread Aborting

A thread may asynchronously end its execution by aborting. The kernel
automatically aborts a thread if the thread triggers a fatal error condition,
such as dereferencing a null pointer.

A thread can also be aborted by another thread (or by itself)
by calling k_thread_abort(). However, it is typically preferable
to signal a thread to terminate itself gracefully, rather than aborting it.

As with thread termination, the kernel does not reclaim shared resources
owned by an aborted thread.

注解

The kernel does not currently make any claims regarding an application’s
ability to respawn a thread that aborts.

Thread Suspension

A thread can be prevented from executing for an indefinite period of time
if it becomes suspended. The function k_thread_suspend()
can be used to suspend any thread, including the calling thread.
Suspending a thread that is already suspended has no additional effect.

Once suspended, a thread cannot be scheduled until another thread calls
k_thread_resume() to remove the suspension.

注解

A thread can prevent itself from executing for a specified period of time
using k_sleep(). However, this is different from suspending
a thread since a sleeping thread becomes executable automatically when the
time limit is reached.

Thread Options

The kernel supports a small set of thread options that allow a thread
to receive special treatment under specific circumstances. The set of options
associated with a thread are specified when the thread is spawned.

A thread that does not require any thread option has an option value of zero.
A thread that requires a thread option specifies it by name, using the
| character as a separator if multiple options are needed
(i.e. combine options using the bitwise OR operator).

The following thread options are supported.

	K_ESSENTIAL

	This option tags the thread as an essential thread. This instructs
the kernel to treat the termination or aborting of the thread as a fatal
system error.

By default, the thread is not considered to be an essential thread.

	K_FP_REGS and K_SSE_REGS

	These x86-specific options indicate that the thread uses the CPU’s
floating point registers and SSE registers, respectively. This instructs
the kernel to take additional steps to save and restore the contents
of these registers when scheduling the thread.
(For more information see Floating Point Services.)

By default, the kernel does not attempt to save and restore the contents
of these registers when scheduling the thread.

Implementation

Spawning a Thread

A thread is spawned by defining its stack area and its thread control block,
and then calling k_thread_create(). The stack area must be defined
using K_THREAD_STACK_DEFINE to ensure it is properly set up in
memory.

The thread spawning function returns its thread id, which can be used
to reference the thread.

The following code spawns a thread that starts immediately.

#define MY_STACK_SIZE 500
#define MY_PRIORITY 5

extern void my_entry_point(void *, void *, void *);

K_THREAD_STACK_DEFINE(my_stack_area, MY_STACK_SIZE);
struct k_thread my_thread_data;

k_tid_t my_tid = k_thread_create(&my_thread_data, my_stack_area,
 K_THREAD_STACK_SIZEOF(my_stack_area),
 my_entry_point,
 NULL, NULL, NULL,
 MY_PRIORITY, 0, K_NO_WAIT);

Alternatively, a thread can be spawned at compile time by calling
K_THREAD_DEFINE. Observe that the macro defines
the stack area, control block, and thread id variables automatically.

The following code has the same effect as the code segment above.

#define MY_STACK_SIZE 500
#define MY_PRIORITY 5

extern void my_entry_point(void *, void *, void *);

K_THREAD_DEFINE(my_tid, MY_STACK_SIZE,
 my_entry_point, NULL, NULL, NULL,
 MY_PRIORITY, 0, K_NO_WAIT);

Terminating a Thread

A thread terminates itself by returning from its entry point function.

The following code illustrates the ways a thread can terminate.

void my_entry_point(int unused1, int unused2, int unused3)
{
 while (1) {
 ...
 if (<some condition>) {
 return; /* thread terminates from mid-entry point function */
 }
 ...
 }

 /* thread terminates at end of entry point function */
}

Suggested Uses

Use threads to handle processing that cannot be handled in an ISR.

Use separate threads to handle logically distinct processing operations
that can execute in parallel.

Configuration Options

Related configuration options:

	None.

APIs

The following thread APIs are provided by kernel.h:

	K_THREAD_DEFINE

	k_thread_create()

	k_thread_cancel()

	k_thread_abort()

	k_thread_suspend()

	k_thread_resume()

	K_THREAD_STACK_DEFINE

	K_THREAD_STACK_ARRAY_DEFINE

	K_THREAD_STACK_MEMBER

	K_THREAD_STACK_SIZEOF

	K_THREAD_STACK_BUFFER

Scheduling

The kernel’s priority-based scheduler allows an application’s threads
to share the CPU.

	Concepts
	Thread States

	Thread Priorities

	Scheduling Algorithm

	Cooperative Time Slicing

	Preemptive Time Slicing

	Scheduler Locking

	Thread Sleeping

	Busy Waiting

	Suggested Uses

	Configuration Options

	APIs

Concepts

The scheduler determines which thread is allowed to execute
at any point in time; this thread is known as the current thread.

Whenever the scheduler changes the identity of the current thread,
or when execution of the current thread is supplanted by an ISR,
the kernel first saves the current thread’s CPU register values.
These register values get restored when the thread later resumes execution.

Thread States

A thread that has no factors that prevent its execution is deemed
to be ready, and is eligible to be selected as the current thread.

A thread that has one or more factors that prevent its execution
is deemed to be unready, and cannot be selected as the current thread.

The following factors make a thread unready:

	The thread has not been started.

	The thread is waiting on for a kernel object to complete an operation.
(For example, the thread is taking a semaphore that is unavailable.)

	The thread is waiting for a timeout to occur.

	The thread has been suspended.

	The thread has terminated or aborted.

Thread Priorities

A thread’s priority is an integer value, and can be either negative or
non-negative.
Numerically lower priorities takes precedence over numerically higher values.
For example, the scheduler gives thread A of priority 4 higher priority
over thread B of priority 7; likewise thread C of priority -2 has higher
priority than both thread A and thread B.

The scheduler distinguishes between two classes of threads,
based on each thread’s priority.

	A cooperative thread has a negative priority value.
Once it becomes the current thread, a cooperative thread remains
the current thread until it performs an action that makes it unready.

	A preemptible thread has a non-negative priority value.
Once it becomes the current thread, a preemptible thread may be supplanted
at any time if a cooperative thread, or a preemptible thread of higher
or equal priority, becomes ready.

A thread’s initial priority value can be altered up or down after the thread
has been started. Thus it possible for a preemptible thread to become
a cooperative thread, and vice versa, by changing its priority.

The kernel supports a virtually unlimited number of thread priority levels.
The configuration options CONFIG_NUM_COOP_PRIORITIES and
CONFIG_NUM_PREEMPT_PRIORITIES specify the number of priority
levels for each class of thread, resulting the following usable priority
ranges:

	cooperative threads: (-CONFIG_NUM_COOP_PRIORITIES) to -1

	preemptive threads: 0 to (CONFIG_NUM_PREEMPT_PRIORITIES - 1)

For example, configuring 5 cooperative priorities and 10 preemptive priorities
results in the ranges -5 to -1 and 0 to 9, respectively.

Scheduling Algorithm

The kernel’s scheduler selects the highest priority ready thread
to be the current thread. When multiple ready threads of the same priority
exist, the scheduler chooses the one that has been waiting longest.

注解

Execution of ISRs takes precedence over thread execution,
so the execution of the current thread may be supplanted by an ISR
at any time unless interrupts have been masked. This applies to both
cooperative threads and preemptive threads.

Cooperative Time Slicing

Once a cooperative thread becomes the current thread, it remains
the current thread until it performs an action that makes it unready.
Consequently, if a cooperative thread performs lengthy computations,
it may cause an unacceptable delay in the scheduling of other threads,
including those of higher priority and equal priority.

To overcome such problems, a cooperative thread can voluntarily relinquish
the CPU from time to time to permit other threads to execute.
A thread can relinquish the CPU in two ways:

	Calling k_yield() puts the thread at the back of the scheduler’s
prioritized list of ready threads, and then invokes the scheduler.
All ready threads whose priority is higher or equal to that of the
yielding thread are then allowed to execute before the yielding thread is
rescheduled. If no such ready threads exist, the scheduler immediately
reschedules the yielding thread without context switching.

	Calling k_sleep() makes the thread unready for a specified
time period. Ready threads of all priorities are then allowed to execute;
however, there is no guarantee that threads whose priority is lower
than that of the sleeping thread will actually be scheduled before
the sleeping thread becomes ready once again.

Preemptive Time Slicing

Once a preemptive thread becomes the current thread, it remains
the current thread until a higher priority thread becomes ready,
or until the thread performs an action that makes it unready.
Consequently, if a preemptive thread performs lengthy computations,
it may cause an unacceptable delay in the scheduling of other threads,
including those of equal priority.

To overcome such problems, a preemptive thread can perform cooperative
time slicing (as described above), or the scheduler’s time slicing capability
can be used to allow other threads of the same priority to execute.

The scheduler divides time into a series of time slices, where slices
are measured in system clock ticks. The time slice size is configurable,
but this size can be changed while the application is running.

At the end of every time slice, the scheduler checks to see if the current
thread is preemptible and, if so, implicitly invokes k_yield()
on behalf of the thread. This gives other ready threads of the same priority
the opportunity to execute before the current thread is scheduled again.
If no threads of equal priority are ready, the current thread remains
the current thread.

Threads with a priority higher than specified limit are exempt from preemptive
time slicing, and are never preempted by a thread of equal priority.
This allows an application to use preemptive time slicing
only when dealing with lower priority threads that are less time-sensitive.

注解

The kernel’s time slicing algorithm does not ensure that a set
of equal-priority threads receive an equitable amount of CPU time,
since it does not measure the amount of time a thread actually gets to
execute. For example, a thread may become the current thread just before
the end of a time slice and then immediately have to yield the CPU.
However, the algorithm does ensure that a thread never executes
for longer than a single time slice without being required to yield.

Scheduler Locking

A preemptible thread that does not wish to be preempted while performing
a critical operation can instruct the scheduler to temporarily treat it
as a cooperative thread by calling k_sched_lock(). This prevents
other threads from interfering while the critical operation is being performed.

Once the critical operation is complete the preemptible thread must call
k_sched_unlock() to restore its normal, preemptible status.

If a thread calls k_sched_lock() and subsequently performs an
action that makes it unready, the scheduler will switch the locking thread out
and allow other threads to execute. When the locking thread again
becomes the current thread, its non-preemptible status is maintained.

Thread Sleeping

A thread can call k_sleep() to delay its processing
for a specified time period. During the time the thread is sleeping
the CPU is relinquished to allow other ready threads to execute.
Once the specified delay has elapsed the thread becomes ready
and is eligible to be scheduled once again.

A sleeping thread can be woken up prematurely by another thread using
k_wakeup(). This technique can sometimes be used
to permit the secondary thread to signal the sleeping thread
that something has occurred without requiring the threads
to define a kernel synchronization object, such as a semaphore.
Waking up a thread that is not sleeping is allowed, but has no effect.

Busy Waiting

A thread can call k_busy_wait() to perform a busy wait
that delays its processing for a specified time period
without relinquishing the CPU to another ready thread.

A busy wait is typically used instead of thread sleeping
when the required delay is too short to warrant having the scheduler
context switch from the current thread to another thread and then back again.

Suggested Uses

Use cooperative threads for device drivers and other performance-critical work.

Use cooperative threads to implement mutually exclusion without the need
for a kernel object, such as a mutex.

Use preemptive threads to give priority to time-sensitive processing
over less time-sensitive processing.

Configuration Options

Related configuration options:

	CONFIG_NUM_COOP_PRIORITIES

	CONFIG_NUM_PREEMPT_PRIORITIES

	CONFIG_TIMESLICING

	CONFIG_TIMESLICE_SIZE

	CONFIG_TIMESLICE_PRIORITY

APIs

The following thread scheduling-related APIs are provided by kernel.h:

	k_current_get()

	k_sched_lock()

	k_sched_unlock()

	k_yield()

	k_sleep()

	k_wakeup()

	k_busy_wait()

	k_sched_time_slice_set()

Custom Data

A thread’s custom data is a 32-bit, thread-specific value that may be
used by an application for any purpose.

	Concepts

	Implementation
	Using Custom Data

	Suggested Uses

	Configuration Options

	APIs

Concepts

Every thread has a 32-bit custom data area.
The custom data is accessible only by the thread itself, and may be used by the
application for any purpose it chooses.
The default custom data for a thread is zero.

注解

Custom data support is not available to ISRs because they operate
within a single shared kernel interrupt handling context.

Implementation

Using Custom Data

By default, thread custom data support is disabled. The configuration option
CONFIG_THREAD_CUSTOM_DATA can be used to enable support.

The k_thread_custom_data_set() and
k_thread_custom_data_get() functions are used to write and read
a thread’s custom data, respectively. A thread can only access its own
custom data, and not that of another thread.

The following code uses the custom data feature to record the number of times
each thread calls a specific routine.

注解

Obviously, only a single routine can use this technique,
since it monopolizes the use of the custom data feature.

int call_tracking_routine(void)
{
 u32_t call_count;

 if (k_is_in_isr()) {
 /* ignore any call made by an ISR */
 } else {
 call_count = (u32_t)k_thread_custom_data_get();
 call_count++;
 k_thread_custom_data_set((void *)call_count);
 }

 /* do rest of routine's processing */
 ...
}

Suggested Uses

Use thread custom data to allow a routine to access thread-specific information,
by using the custom data as a pointer to a data structure owned by the thread.

Configuration Options

Related configuration options:

	CONFIG_THREAD_CUSTOM_DATA

APIs

The following thread custom data APIs are provided by kernel.h:

	k_thread_custom_data_set()

	k_thread_custom_data_get()

System Threads

A system thread is a thread that the kernel spawns automatically
during system initialization.

	Concepts

	Implementation
	Writing a main() function

	Suggested Uses

	Configuration Options

	APIs

Concepts

The kernel spawns the following system threads.

	Main thread

	This thread performs kernel initialization, then calls the application’s
main() function (if one is defined).

By default, the main thread uses the highest configured preemptible thread
priority (i.e. 0). If the kernel is not configured to support preemptible
threads, the main thread uses the lowest configured cooperative thread
priority (i.e. -1).

The main thread is an essential thread while it is performing kernel
initialization or executing the application’s main() function;
this means a fatal system error is raised if the thread aborts. If
main() is not defined, or if it executes and then does a normal
return, the main thread terminates normally and no error is raised.

	Idle thread

	This thread executes when there is no other work for the system to do.
If possible, the idle thread activates the board’s power management support
to save power; otherwise, the idle thread simply performs a “do nothing”
loop. The idle thread remains in existence as long as the system is running
and never terminates.

The idle thread always uses the lowest configured thread priority.
If this makes it a cooperative thread, the idle thread repeatedly
yields the CPU to allow the application’s other threads to run when
they need to.

The idle thread is an essential thread, which means a fatal system error
is raised if the thread aborts.

Additional system threads may also be spawned, depending on the kernel
and board configuration options specified by the application. For example,
enabling the system workqueue spawns a system thread
that services the work items submitted to it. (See Workqueue Threads.)

Implementation

Writing a main() function

An application-supplied main() function begins executing once
kernel initialization is complete. The kernel does not pass any arguments
to the function.

The following code outlines a trivial main() function.
The function used by a real application can be as complex as needed.

void main(void)
{
 /* initialize a semaphore */
 ...

 /* register an ISR that gives the semaphore */
 ...

 /* monitor the semaphore forever */
 while (1) {
 /* wait for the semaphore to be given by the ISR */
 ...
 /* do whatever processing is now needed */
 ...
 }
}

Suggested Uses

Use the main thread to perform thread-based processing in an application
that only requires a single thread, rather than defining an additional
application-specific thread.

Configuration Options

Related configuration options:

	CONFIG_MAIN_THREAD_PRIORITY

	CONFIG_MAIN_STACK_SIZE

	CONFIG_IDLE_STACK_SIZE

APIs

None.

Workqueue Threads

A workqueue is a kernel object that uses a dedicated thread to process
work items in a first in, first out manner. Each work item is processed by
calling the function specified by the work item. A workqueue is typically
used by an ISR or a high-priority thread to offload non-urgent processing
to a lower-priority thread so it does not impact time-sensitive processing.

	Concepts
	Work Item Lifecycle

	Delayed Work

	System Workqueue

	Implementation
	Defining a Workqueue

	Submitting a Work Item

	Submitting a Delayed Work Item

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of workqueues can be defined. Each workqueue is referenced by its
memory address.

A workqueue has the following key properties:

	A queue of work items that have been added, but not yet processed.

	A thread that processes the work items in the queue. The priority of the
thread is configurable, allowing it to be either cooperative or preemptive
as required.

A workqueue must be initialized before it can be used. This sets its queue
to empty and spawns the workqueue’s thread.

Work Item Lifecycle

Any number of work items can be defined. Each work item is referenced
by its memory address.

A work item has the following key properties:

	A handler function, which is the function executed by the workqueue’s
thread when the work item is processed. This function accepts a single
argument, which is the address of the work item itself.

	A pending flag, which is used by the kernel to signify that the
work item is currently a member of a workqueue’s queue.

	A queue link, which is used by the kernel to link a pending work
item to the next pending work item in a workqueue’s queue.

A work item must be initialized before it can be used. This records the work
item’s handler function and marks it as not pending.

A work item may be submitted to a workqueue by an ISR or a thread.
Submitting a work item appends the work item to the workqueue’s queue.
Once the workqueue’s thread has processed all of the preceding work items
in its queue the thread will remove a pending work item from its queue and
invoke the work item’s handler function. Depending on the scheduling priority
of the workqueue’s thread, and the work required by other items in the queue,
a pending work item may be processed quickly or it may remain in the queue
for an extended period of time.

A handler function can utilize any kernel API available to threads. However,
operations that are potentially blocking (e.g. taking a semaphore) must be
used with care, since the workqueue cannot process subsequent work items in
its queue until the handler function finishes executing.

The single argument that is passed to a handler function can be ignored if
it is not required. If the handler function requires additional information
about the work it is to perform, the work item can be embedded in a larger
data structure. The handler function can then use the argument value to compute
the address of the enclosing data structure, and thereby obtain access to the
additional information it needs.

A work item is typically initialized once and then submitted to a specific
workqueue whenever work needs to be performed. If an ISR or a thread attempts
to submit a work item that is already pending, the work item is not affected;
the work item remains in its current place in the workqueue’s queue, and
the work is only performed once.

A handler function is permitted to re-submit its work item argument
to the workqueue, since the work item is no longer pending at that time.
This allows the handler to execute work in stages, without unduly delaying
the processing of other work items in the workqueue’s queue.

重要

A pending work item must not be altered until the item has been processed
by the workqueue thread. This means a work item must not be re-initialized
while it is pending. Furthermore, any additional information the work item’s
handler function needs to perform its work must not be altered until
the handler function has finished executing.

Delayed Work

An ISR or a thread may need to schedule a work item that is to be processed
only after a specified period of time, rather than immediately. This can be
done by submitting a delayed work item to a workqueue, rather than a
standard work item.

A delayed work item is a standard work item that has the following added
properties:

	A delay specifying the time interval to wait before the work item
is actually submitted to a workqueue’s queue.

	A workqueue indicator that identifies the workqueue the work item
is to be submitted to.

A delayed work item is initialized and submitted to a workqueue in a similar
manner to a standard work item, although different kernel APIs are used.
When the submit request is made the kernel initiates a timeout mechanism
that is triggered after the specified delay has elapsed. Once the timeout
occurs the kernel submits the delayed work item to the specified workqueue,
where it remains pending until it is processed in the standard manner.

An ISR or a thread may cancel a delayed work item it has submitted,
providing the work item’s timeout is still counting down. The work item’s
timeout is aborted and the specified work is not performed.

Attempting to cancel a delayed work item once its timeout has expired has
no effect on the work item; the work item remains pending in the workqueue’s
queue, unless the work item has already been removed and processed by the
workqueue’s thread. Consequently, once a work item’s timeout has expired
the work item is always processed by the workqueue and cannot be canceled.

System Workqueue

The kernel defines a workqueue known as the system workqueue, which is
available to any application or kernel code that requires workqueue support.
The system workqueue is optional, and only exists if the application makes
use of it.

重要

Additional workqueues should only be defined when it is not possible
to submit new work items to the system workqueue, since each new workqueue
incurs a significant cost in memory footprint. A new workqueue can be
justified if it is not possible for its work items to co-exist with
existing system workqueue work items without an unacceptable impact;
for example, if the new work items perform blocking operations that
would delay other system workqueue processing to an unacceptable degree.

Implementation

Defining a Workqueue

A workqueue is defined using a variable of type struct k_work_q.
The workqueue is initialized by defining the stack area used by its thread
and then calling k_work_q_start(). The stack area must be defined
using K_THREAD_STACK_DEFINE to ensure it is properly set up in
memory.

The following code defines and initializes a workqueue.

#define MY_STACK_SIZE 512
#define MY_PRIORITY 5

K_THREAD_STACK_DEFINE(my_stack_area, MY_STACK_SIZE);

struct k_work_q my_work_q;

k_work_q_start(&my_work_q, my_stack_area,
 K_THREAD_STACK_SIZEOF(my_stack_area), MY_PRIORITY);

Submitting a Work Item

A work item is defined using a variable of type struct k_work.
It must then be initialized by calling k_work_init().

An initialized work item can be submitted to the system workqueue by
calling k_work_submit(), or to a specified workqueue by
calling k_work_submit_to_queue().

The following code demonstrates how an ISR can offload the printing
of error messages to the system workqueue. Note that if the ISR attempts
to resubmit the work item while it is still pending, the work item is left
unchanged and the associated error message will not be printed.

struct device_info {
 struct k_work work;
 char name[16]
} my_device;

void my_isr(void *arg)
{
 ...
 if (error detected) {
 k_work_submit(&my_device.work);
 }
 ...
}

void print_error(struct k_work *item)
{
 struct device_info *the_device =
 CONTAINER_OF(item, struct device_info, work);
 printk("Got error on device %s\n", the_device->name);
}

/* initialize name info for a device */
strcpy(my_device.name, "FOO_dev");

/* initialize work item for printing device's error messages */
k_work_init(&my_device.work, print_error);

/* install my_isr() as interrupt handler for the device (not shown) */
...

Submitting a Delayed Work Item

A delayed work item is defined using a variable of type
struct k_delayed_work. It must then be initialized by calling
k_delayed_work_init().

An initialized delayed work item can be submitted to the system workqueue by
calling k_delayed_work_submit(), or to a specified workqueue by
calling k_delayed_work_submit_to_queue(). A delayed work item
that has been submitted but not yet consumed by its workqueue can be canceled
by calling k_delayed_work_cancel().

Suggested Uses

Use the system workqueue to defer complex interrupt-related processing
from an ISR to a cooperative thread. This allows the interrupt-related
processing to be done promptly without compromising the system’s ability
to respond to subsequent interrupts, and does not require the application
to define an additional thread to do the processing.

Configuration Options

Related configuration options:

	CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE

	CONFIG_SYSTEM_WORKQUEUE_PRIORITY

APIs

	k_work_q_start()

	k_work_init()

	k_work_submit()

	k_work_submit_to_queue()

	k_delayed_work_init()

	k_delayed_work_submit()

	k_delayed_work_submit_to_queue()

	k_delayed_work_cancel()

	k_work_pending()

Timing

This section describes the kernel’s time-based services, such as
specifying time delays or for measuring the passage of time.

	Kernel Clocks
	Concepts

	Implementation

	Suggested Uses

	Configuration

	APIs

	Timers
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

Kernel Clocks

The kernel’s clocks are the foundation for all of its time-based services.

	Concepts
	Clock Limitations

	Implementation
	Measuring Time with Normal Precision

	Measuring Time with High Precision

	Suggested Uses

	Configuration

	APIs

Concepts

The kernel supports two distinct clocks.

	The 32-bit hardware clock is a high precision counter that tracks time
in unspecified units called cycles. The duration of a cycle is determined
by the board hardware used by the kernel, and is typically measured
in nanoseconds.

	The 64-bit system clock is a counter that tracks the number of
ticks that have elapsed since the kernel was initialized. The duration
of a tick is is configurable, and typically ranges from 1 millisecond to
100 milliseconds.

The kernel also provides a number of variables that can be used
to convert the time units used by the clocks into standard time units
(e.g. seconds, milliseconds, nanoseconds, etc), and to convert between
the two types of clock time units.

The system clock is used by most of the kernel’s time-based services, including
kernel timer objects and the timeouts supported by other kernel object types.
For convenience, the kernel’s APIs allow time durations to be specified
in milliseconds, and automatically converts them to the corresponding
number of ticks.

The hardware clock can be used to measure time with higher precision than
that provided by kernel services based on the system clock.

Clock Limitations

The system clock’s tick count is derived from the hardware clock’s cycle
count. The kernel determines how many clock cycles correspond to the desired
tick frequency, then programs the hardware clock to generate an interrupt
after that many cycles; each interrupt corresponds to a single tick.

注解

Configuring a smaller tick duration permits finer-grained timing,
but also increases the amount of work the kernel has to do to process
tick interrupts since they occur more frequently. Setting the tick
duration to zero disables both kernel clocks, as well as their
associated services.

Any millisecond-based time interval specified using a kernel API
represents the minimum delay that will occur,
and may actually take longer than the amount of time requested.

For example, specifying a timeout delay of 100 ms when attempting to take
a semaphore means that the kernel will never terminate the operation
and report failure before at least 100 ms have elapsed. However,
it is possible that the operation may take longer than 100 ms to complete,
and may either complete successfully during the additional time
or fail at the end of the added time.

The amount of added time that occurs during a kernel object operation
depends on the following factors.

	The added time introduced by rounding up the specified time interval
when converting from milliseconds to ticks. For example, if a tick duration
of 10 ms is being used, a specified delay of 25 ms will be rounded up
to 30 ms.

	The added time introduced by having to wait for the next tick interrupt
before a delay can be properly tracked. For example, if a tick duration
of 10 ms is being used, a specified delay of 20 ms requires the kernel
to wait for 3 ticks to occur (rather than only 2), since the first tick
can occur at any time from the next fraction of a millisecond to just
slightly less than 10 ms; only after the first tick has occurred does
the kernel know the next 2 ticks will take 20 ms.

Implementation

Measuring Time with Normal Precision

This code uses the system clock to determine how much time has elapsed
between two points in time.

s64_t time_stamp;
s64_t milliseconds_spent;

/* capture initial time stamp */
time_stamp = k_uptime_get();

/* do work for some (extended) period of time */
...

/* compute how long the work took (also updates the time stamp) */
milliseconds_spent = k_uptime_delta(&time_stamp);

Measuring Time with High Precision

This code uses the hardware clock to determine how much time has elapsed
between two points in time.

u32_t start_time;
u32_t stop_time;
u32_t cycles_spent;
u32_t nanoseconds_spent;

/* capture initial time stamp */
start_time = k_cycle_get_32();

/* do work for some (short) period of time */
...

/* capture final time stamp */
stop_time = k_cycle_get_32();

/* compute how long the work took (assumes no counter rollover) */
cycles_spent = stop_time - start_time;
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS(cycles_spent);

Suggested Uses

Use services based on the system clock for time-based processing
that does not require high precision,
such as timer objects or Thread Sleeping.

Use services based on the hardware clock for time-based processing
that requires higher precision than the system clock can provide,
such as Busy Waiting or fine-grained time measurements.

注解

The high frequency of the hardware clock, combined with its 32-bit size,
means that counter rollover must be taken into account when taking
high-precision measurements over an extended period of time.

Configuration

Related configuration options:

	CONFIG_SYS_CLOCK_TICKS_PER_SEC

APIs

The following kernel clock APIs are provided by kernel.h:

	k_uptime_get()

	k_uptime_get_32()

	k_uptime_delta()

	k_uptime_delta_32()

	k_cycle_get_32()

	SYS_CLOCK_HW_CYCLES_TO_NS

	K_NO_WAIT

	K_MSEC

	K_SECONDS

	K_MINUTES

	K_HOURS

	K_FOREVER

Timers

A timer is a kernel object that measures the passage of time
using the kernel’s system clock. When a timer’s specified time limit
is reached it can perform an application-defined action,
or it can simply record the expiration and wait for the application
to read its status.

	Concepts
	Timer Limitations

	Implementation
	Defining a Timer

	Using a Timer Expiry Function

	Reading Timer Status

	Using Timer Status Synchronization

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of timers can be defined. Each timer is referenced by its
memory address.

A timer has the following key properties:

	A duration specifying the time interval before the timer expires
for the first time, measured in milliseconds. It must be greater than zero.

	A period specifying the time interval between all timer expirations
after the first one, measured in milliseconds. It must be non-negative.
A period of zero means that the timer is a one shot timer that stops
after a single expiration. (For example then, if a timer is started with a
duration of 200 and a period of 75, it will first expire after 200ms and
then every 75ms after that.)

	An expiry function that is executed each time the timer expires.
The function is executed by the system clock interrupt handler.
If no expiry function is required a NULL function can be specified.

	A stop function that is executed if the timer is stopped prematurely
while running. The function is executed by the thread that stops the timer.
If no stop function is required a NULL function can be specified.

	A status value that indicates how many times the timer has expired
since the status value was last read.

A timer must be initialized before it can be used. This specifies its
expiry function and stop function values, sets the timer’s status to zero,
and puts the timer into the stopped state.

A timer is started by specifying a duration and a period.
The timer’s status is reset to zero, then the timer enters
the running state and begins counting down towards expiry.

When a running timer expires its status is incremented
and the timer executes its expiry function, if one exists;
If a thread is waiting on the timer, it is unblocked.
If the timer’s period is zero the timer enters the stopped state;
otherwise the timer restarts with a new duration equal to its period.

A running timer can be stopped in mid-countdown, if desired.
The timer’s status is left unchanged, then the timer enters the stopped state
and executes its stop function, if one exists.
If a thread is waiting on the timer, it is unblocked.
Attempting to stop a non-running timer is permitted,
but has no effect on the timer since it is already stopped.

A running timer can be restarted in mid-countdown, if desired.
The timer’s status is reset to zero, then the timer begins counting down
using the new duration and period values specified by the caller.
If a thread is waiting on the timer, it continues waiting.

A timer’s status can be read directly at any time to determine how many times
the timer has expired since its status was last read.
Reading a timer’s status resets its value to zero.
The amount of time remaining before the timer expires can also be read;
a value of zero indicates that the timer is stopped.

A thread may read a timer’s status indirectly by synchronizing
with the timer. This blocks the thread until the timer’s status is non-zero
(indicating that it has expired at least once) or the timer is stopped;
if the timer status is already non-zero or the timer is already stopped
the thread continues without waiting. The synchronization operation
returns the timer’s status and resets it to zero.

注解

Only a single user should examine the status of any given timer,
since reading the status (directly or indirectly) changes its value.
Similarly, only a single thread at a time should synchronize
with a given timer. ISRs are not permitted to synchronize with timers,
since ISRs are not allowed to block.

Timer Limitations

Since timers are based on the system clock, the delay values specified
when using a timer are minimum values.
(See Clock Limitations.)

Implementation

Defining a Timer

A timer is defined using a variable of type struct k_timer.
It must then be initialized by calling k_timer_init().

The following code defines and initializes a timer.

struct k_timer my_timer;
extern void my_expiry_function(struct k_timer *timer_id);

k_timer_init(&my_timer, my_expiry_function, NULL);

Alternatively, a timer can be defined and initialized at compile time
by calling K_TIMER_DEFINE.

The following code has the same effect as the code segment above.

K_TIMER_DEFINE(my_timer, my_expiry_function, NULL);

Using a Timer Expiry Function

The following code uses a timer to perform a non-trivial action on a periodic
basis. Since the required work cannot be done at interrupt level,
the timer’s expiry function submits a work item to the
system workqueue, whose thread performs the work.

void my_work_handler(struct k_work *work)
{
 /* do the processing that needs to be done periodically */
 ...
}

K_WORK_DEFINE(my_work, my_work_handler);

void my_timer_handler(struct k_timer *dummy)
{
 k_work_submit(&my_work);
}

K_TIMER_DEFINE(my_timer, my_timer_handler, NULL);

...

/* start periodic timer that expires once every second */
k_timer_start(&my_timer, K_SECONDS(1), K_SECONDS(1));

Reading Timer Status

The following code reads a timer’s status directly to determine
if the timer has expired on not.

K_TIMER_DEFINE(my_status_timer, NULL, NULL);

...

/* start one shot timer that expires after 200 ms */
k_timer_start(&my_status_timer, K_MSEC(200), 0);

/* do work */
...

/* check timer status */
if (k_timer_status_get(&my_status_timer) > 0) {
 /* timer has expired */
} else if (k_timer_remaining_get(&my_status_timer) == 0) {
 /* timer was stopped (by someone else) before expiring */
} else {
 /* timer is still running */
}

Using Timer Status Synchronization

The following code performs timer status synchronization to allow a thread
to do useful work while ensuring that a pair of protocol operations
are separated by the specified time interval.

K_TIMER_DEFINE(my_sync_timer, NULL, NULL);

...

/* do first protocol operation */
...

/* start one shot timer that expires after 500 ms */
k_timer_start(&my_sync_timer, K_MSEC(500), 0);

/* do other work */
...

/* ensure timer has expired (waiting for expiry, if necessary) */
k_timer_status_sync(&my_sync_timer);

/* do second protocol operation */
...

注解

If the thread had no other work to do it could simply sleep
between the two protocol operations, without using a timer.

Suggested Uses

Use a timer to initiate an asynchronous operation after a specified
amount of time.

Use a timer to determine whether or not a specified amount of time
has elapsed.

Use a timer to perform other work while carrying out operations
involving time limits.

注解

If a thread has no other work to perform while waiting for time to pass
it should call k_sleep().
If a thread needs to measure the time required to perform an operation
it can read the system clock or the hardware clock
directly, rather than using a timer.

Configuration Options

Related configuration options:

	None.

APIs

The following timer APIs are provided by kernel.h:

	K_TIMER_DEFINE

	k_timer_init()

	k_timer_start()

	k_timer_stop()

	k_timer_status_get()

	k_timer_status_sync()

	k_timer_remaining_get()

Memory Allocation

This section describes kernel services that allow threads to dynamically
allocate memory.

	Memory Slabs
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Memory Pools
	Concepts

	Implementation

	Suggested Uses

	APIs

	Heap Memory Pool
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

Memory Slabs

A memory slab is a kernel object that allows memory blocks
to be dynamically allocated from a designated memory region.
All memory blocks in a memory slab have a single fixed size,
allowing them to be allocated and released efficiently
and avoiding memory fragmentation concerns.

	Concepts
	Internal Operation

	Implementation
	Defining a Memory Slab

	Allocating a Memory Block

	Releasing a Memory Block

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of memory slabs can be defined. Each memory slab is referenced
by its memory address.

A memory slab has the following key properties:

	The block size of each block, measured in bytes.
It must be at least 4N bytes long, where N is greater than 0.

	The number of blocks available for allocation.
It must be greater than zero.

	A buffer that provides the memory for the memory slab’s blocks.
It must be at least “block size” times “number of blocks” bytes long.

The memory slab’s buffer must be aligned to an N-byte boundary, where
N is a power of 2 larger than 2 (i.e. 4, 8, 16, ...). To ensure that
all memory blocks in the buffer are similarly aligned to this boundary,
the block size must also be a multiple of N.

A memory slab must be initialized before it can be used. This marks all of
its blocks as unused.

A thread that needs to use a memory block simply allocates it from a memory
slab. When the thread finishes with a memory block,
it must release the block back to the memory slab so the block can be reused.

If all the blocks are currently in use, a thread can optionally wait
for one to become available.
Any number of threads may wait on an empty memory slab simultaneously;
when a memory block becomes available, it is given to the highest-priority
thread that has waited the longest.

Unlike a heap, more than one memory slab can be defined, if needed. This
allows for a memory slab with smaller blocks and others with larger-sized
blocks. Alternatively, a memory pool object may be used.

Internal Operation

A memory slab’s buffer is an array of fixed-size blocks,
with no wasted space between the blocks.

The memory slab keeps track of unallocated blocks using a linked list;
the first 4 bytes of each unused block provide the necessary linkage.

Implementation

Defining a Memory Slab

A memory slab is defined using a variable of type struct k_mem_slab.
It must then be initialized by calling k_mem_slab_init().

The following code defines and initializes a memory slab that has 6 blocks
that are 400 bytes long, each of which is aligned to a 4-byte boundary..

struct k_mem_slab my_slab;
char __aligned(4) my_slab_buffer[6 * 400];

k_mem_slab_init(&my_slab, my_slab_buffer, 400, 6);

Alternatively, a memory slab can be defined and initialized at compile time
by calling K_MEM_SLAB_DEFINE.

The following code has the same effect as the code segment above. Observe
that the macro defines both the memory slab and its buffer.

K_MEM_SLAB_DEFINE(my_slab, 400, 6, 4);

Allocating a Memory Block

A memory block is allocated by calling k_mem_slab_alloc().

The following code builds on the example above, and waits up to 100 milliseconds
for a memory block to become available, then fills it with zeroes.
A warning is printed if a suitable block is not obtained.

char *block_ptr;

if (k_mem_slab_alloc(&my_slab, &block_ptr, 100) == 0)) {
 memset(block_ptr, 0, 400);
 ...
} else {
 printf("Memory allocation time-out");
}

Releasing a Memory Block

A memory block is released by calling k_mem_slab_free().

The following code builds on the example above, and allocates a memory block,
then releases it once it is no longer needed.

char *block_ptr;

k_mem_slab_alloc(&my_slab, &block_ptr, K_FOREVER);
... /* use memory block pointed at by block_ptr */
k_mem_slab_free(&my_slab, &block_ptr);

Suggested Uses

Use a memory slab to allocate and free memory in fixed-size blocks.

Use memory slab blocks when sending large amounts of data from one thread
to another, to avoid unnecessary copying of the data.

Configuration Options

Related configuration options:

	None.

APIs

The following memory slab APIs are provided by kernel.h:

	K_MEM_SLAB_DEFINE

	k_mem_slab_init()

	k_mem_slab_alloc()

	k_mem_slab_free()

	k_mem_slab_num_used_get()

	k_mem_slab_num_free_get()

Memory Pools

A memory pool is a kernel object that allows memory blocks
to be dynamically allocated from a designated memory region.
The memory blocks in a memory pool can be of any size,
thereby reducing the amount of wasted memory when an application
needs to allocate storage for data structures of different sizes.
The memory pool uses a “buddy memory allocation” algorithm
to efficiently partition larger blocks into smaller ones,
allowing blocks of different sizes to be allocated and released efficiently
while limiting memory fragmentation concerns.

	Concepts
	Internal Operation

	Implementation
	Defining a Memory Pool

	Allocating a Memory Block

	Releasing a Memory Block

	Suggested Uses

	APIs

Concepts

Any number of memory pools can be defined. Each memory pool is referenced
by its memory address.

A memory pool has the following key properties:

	A minimum block size, measured in bytes.
It must be at least 4X bytes long, where X is greater than 0.

	A maximum block size, measured in bytes.
This should be a power of 4 times larger than the minimum block size.
That is, “maximum block size” must equal “minimum block size” times 4^Y,
where Y is greater than or equal to zero.

	The number of maximum-size blocks initially available.
This must be greater than zero.

	A buffer that provides the memory for the memory pool’s blocks.
This must be at least “maximum block size” times
“number of maximum-size blocks” bytes long.

The memory pool’s buffer must be aligned to an N-byte boundary, where
N is a power of 2 larger than 2 (i.e. 4, 8, 16, ...). To ensure that
all memory blocks in the buffer are similarly aligned to this boundary,
the minimum block size must also be a multiple of N.

A thread that needs to use a memory block simply allocates it from a memory
pool. Following a successful allocation, the data field
of the block descriptor supplied by the thread indicates the starting address
of the memory block. When the thread is finished with a memory block,
it must release the block back to the memory pool so the block can be reused.

If a block of the desired size is unavailable, a thread can optionally wait
for one to become available.
Any number of threads may wait on a memory pool simultaneously;
when a suitable memory block becomes available, it is given to
the highest-priority thread that has waited the longest.

Unlike a heap, more than one memory pool can be defined, if needed. For
example, different applications can utilize different memory pools; this
can help prevent one application from hijacking resources to allocate all
of the available blocks.

Internal Operation

A memory pool’s buffer is an array of maximum-size blocks,
with no wasted space between the blocks.
Each of these “level 0” blocks is a quad-block that can be
partitioned into four smaller “level 1” blocks of equal size, if needed.
Likewise, each level 1 block is itself a quad-block that can be partitioned
into four smaller “level 2” blocks in a similar way, and so on.
Thus, memory pool blocks can be recursively partitioned into quarters
until blocks of the minimum size are obtained,
at which point no further partitioning can occur.

A memory pool keeps track of how its buffer space has been partitioned
using an array of block set data structures. There is one block set
for each partitioning level supported by the pool, or (to put it another way)
for each block size. A block set keeps track of all free blocks of its
associated size using an array of quad-block status data structures.

When an application issues a request for a memory block,
the memory pool first determines the size of the smallest block
that will satisfy the request, and examines the corresponding block set.
If the block set contains a free block, the block is marked as used
and the allocation process is complete.
If the block set does not contain a free block,
the memory pool attempts to create one automatically by splitting a free block
of a larger size or by merging free blocks of smaller sizes;
if a suitable block can’t be created, the allocation request fails.

The memory pool’s merging algorithm cannot combine adjacent free
blocks of different sizes, nor can it merge adjacent free blocks of
the same size if they belong to different parent quad-blocks. As a
consequence, memory fragmentation issues can still be encountered when
using a memory pool.

When an application releases a previously allocated memory block it is
combined synchronously with its three “partner” blocks if possible,
and recursively so up through the levels. This is done in constant
time, and quickly, so no manual “defragmentation” management is
needed.

Implementation

Defining a Memory Pool

A memory pool is defined using a variable of type struct k_mem_pool.
However, since a memory pool also requires a number of variable-size data
structures to represent its block sets and the status of its quad-blocks,
the kernel does not support the run-time definition of a memory pool.
A memory pool can only be defined and initialized at compile time
by calling K_MEM_POOL_DEFINE.

The following code defines and initializes a memory pool that has 3 blocks
of 4096 bytes each, which can be partitioned into blocks as small as 64 bytes
and is aligned to a 4-byte boundary.
(That is, the memory pool supports block sizes of 4096, 1024, 256,
and 64 bytes.)
Observe that the macro defines all of the memory pool data structures,
as well as its buffer.

K_MEM_POOL_DEFINE(my_pool, 64, 4096, 3, 4);

Allocating a Memory Block

A memory block is allocated by calling k_mem_pool_alloc().

The following code builds on the example above, and waits up to 100 milliseconds
for a 200 byte memory block to become available, then fills it with zeroes.
A warning is issued if a suitable block is not obtained.

Note that the application will actually receive a 256 byte memory block,
since that is the closest matching size supported by the memory pool.

struct k_mem_block block;

if (k_mem_pool_alloc(&my_pool, &block, 200, 100) == 0)) {
 memset(block.data, 0, 200);
 ...
} else {
 printf("Memory allocation time-out");
}

Releasing a Memory Block

A memory block is released by calling k_mem_pool_free().

The following code builds on the example above, and allocates a 75 byte
memory block, then releases it once it is no longer needed. (A 256 byte
memory block is actually used to satisfy the request.)

struct k_mem_block block;

k_mem_pool_alloc(&my_pool, &block, 75, K_FOREVER);
... /* use memory block */
k_mem_pool_free(&block);

Suggested Uses

Use a memory pool to allocate memory in variable-size blocks.

Use memory pool blocks when sending large amounts of data from one thread
to another, to avoid unnecessary copying of the data.

APIs

The following memory pool APIs are provided by kernel.h:

	K_MEM_POOL_DEFINE

	k_mem_pool_alloc()

	k_mem_pool_free()

Heap Memory Pool

The heap memory pool is a predefined memory pool object that allows
threads to dynamically allocate memory from a common memory region
in a malloc()-like manner.

	Concepts
	Internal Operation

	Implementation
	Defining the Heap Memory Pool

	Allocating Memory

	Releasing Memory

	Suggested Uses

	Configuration Options

	APIs

Concepts

Only a single heap memory pool can be defined. Unlike other memory pools,
the heap memory pool cannot be directly referenced using its memory address.

The size of the heap memory pool is configurable. The following sizes
are supported: 256 bytes, 1024 bytes, 4096 bytes, and 16384 bytes.

A thread can dynamically allocate a chunk of heap memory by calling
k_malloc(). The address of the allocated chunk is guaranteed
to be aligned on a multiple of 4 bytes. If a suitable chunk of heap memory
cannot be found NULL is returned.

When the thread is finished with a chunk of heap memory it can release
the chunk back to the heap memory pool by calling k_free().

Internal Operation

The heap memory pool defines a single maximum size block that contains
the entire heap; that is, a single block of 256, 1024, 4096, or 16384 bytes.
The heap memory pool also defines a minimum block size of 64 bytes.
Consequently, the maximum number of blocks of each size that the heap
memory pool can support is shown in the following table.

	heap
size
	64 byte
blocks
	256 byte
blocks
	1024 byte
blocks
	4096 byte
blocks
	16384 byte
blocks

	256
	4
	1
	0
	0
	0

	1024
	16
	4
	1
	0
	0

	4096
	64
	16
	4
	1
	0

	16384
	256
	64
	16
	4
	1

注解

The number of blocks of a given size that can be allocated
simultaneously is typically smaller than the value shown in the table.
For example, each allocation of a 256 byte block from a 1024 byte
heap reduces the number of 64 byte blocks available for allocation
by 4. Fragmentation of the memory pool’s buffer can also further
reduce the availability of blocks.

The kernel uses the first 16 bytes of any memory block allocated
from the heap memory pool to save the block descriptor information
it needs to later free the block. Consequently, an application’s request
for an N byte chunk of heap memory requires a block that is at least
(N+16) bytes long.

Implementation

Defining the Heap Memory Pool

The size of the heap memory pool is specified using the
CONFIG_HEAP_MEM_POOL_SIZE configuration option.

By default, the heap memory pool size is zero bytes. This value instructs
the kernel not to define the heap memory pool object.

Allocating Memory

A chunk of heap memory is allocated by calling k_malloc().

The following code allocates a 200 byte chunk of heap memory, then fills it
with zeros. A warning is issued if a suitable chunk is not obtained.

Note that the application will actually allocate a 256 byte memory block,
since that is the closest matching size supported by the heap memory pool.

char *mem_ptr;

mem_ptr = k_malloc(200);
if (mem_ptr != NULL)) {
 memset(mem_ptr, 0, 200);
 ...
} else {
 printf("Memory not allocated");
}

Releasing Memory

A chunk of heap memory is released by calling k_free().

The following code allocates a 75 byte chunk of memory, then releases it
once it is no longer needed. (A 256 byte memory block from the heap memory
pool is actually used to satisfy the request.)

char *mem_ptr;

mem_ptr = k_malloc(75);
... /* use memory block */
k_free(mem_ptr);

Suggested Uses

Use the heap memory pool to dynamically allocate memory in a
malloc()-like manner.

Configuration Options

Related configuration options:

	CONFIG_HEAP_MEM_POOL_SIZE

APIs

The following heap memory pool APIs are provided by kernel.h:

	k_malloc()

	k_free()

Synchronization

This section describes kernel services for synchronizing the operation
of different threads, or the operation of an ISR and a thread.

	Semaphores
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Mutexes
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Alerts
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

Semaphores

A semaphore is a kernel object that implements a traditional
counting semaphore.

	Concepts

	Implementation
	Defining a Semaphore

	Giving a Semaphore

	Taking a Semaphore

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of semaphores can be defined. Each semaphore is referenced
by its memory address.

A semaphore has the following key properties:

	A count that indicates the number of times the semaphore can be taken.
A count of zero indicates that the semaphore is unavailable.

	A limit that indicates the maximum value the semaphore’s count
can reach.

A semaphore must be initialized before it can be used. Its count must be set
to a non-negative value that is less than or equal to its limit.

A semaphore may be given by a thread or an ISR. Giving the semaphore
increments its count, unless the count is already equal to the limit.

A semaphore may be taken by a thread. Taking the semaphore
decrements its count, unless the semaphore is unavailable (i.e. at zero).
When a semaphore is unavailable a thread may choose to wait for it to be given.
Any number of threads may wait on an unavailable semaphore simultaneously.
When the semaphore is given, it is taken by the highest priority thread
that has waited longest.

注解

The kernel does allow an ISR to take a semaphore, however the ISR must
not attempt to wait if the semaphore is unavailable.

Implementation

Defining a Semaphore

A semaphore is defined using a variable of type struct k_sem.
It must then be initialized by calling k_sem_init().

The following code defines a semaphore, then configures it as a binary
semaphore by setting its count to 0 and its limit to 1.

struct k_sem my_sem;

k_sem_init(&my_sem, 0, 1);

Alternatively, a semaphore can be defined and initialized at compile time
by calling K_SEM_DEFINE.

The following code has the same effect as the code segment above.

K_SEM_DEFINE(my_sem, 0, 1);

Giving a Semaphore

A semaphore is given by calling k_sem_give().

The following code builds on the example above, and gives the semaphore to
indicate that a unit of data is available for processing by a consumer thread.

void input_data_interrupt_handler(void *arg)
{
 /* notify thread that data is available */
 k_sem_give(&my_sem);

 ...
}

Taking a Semaphore

A semaphore is taken by calling k_sem_take().

The following code builds on the example above, and waits up to 50 milliseconds
for the semaphore to be given.
A warning is issued if the semaphore is not obtained in time.

void consumer_thread(void)
{
 ...

 if (k_sem_take(&my_sem, K_MSEC(50)) != 0) {
 printk("Input data not available!");
 } else {
 /* fetch available data */
 ...
 }
 ...
}

Suggested Uses

Use a semaphore to control access to a set of resources by multiple threads.

Use a semaphore to synchronize processing between a producing and consuming
threads or ISRs.

Configuration Options

Related configuration options:

	None.

APIs

The following semaphore APIs are provided by kernel.h:

	K_SEM_DEFINE

	k_sem_init()

	k_sem_give()

	k_sem_take()

	k_sem_reset()

	k_sem_count_get()

Mutexes

A mutex is a kernel object that implements a traditional
reentrant mutex. A mutex allows multiple threads to safely share
an associated hardware or software resource by ensuring mutually exclusive
access to the resource.

	Concepts
	Reentrant Locking

	Priority Inheritance

	Implementation
	Defining a Mutex

	Locking a Mutex

	Unlocking a Mutex

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of mutexes can be defined. Each mutex is referenced by its memory
address.

A mutex has the following key properties:

	A lock count that indicates the number of times the mutex has be locked
by the thread that has locked it. A count of zero indicates that the mutex
is unlocked.

	An owning thread that identifies the thread that has locked the mutex,
when it is locked.

A mutex must be initialized before it can be used. This sets its lock count
to zero.

A thread that needs to use a shared resource must first gain exclusive rights
to access it by locking the associated mutex. If the mutex is already locked
by another thread, the requesting thread may choose to wait for the mutex
to be unlocked.

After locking a mutex, the thread may safely use the associated resource
for as long as needed; however, it is considered good practice to hold the lock
for as short a time as possible to avoid negatively impacting other threads
that want to use the resource. When the thread no longer needs the resource
it must unlock the mutex to allow other threads to use the resource.

Any number of threads may wait on a locked mutex simultaneously.
When the mutex becomes unlocked it is then locked by the highest-priority
thread that has waited the longest.

注解

Mutex objects are not designed for use by ISRs.

Reentrant Locking

A thread is permitted to lock a mutex it has already locked.
This allows the thread to access the associated resource at a point
in its execution when the mutex may or may not already be locked.

A mutex that is repeatedly locked by a thread must be unlocked an equal number
of times before the mutex becomes fully unlocked so it can be claimed
by another thread.

Priority Inheritance

The thread that has locked a mutex is eligible for priority inheritance.
This means the kernel will temporarily elevate the thread’s priority
if a higher priority thread begins waiting on the mutex. This allows the owning
thread to complete its work and release the mutex more rapidly by executing
at the same priority as the waiting thread. Once the mutex has been unlocked,
the unlocking thread resets its priority to the level it had before locking
that mutex.

注解

The CONFIG_PRIORITY_CEILING configuration option limits
how high the kernel can raise a thread’s priority due to priority
inheritance. The default value of 0 permits unlimited elevation.

When two or more threads wait on a mutex held by a lower priority thread, the
kernel adjusts the owning thread’s priority each time a thread begins waiting
(or gives up waiting). When the mutex is eventually unlocked, the unlocking
thread’s priority correctly reverts to its original non-elevated priority.

The kernel does not fully support priority inheritance when a thread holds
two or more mutexes simultaneously. This situation can result in the thread’s
priority not reverting to its original non-elevated priority when all mutexes
have been released. It is recommended that a thread lock only a single mutex
at a time when multiple mutexes are shared between threads of different
priorities.

Implementation

Defining a Mutex

A mutex is defined using a variable of type struct k_mutex.
It must then be initialized by calling k_mutex_init().

The following code defines and initializes a mutex.

struct k_mutex my_mutex;

k_mutex_init(&my_mutex);

Alternatively, a mutex can be defined and initialized at compile time
by calling K_MUTEX_DEFINE.

The following code has the same effect as the code segment above.

K_MUTEX_DEFINE(my_mutex);

Locking a Mutex

A mutex is locked by calling k_mutex_lock().

The following code builds on the example above, and waits indefinitely
for the mutex to become available if it is already locked by another thread.

k_mutex_lock(&my_mutex, K_FOREVER);

The following code waits up to 100 milliseconds for the mutex to become
available, and gives a warning if the mutex does not become available.

if (k_mutex_lock(&my_mutex, K_MSEC(100)) == 0) {
 /* mutex successfully locked */
} else {
 printf("Cannot lock XYZ display\n");
}

Unlocking a Mutex

A mutex is unlocked by calling k_mutex_unlock().

The following code builds on the example above,
and unlocks the mutex that was previously locked by the thread.

k_mutex_unlock(&my_mutex);

Suggested Uses

Use a mutex to provide exclusive access to a resource, such as a physical
device.

Configuration Options

Related configuration options:

	CONFIG_PRIORITY_CEILING

APIs

The following mutex APIs are provided by kernel.h:

	K_MUTEX_DEFINE

	k_mutex_init()

	k_mutex_lock()

	k_mutex_unlock()

Alerts

An alert is a kernel object that allows an application to perform
asynchronous signaling when a condition of interest occurs.

	Concepts
	Alert Lifecycle

	Comparison to Unix-style Signals

	Implementation
	Defining an Alert

	Signaling an Alert

	Handling an Alert

	Accepting an Alert

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of alerts can be defined. Each alert is referenced by
its memory address.

An alert has the following key properties:

	An alert handler, which specifies the action to be taken
when the alert is signaled. The action may instruct the system workqueue
to execute a function to process the alert, mark the alert as pending
so it can be processed later by a thread, or ignore the alert.

	An pending count, which records the number of pending alerts
that have yet to be received.

	An count limit, which specifies the maximum number of pending alerts
that will be recorded.

An alert must be initialized before it can be used. This establishes
its alert handler and sets the pending count to zero.

Alert Lifecycle

An ISR or a thread signals an alert by sending the alert
when a condition of interest occurs that cannot be handled by the detector.

Each time an alert is sent, the kernel examines its alert handler
to determine what action to take.

	K_ALERT_IGNORE causes the alert to be ignored.

	K_ALERT_DEFAULT causes the pending count to be incremented,
unless this would exceed the count limit.

	Any other value is assumed to be the address of an alert handler function,
and is invoked by the system workqueue thread. If the function returns
zero, the signal is deemed to have been consumed; otherwise the pending
count is incremented, unless this would exceed the count limit.

The kernel ensures that the alert handler function is executed once
for each time an alert is sent, even if the alert is sent multiple times
in rapid succession.

A thread accepts a pending alert by receiving the alert.
This decrements the pending count. If the pending count is currently zero,
the thread may choose to wait for the alert to become pending.
Any number of threads may wait for a pending alert simultaneously;
when the alert is pended it is accepted by the highest priority thread
that has waited longest.

注解

A thread must processes pending alerts one at a time. The thread
cannot receive multiple pending alerts in a single operation.

Comparison to Unix-style Signals

Zephyr alerts are somewhat akin to Unix-style signals, but have a number of
significant differences. The most notable of these are:

	A Zephyr alert cannot be blocked; it is always delivered to its alert
handler immediately.

	A Zephyr alert pends after it has been delivered to its alert handler,
and only if an alert handler function does not consume the alert.

	Zephyr has no predefined alerts or actions. All alerts are application
defined, and all have a default action that pends the alert.

Implementation

Defining an Alert

An alert is defined using a variable of type struct k_alert.
It must then be initialized by calling k_alert_init().

The following code defines and initializes an alert. The alert allows
up to 10 unreceived alert signals to pend before it begins to ignore
new pending alerts.

extern int my_alert_handler(struct k_alert *alert);

struct k_alert my_alert;

k_alert_init(&my_alert, my_alert_handler, 10);

Alternatively, an alert can be defined and initialized at compile time
by calling K_ALERT_DEFINE.

The following code has the same effect as the code segment above.

extern int my_alert_handler(struct k_alert *alert);

K_ALERT_DEFINE(my_alert, my_alert_handler, 10);

Signaling an Alert

An alert is signaled by calling k_alert_send().

The following code illustrates how an ISR can signal an alert
to indicate that a key press has occurred.

extern int my_alert_handler(struct k_alert *alert);

K_ALERT_DEFINE(my_alert, my_alert_handler);

void keypress_interrupt_handler(void *arg)
{
 ...
 k_alert_send(&my_alert);
 ...
}

Handling an Alert

An alert handler function is used when a signaled alert should not be ignored
or immediately pended. It has the following form:

int <function_name>(struct k_alert *alert)
{
 /* catch the alert signal; return zero if the signal is consumed, */
 /* or non-zero to let the alert pend */
 ...
}

The following code illustrates an alert handler function that processes
key presses detected by an ISR (as shown in the previous section).

int my_alert_handler(struct k_alert *alert_id_is_unused)
{
 /* determine what key was pressed */
 char c = get_keypress();

 /* do complex processing of the keystroke */
 ...

 /* signaled alert has been consumed */
 return 0;
}

Accepting an Alert

A pending alert is accepted by a thread by calling k_alert_recv().

The following code is an alternative to the code in the previous section.
It uses a dedicated thread to do very complex processing
of key presses that would otherwise monopolize the system workqueue.
The alert handler function is now used only to filter out unwanted key press
alerts, allowing the dedicated thread to wake up and process key press alerts
only when a numeric key is pressed.

int my_alert_handler(struct k_alert *alert_id_is_unused)
{
 /* determine what key was pressed */
 char c = get_keypress();

 /* signal thread only if key pressed was a digit */
 if ((c >= '0') && (c <= '9')) {
 /* save key press information */
 ...
 /* signaled alert should be pended */
 return 1;
 } else {
 /* signaled alert has been consumed */
 return 0;
 }
}

void keypress_thread(void *unused1, void *unused2, void *unused3)
{
 /* consume numeric key presses */
 while (1) {

 /* wait for a key press alert to pend */
 k_alert_recv(&my_alert, K_FOREVER);

 /* process saved key press, which must be a digit */
 ...
 }
}

Suggested Uses

Use an alert to minimize ISR processing by deferring interrupt-related
work to a thread to reduce the amount of time interrupts are locked.

Use an alert to allow the kernel’s system workqueue to handle an alert,
rather than defining an application thread to handle it.

Use an alert to allow the kernel’s system workqueue to preprocess an alert,
prior to letting an application thread handle it.

Configuration Options

Related configuration options:

	None.

APIs

The following alert APIs are provided by kernel.h:

	K_ALERT_DEFINE

	k_alert_init()

	k_alert_send()

	k_alert_recv()

Data Passing

This section describes kernel services for passing data
between different threads, or between an ISR and a thread.

	Fifos
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Lifos
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Stacks
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Message Queues
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Mailboxes
	Concepts

	Implementation

	Suggested Uses

	Configuration Options

	APIs

	Pipes
	Concepts

	Implementation

	Suggested uses

	Configuration Options

	APIs

Fifos

A fifo is a kernel object that implements a traditional
first in, first out (FIFO) queue, allowing threads and ISRs
to add and remove data items of any size.

	Concepts

	Implementation
	Defining a Fifo

	Writing to a Fifo

	Reading from a Fifo

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of fifos can be defined. Each fifo is referenced
by its memory address.

A fifo has the following key properties:

	A queue of data items that have been added but not yet removed.
The queue is implemented as a simple linked list.

A fifo must be initialized before it can be used. This sets its queue to empty.

Fifo data items must be aligned on a 4-byte boundary, as the kernel reserves
the first 32 bits of an item for use as a pointer to the next data item in
the queue. Consequently, a data item that holds N bytes of application data
requires N+4 bytes of memory.

A data item may be added to a fifo by a thread or an ISR.
The item is given directly to a waiting thread, if one exists;
otherwise the item is added to the fifo’s queue.
There is no limit to the number of items that may be queued.

A data item may be removed from a fifo by a thread. If the fifo’s queue
is empty a thread may choose to wait for a data item to be given.
Any number of threads may wait on an empty fifo simultaneously.
When a data item is added, it is given to the highest priority thread
that has waited longest.

注解

The kernel does allow an ISR to remove an item from a fifo, however
the ISR must not attempt to wait if the fifo is empty.

If desired, multiple data items can be added to a fifo in a single operation
if they are chained together into a singly-linked list. This capability can be
useful if multiple writers are adding sets of related data items to the fifo,
as it ensures the data items in each set are not interleaved with other data
items. Adding multiple data items to a fifo is also more efficient than adding
them one at a time, and can be used to guarantee that anyone who removes
the first data item in a set will be able to remove the remaining data items
without waiting.

Implementation

Defining a Fifo

A fifo is defined using a variable of type struct k_fifo.
It must then be initialized by calling k_fifo_init().

The following code defines and initializes an empty fifo.

struct k_fifo my_fifo;

k_fifo_init(&my_fifo);

Alternatively, an empty fifo can be defined and initialized at compile time
by calling K_FIFO_DEFINE.

The following code has the same effect as the code segment above.

K_FIFO_DEFINE(my_fifo);

Writing to a Fifo

A data item is added to a fifo by calling k_fifo_put().

The following code builds on the example above, and uses the fifo
to send data to one or more consumer threads.

struct data_item_t {
 void *fifo_reserved; /* 1st word reserved for use by fifo */
 ...
};

struct data_item_t tx_data;

void producer_thread(int unused1, int unused2, int unused3)
{
 while (1) {
 /* create data item to send */
 tx_data = ...

 /* send data to consumers */
 k_fifo_put(&my_fifo, &tx_data);

 ...
 }
}

Additionally, a singly-linked list of data items can be added to a fifo
by calling k_fifo_put_list() or k_fifo_put_slist().

Reading from a Fifo

A data item is removed from a fifo by calling k_fifo_get().

The following code builds on the example above, and uses the fifo
to obtain data items from a producer thread,
which are then processed in some manner.

void consumer_thread(int unused1, int unused2, int unused3)
{
 struct data_item_t *rx_data;

 while (1) {
 rx_data = k_fifo_get(&my_fifo, K_FOREVER);

 /* process fifo data item */
 ...
 }
}

Suggested Uses

Use a fifo to asynchronously transfer data items of arbitrary size
in a “first in, first out” manner.

Configuration Options

Related configuration options:

	None.

APIs

The following fifo APIs are provided by kernel.h:

	K_FIFO_DEFINE

	k_fifo_init()

	k_fifo_put()

	k_fifo_put_list()

	k_fifo_put_slist()

	k_fifo_get()

Lifos

A lifo is a kernel object that implements a traditional
last in, first out (LIFO) queue, allowing threads and ISRs
to add and remove data items of any size.

	Concepts

	Implementation
	Defining a Lifo

	Writing to a Lifo

	Reading from a Lifo

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of lifos can be defined. Each lifo is referenced
by its memory address.

A lifo has the following key properties:

	A queue of data items that have been added but not yet removed.
The queue is implemented as a simple linked list.

A lifo must be initialized before it can be used. This sets its queue to empty.

Lifo data items must be aligned on a 4-byte boundary, as the kernel reserves
the first 32 bits of an item for use as a pointer to the next data item in
the queue. Consequently, a data item that holds N bytes of application data
requires N+4 bytes of memory.

A data item may be added to a lifo by a thread or an ISR.
The item is given directly to a waiting thread, if one exists;
otherwise the item is added to the lifo’s queue.
There is no limit to the number of items that may be queued.

A data item may be removed from a lifo by a thread. If the lifo’s queue
is empty a thread may choose to wait for a data item to be given.
Any number of threads may wait on an empty lifo simultaneously.
When a data item is added, it is given to the highest priority thread
that has waited longest.

注解

The kernel does allow an ISR to remove an item from a lifo, however
the ISR must not attempt to wait if the lifo is empty.

Implementation

Defining a Lifo

A lifo is defined using a variable of type struct k_lifo.
It must then be initialized by calling k_lifo_init().

The following defines and initializes an empty lifo.

struct k_lifo my_lifo;

k_lifo_init(&my_lifo);

Alternatively, an empty lifo can be defined and initialized at compile time
by calling K_LIFO_DEFINE.

The following code has the same effect as the code segment above.

K_LIFO_DEFINE(my_lifo);

Writing to a Lifo

A data item is added to a lifo by calling k_lifo_put().

The following code builds on the example above, and uses the lifo
to send data to one or more consumer threads.

struct data_item_t {
 void *lifo_reserved; /* 1st word reserved for use by lifo */
 ...
};

struct data_item_t tx data;

void producer_thread(int unused1, int unused2, int unused3)
{
 while (1) {
 /* create data item to send */
 tx_data = ...

 /* send data to consumers */
 k_lifo_put(&my_lifo, &tx_data);

 ...
 }
}

Reading from a Lifo

A data item is removed from a lifo by calling k_lifo_get().

The following code builds on the example above, and uses the lifo
to obtain data items from a producer thread,
which are then processed in some manner.

void consumer_thread(int unused1, int unused2, int unused3)
{
 struct data_item_t *rx_data;

 while (1) {
 rx_data = k_lifo_get(&my_lifo, K_FOREVER);

 /* process lifo data item */
 ...
 }
}

Suggested Uses

Use a lifo to asynchronously transfer data items of arbitrary size
in a “last in, first out” manner.

Configuration Options

Related configuration options:

	None.

APIs

The following lifo APIs are provided by kernel.h:

	K_LIFO_DEFINE

	k_lifo_init()

	k_lifo_put()

	k_lifo_get()

Stacks

A stack is a kernel object that implements a traditional
last in, first out (LIFO) queue, allowing threads and ISRs
to add and remove a limited number of 32-bit data values.

	Concepts

	Implementation
	Defining a Stack

	Pushing to a Stack

	Popping from a Stack

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of stacks can be defined. Each stack is referenced
by its memory address.

A stack has the following key properties:

	A queue of 32-bit data values that have been added but not yet removed.
The queue is implemented using an array of 32-bit integers,
and must be aligned on a 4-byte boundary.

	A maximum quantity of data values that can be queued in the array.

A stack must be initialized before it can be used. This sets its queue to empty.

A data value can be added to a stack by a thread or an ISR.
The value is given directly to a waiting thread, if one exists;
otherwise the value is added to the lifo’s queue.
The kernel does not detect attempts to add a data value to a stack
that has already reached its maximum quantity of queued values.

注解

Adding a data value to a stack that is already full will result in
array overflow, and lead to unpredictable behavior.

A data value may be removed from a stack by a thread.
If the stack’s queue is empty a thread may choose to wait for it to be given.
Any number of threads may wait on an empty stack simultaneously.
When a data item is added, it is given to the highest priority thread
that has waited longest.

注解

The kernel does allow an ISR to remove an item from a stack, however
the ISR must not attempt to wait if the stack is empty.

Implementation

Defining a Stack

A stack is defined using a variable of type struct k_stack.
It must then be initialized by calling k_stack_init().

The following code defines and initializes an empty stack capable of holding
up to ten 32-bit data values.

#define MAX_ITEMS 10

u32_t my_stack_array[MAX_ITEMS];
struct k_stack my_stack;

k_stack_init(&my_stack, my_stack_array, MAX_ITEMS);

Alternatively, a stack can be defined and initialized at compile time
by calling K_STACK_DEFINE.

The following code has the same effect as the code segment above. Observe
that the macro defines both the stack and its array of data values.

K_STACK_DEFINE(my_stack, MAX_ITEMS);

Pushing to a Stack

A data item is added to a stack by calling k_stack_push().

The following code builds on the example above, and shows how a thread
can create a pool of data structures by saving their memory addresses
in a stack.

/* define array of data structures */
struct my_buffer_type {
 int field1;
 ...
 };
struct my_buffer_type my_buffers[MAX_ITEMS];

/* save address of each data structure in a stack */
for (int i = 0; i < MAX_ITEMS; i++) {
 k_stack_push(&my_stack, (u32_t)&my_buffers[i]);
}

Popping from a Stack

A data item is taken from a stack by calling k_stack_pop().

The following code builds on the example above, and shows how a thread
can dynamically allocate an unused data structure.
When the data structure is no longer required, the thread must push
its address back on the stack to allow the data structure to be reused.

struct my_buffer_type *new_buffer;

k_stack_pop(&buffer_stack, (u32_t *)&new_buffer, K_FOREVER);
new_buffer->field1 = ...

Suggested Uses

Use a stack to store and retrieve 32-bit data values in a “last in,
first out” manner, when the maximum number of stored items is known.

Configuration Options

Related configuration options:

	None.

APIs

The following stack APIs are provided by kernel.h:

	K_STACK_DEFINE

	k_stack_init()

	k_stack_push()

	k_stack_pop()

Message Queues

A message queue is a kernel object that implements a simple
message queue, allowing threads and ISRs to asynchronously send and receive
fixed-size data items.

	Concepts

	Implementation
	Defining a Message Queue

	Writing to a Message Queue

	Reading from a Message Queue

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of message queues can be defined. Each message queue is referenced
by its memory address.

A message queue has the following key properties:

	A ring buffer of data items that have been sent but not yet received.

	A data item size, measured in bytes.

	A maximum quantity of data items that can be queued in the ring buffer.

The message queue’s ring buffer must be aligned to an N-byte boundary, where
N is a power of 2 (i.e. 1, 2, 4, 8, ...). To ensure that the messages stored in
the ring buffer are similarly aligned to this boundary, the data item size
must also be a multiple of N.

A message queue must be initialized before it can be used.
This sets its ring buffer to empty.

A data item can be sent to a message queue by a thread or an ISR.
The data item a pointed at by the sending thread is copied to a waiting thread,
if one exists; otherwise the item is copied to the message queue’s ring buffer,
if space is available. In either case, the size of the data area being sent
must equal the message queue’s data item size.

If a thread attempts to send a data item when the ring buffer is full,
the sending thread may choose to wait for space to become available.
Any number of sending threads may wait simultaneously when the ring buffer
is full; when space becomes available
it is given to the highest priority sending thread that has waited the longest.

A data item can be received from a message queue by a thread.
The data item is copied to the area specified by the receiving thread;
the size of the receiving area must equal the message queue’s data item size.

If a thread attempts to receive a data item when the ring buffer is empty,
the receiving thread may choose to wait for a data item to be sent.
Any number of receiving threads may wait simultaneously when the ring buffer
is empty; when a data item becomes available it is given to
the highest priority receiving thread that has waited the longest.

注解

The kernel does allow an ISR to receive an item from a message queue,
however the ISR must not attempt to wait if the message queue is empty.

Implementation

Defining a Message Queue

A message queue is defined using a variable of type struct k_msgq.
It must then be initialized by calling k_msgq_init().

The following code defines and initializes an empty message queue
that is capable of holding 10 items, each of which is 12 bytes long.

struct data_item_type {
 u32_t field1;
 u32_t field2;
 u32_t field3;
};

char __aligned(4) my_msgq_buffer[10 * sizeof(data_item_type)];
struct k_msgq my_msgq;

k_msgq_init(&my_msgq, my_msgq_buffer, sizeof(data_item_type), 10);

Alternatively, a message queue can be defined and initialized at compile time
by calling K_MSGQ_DEFINE.

The following code has the same effect as the code segment above. Observe
that the macro defines both the message queue and its buffer.

K_MSGQ_DEFINE(my_msgq, sizeof(data_item_type), 10, 4);

Writing to a Message Queue

A data item is added to a message queue by calling k_msgq_put().

The following code builds on the example above, and uses the message queue
to pass data items from a producing thread to one or more consuming threads.
If the message queue fills up because the consumers can’t keep up, the
producing thread throws away all existing data so the newer data can be saved.

void producer_thread(void)
{
 struct data_item_t data;

 while (1) {
 /* create data item to send (e.g. measurement, timestamp, ...) */
 data = ...

 /* send data to consumers */
 while (k_msgq_put(&my_msgq, &data, K_NO_WAIT) != 0) {
 /* message queue is full: purge old data & try again */
 k_msgq_purge(&my_msgq);
 }

 /* data item was successfully added to message queue */
 }
}

Reading from a Message Queue

A data item is taken from a message queue by calling k_msgq_get().

The following code builds on the example above, and uses the message queue
to process data items generated by one or more producing threads.

void consumer_thread(void)
{
 struct data_item_t data;

 while (1) {
 /* get a data item */
 k_msgq_get(&my_msgq, &data, K_FOREVER);

 /* process data item */
 ...
 }
}

Suggested Uses

Use a message queue to transfer small data items between threads
in an asynchronous manner.

注解

A message queue can be used to transfer large data items, if desired.
However, this can increase interrupt latency as interrupts are locked
while a data item is written or read. It is usually preferable to transfer
large data items by exchanging a pointer to the data item, rather than the
data item itself. The kernel’s memory map and memory pool object types
can be helpful for data transfers of this sort.

A synchronous transfer can be achieved by using the kernel’s mailbox
object type.

Configuration Options

Related configuration options:

	None.

APIs

The following message queue APIs are provided by kernel.h:

	K_MSGQ_DEFINE

	k_msgq_init()

	k_msgq_put()

	k_msgq_get()

	k_msgq_purge()

	k_msgq_num_used_get()

	k_msgq_num_free_get()

Mailboxes

A mailbox is a kernel object that provides enhanced message queue
capabilities that go beyond the capabilities of a message queue object.
A mailbox allows threads to send and receive messages of any size
synchronously or asynchronously.

	Concepts
	Message Format

	Message Lifecycle

	Thread Compatibility

	Message Flow Control

	Implementation
	Defining a Mailbox

	Message Descriptors

	Sending a Message

	Receiving a Message

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of mailboxes can be defined. Each mailbox is referenced
by its memory address.

A mailbox has the following key properties:

	A send queue of messages that have been sent but not yet received.

	A receive queue of threads that are waiting to receive a message.

A mailbox must be initialized before it can be used. This sets both of its
queues to empty.

A mailbox allows threads, but not ISRs, to exchange messages.
A thread that sends a message is known as the sending thread,
while a thread that receives the message is known as the receiving thread.
Each message may be received by only one thread (i.e. point-to-multipoint and
broadcast messaging is not supported).

Messages exchanged using a mailbox are handled non-anonymously,
allowing both threads participating in an exchange to know
(and even specify) the identity of the other thread.

Message Format

A message descriptor is a data structure that specifies where a message’s
data is located, and how the message is to be handled by the mailbox.
Both the sending thread and the receiving thread supply a message descriptor
when accessing a mailbox. The mailbox uses the message descriptors to perform
a message exchange between compatible sending and receiving threads.
The mailbox also updates certain message descriptor fields during the exchange,
allowing both threads to know what has occurred.

A mailbox message contains zero or more bytes of message data.
The size and format of the message data is application-defined, and can vary
from one message to the next. There are two forms of message data:

	A message buffer is an area of memory provided by the thread
that sends or receives the message. An array or structure variable
can often be used for this purpose.

	A message block is an area of memory allocated from a memory pool.

A message may not have both a message buffer and a message block.
A message that has neither form of message data is called an empty message.

注解

A message whose message buffer or memory block exists, but contains
zero bytes of actual data, is not an empty message.

Message Lifecycle

The life cycle of a message is straightforward. A message is created when
it is given to a mailbox by the sending thread. The message is then owned
by the mailbox until it is given to a receiving thread. The receiving thread
may retrieve the message data when it receives the message from the mailbox,
or it may perform data retrieval during a second, subsequent mailbox operation.
Only when data retrieval has occurred is the message deleted by the mailbox.

Thread Compatibility

A sending thread can specify the address of the thread to which the message
is sent, or it send it to any thread by specifying K_ANY.
Likewise, a receiving thread can specify the address of the thread from which
it wishes to receive a message, or it can receive a message from any thread
by specifying K_ANY.
A message is exchanged only when the requirements of both the sending thread
and receiving thread are satisfied; such threads are said to be compatible.

For example, if thread A sends a message to thread B (and only thread B)
it will be received by thread B if thread B tries to receive a message
from thread A or if thread B tries to receive from any thread.
The exchange will not occur if thread B tries to receive a message
from thread C. The message can never be received by thread C,
even if it tries to receive a message from thread A (or from any thread).

Message Flow Control

Mailbox messages can be exchanged synchronously or asynchronously.
In a synchronous exchange, the sending thread blocks until the message
has been fully processed by the receiving thread. In an asynchronous exchange,
the sending thread does not wait until the message has been received
by another thread before continuing; this allows the sending thread to do
other work (such as gather data that will be used in the next message)
before the message is given to a receiving thread and fully processed.
The technique used for a given message exchange is determined
by the sending thread.

The synchronous exchange technique provides an implicit form of flow control,
preventing a sending thread from generating messages faster than they can be
consumed by receiving threads. The asynchronous exchange technique provides an
explicit form of flow control, which allows a sending thread to determine
if a previously sent message still exists before sending a subsequent message.

Implementation

Defining a Mailbox

A mailbox is defined using a variable of type struct k_mbox.
It must then be initialized by calling k_mbox_init().

The following code defines and initializes an empty mailbox.

struct k_mbox my_mailbox;

k_mbox_init(&my_mailbox);

Alternatively, a mailbox can be defined and initialized at compile time
by calling K_MBOX_DEFINE.

The following code has the same effect as the code segment above.

K_MBOX_DEFINE(my_mailbox);

Message Descriptors

A message descriptor is a structure of type struct k_mbox_msg.
Only the fields listed below should be used; any other fields are for
internal mailbox use only.

	info

	A 32-bit value that is exchanged by the message sender and receiver,
and whose meaning is defined by the application. This exchange is
bi-directional, allowing the sender to pass a value to the receiver
during any message exchange, and allowing the receiver to pass a value
to the sender during a synchronous message exchange.

	size

	The message data size, in bytes. Set it to zero when sending an empty
message, or when sending a message buffer or message block with no
actual data. When receiving a message, set it to the maximum amount
of data desired, or to zero if the message data is not wanted.
The mailbox updates this field with the actual number of data bytes
exchanged once the message is received.

	tx_data

	A pointer to the sending thread’s message buffer. Set it to NULL
when sending a memory block, or when sending an empty message.
Leave this field uninitialized when receiving a message.

	tx_block

	The descriptor for the sending thread’s memory block. Set tx_block.pool_id
to NULL when sending an empty message. Leave this field
uninitialized when sending a message buffer, or when receiving a message.

	tx_target_thread

	The address of the desired receiving thread. Set it to K_ANY
to allow any thread to receive the message. Leave this field uninitialized
when receiving a message. The mailbox updates this field with
the actual receiver’s address once the message is received.

	rx_source_thread

	The address of the desired sending thread. Set it to K_ANY
to receive a message sent by any thread. Leave this field uninitialized
when sending a message. The mailbox updates this field
with the actual sender’s address once the message is received.

Sending a Message

A thread sends a message by first creating its message data, if any.
A message buffer is typically used when the data volume is small,
and the cost of copying the data is less than the cost of allocating
and freeing a message block.

Next, the sending thread creates a message descriptor that characterizes
the message to be sent, as described in the previous section.

Finally, the sending thread calls a mailbox send API to initiate the
message exchange. The message is immediately given to a compatible receiving
thread, if one is currently waiting. Otherwise, the message is added
to the mailbox’s send queue.

Any number of messages may exist simultaneously on a send queue.
The messages in the send queue are sorted according to the priority
of the sending thread. Messages of equal priority are sorted so that
the oldest message can be received first.

For a synchronous send operation, the operation normally completes when a
receiving thread has both received the message and retrieved the message data.
If the message is not received before the waiting period specified by the
sending thread is reached, the message is removed from the mailbox’s send queue
and the send operation fails. When a send operation completes successfully
the sending thread can examine the message descriptor to determine
which thread received the message, how much data was exchanged,
and the application-defined info value supplied by the receiving thread.

注解

A synchronous send operation may block the sending thread indefinitely,
even when the thread specifies a maximum waiting period.
The waiting period only limits how long the mailbox waits
before the message is received by another thread. Once a message is received
there is no limit to the time the receiving thread may take to retrieve
the message data and unblock the sending thread.

For an asynchronous send operation, the operation always completes immediately.
This allows the sending thread to continue processing regardless of whether the
message is given to a receiving thread immediately or added to the send queue.
The sending thread may optionally specify a semaphore that the mailbox gives
when the message is deleted by the mailbox, for example, when the message
has been received and its data retrieved by a receiving thread.
The use of a semaphore allows the sending thread to easily implement
a flow control mechanism that ensures that the mailbox holds no more than
an application-specified number of messages from a sending thread
(or set of sending threads) at any point in time.

注解

A thread that sends a message asynchronously has no way to determine
which thread received the message, how much data was exchanged, or the
application-defined info value supplied by the receiving thread.

Sending an Empty Message

This code uses a mailbox to synchronously pass 4 byte random values
to any consuming thread that wants one. The message “info” field is
large enough to carry the information being exchanged, so the data
portion of the message isn’t used.

void producer_thread(void)
{
 struct k_mbox_msg send_msg;

 while (1) {

 /* generate random value to send */
 u32_t random_value = sys_rand32_get();

 /* prepare to send empty message */
 send_msg.info = random_value;
 send_msg.size = 0;
 send_msg.tx_data = NULL;
 send_msg.tx_block.pool_id = NULL;
 send_msg.tx_target_thread = K_ANY;

 /* send message and wait until a consumer receives it */
 k_mbox_put(&my_mailbox, &send_msg, K_FOREVER);
 }
}

Sending Data Using a Message Buffer

This code uses a mailbox to synchronously pass variable-sized requests
from a producing thread to any consuming thread that wants it.
The message “info” field is used to exchange information about
the maximum size message buffer that each thread can handle.

void producer_thread(void)
{
 char buffer[100];
 int buffer_bytes_used;

 struct k_mbox_msg send_msg;

 while (1) {

 /* generate data to send */
 ...
 buffer_bytes_used = ... ;
 memcpy(buffer, source, buffer_bytes_used);

 /* prepare to send message */
 send_msg.info = buffer_bytes_used;
 send_msg.size = buffer_bytes_used;
 send_msg.tx_data = buffer;
 send_msg.tx_target_thread = K_ANY;

 /* send message and wait until a consumer receives it */
 k_mbox_put(&my_mailbox, &send_msg, K_FOREVER);

 /* info, size, and tx_target_thread fields have been updated */

 /* verify that message data was fully received */
 if (send_msg.size < buffer_bytes_used) {
 printf("some message data dropped during transfer!");
 printf("receiver only had room for %d bytes", send_msg.info);
 }
 }
}

Sending Data Using a Message Block

This code uses a mailbox to send asynchronous messages. A semaphore is used
to hold off the sending of a new message until the previous message
has been consumed, so that a backlog of messages doesn’t build up
when the consuming thread is unable to keep up.

The message data is stored in a memory block obtained from a memory pool,
thereby eliminating unneeded data copying when exchanging large messages.
The memory pool contains only two blocks: one block gets filled with
data while the previously sent block is being processed

/* define a semaphore, indicating that no message has been sent */
K_SEM_DEFINE(my_sem, 1, 1);

/* define a memory pool containing 2 blocks of 4096 bytes */
K_MEM_POOL_DEFINE(my_pool, 4096, 4096, 2, 4);

void producer_thread(void)
{
 struct k_mbox_msg send_msg;

 volatile char *hw_buffer;

 while (1) {
 /* allocate a memory block to hold the message data */
 k_mem_pool_alloc(&mp_pool, &send_msg.tx_block, 4096, K_FOREVER);

 /* keep overwriting the hardware-generated data in the block */
 /* until the previous message has been received by the consumer */
 do {
 memcpy(send_msg.tx_block.data, hw_buffer, 4096);
 } while (k_sem_take(&my_sem, K_NO_WAIT) != 0);

 /* finish preparing to send message */
 send_msg.size = 4096;
 send_msg.tx_target_thread = K_ANY;

 /* send message containing most current data and loop around */
 k_mbox_async_put(&my_mailbox, &send_msg, &my_sem);
 }
}

Receiving a Message

A thread receives a message by first creating a message descriptor that
characterizes the message it wants to receive. It then calls one of the
mailbox receive APIs. The mailbox searches its send queue and takes the message
from the first compatible thread it finds. If no compatible thread exists,
the receiving thread may choose to wait for one. If no compatible thread
appears before the waiting period specified by the receiving thread is reached,
the receive operation fails.
Once a receive operation completes successfully the receiving thread
can examine the message descriptor to determine which thread sent the message,
how much data was exchanged,
and the application-defined info value supplied by the sending thread.

Any number of receiving threads may wait simultaneously on a mailboxes’
receive queue. The threads are sorted according to their priority;
threads of equal priority are sorted so that the one that started waiting
first can receive a message first.

注解

Receiving threads do not always receive messages in a first in, first out
(FIFO) order, due to the thread compatibility constraints specified by the
message descriptors. For example, if thread A waits to receive a message
only from thread X and then thread B waits to receive a message from
thread Y, an incoming message from thread Y to any thread will be given
to thread B and thread A will continue to wait.

The receiving thread controls both the quantity of data it retrieves from an
incoming message and where the data ends up. The thread may choose to take
all of the data in the message, to take only the initial part of the data,
or to take no data at all. Similarly, the thread may choose to have the data
copied into a message buffer of its choice or to have it placed in a message
block. A message buffer is typically used when the volume of data
involved is small, and the cost of copying the data is less than the cost
of allocating and freeing a memory pool block.

The following sections outline various approaches a receiving thread may use
when retrieving message data.

Retrieving Data at Receive Time

The most straightforward way for a thread to retrieve message data is to
specify a message buffer when the message is received. The thread indicates
both the location of the message buffer (which must not be NULL)
and its size.

The mailbox copies the message’s data to the message buffer as part of the
receive operation. If the message buffer is not big enough to contain all of the
message’s data, any uncopied data is lost. If the message is not big enough
to fill all of the buffer with data, the unused portion of the message buffer is
left unchanged. In all cases the mailbox updates the receiving thread’s
message descriptor to indicate how many data bytes were copied (if any).

The immediate data retrieval technique is best suited for small messages
where the maximum size of a message is known in advance.

注解

This technique can be used when the message data is actually located
in a memory block supplied by the sending thread. The mailbox copies
the data into the message buffer specified by the receiving thread, then
frees the message block back to its memory pool. This allows
a receiving thread to retrieve message data without having to know
whether the data was sent using a message buffer or a message block.

The following code uses a mailbox to process variable-sized requests from any
producing thread, using the immediate data retrieval technique. The message
“info” field is used to exchange information about the maximum size
message buffer that each thread can handle.

void consumer_thread(void)
{
 struct k_mbox_msg recv_msg;
 char buffer[100];

 int i;
 int total;

 while (1) {
 /* prepare to receive message */
 recv_msg.info = 100;
 recv_msg.size = 100;
 recv_msg.rx_source_thread = K_ANY;

 /* get a data item, waiting as long as needed */
 k_mbox_get(&my_mailbox, &recv_msg, buffer, K_FOREVER);

 /* info, size, and rx_source_thread fields have been updated */

 /* verify that message data was fully received */
 if (recv_msg.info != recv_msg.size) {
 printf("some message data dropped during transfer!");
 printf("sender tried to send %d bytes", recv_msg.info);
 }

 /* compute sum of all message bytes (from 0 to 100 of them) */
 total = 0;
 for (i = 0; i < recv_msg.size; i++) {
 total += buffer[i];
 }
 }
}

Retrieving Data Later Using a Message Buffer

A receiving thread may choose to defer message data retrieval at the time
the message is received, so that it can retrieve the data into a message buffer
at a later time.
The thread does this by specifying a message buffer location of NULL
and a size indicating the maximum amount of data it is willing to retrieve
later.

The mailbox does not copy any message data as part of the receive operation.
However, the mailbox still updates the receiving thread’s message descriptor
to indicate how many data bytes are available for retrieval.

The receiving thread must then respond as follows:

	If the message descriptor size is zero, then either the sender’s message
contained no data or the receiving thread did not want to receive any data.
The receiving thread does not need to take any further action, since
the mailbox has already completed data retrieval and deleted the message.

	If the message descriptor size is non-zero and the receiving thread still
wants to retrieve the data, the thread must call k_mbox_data_get()
and supply a message buffer large enough to hold the data. The mailbox copies
the data into the message buffer and deletes the message.

	If the message descriptor size is non-zero and the receiving thread does not
want to retrieve the data, the thread must call k_mbox_data_get().
and specify a message buffer of NULL. The mailbox deletes
the message without copying the data.

The subsequent data retrieval technique is suitable for applications where
immediate retrieval of message data is undesirable. For example, it can be
used when memory limitations make it impractical for the receiving thread to
always supply a message buffer capable of holding the largest possible
incoming message.

注解

This technique can be used when the message data is actually located
in a memory block supplied by the sending thread. The mailbox copies
the data into the message buffer specified by the receiving thread, then
frees the message block back to its memory pool. This allows
a receiving thread to retrieve message data without having to know
whether the data was sent using a message buffer or a message block.

The following code uses a mailbox’s deferred data retrieval mechanism
to get message data from a producing thread only if the message meets
certain criteria, thereby eliminating unneeded data copying. The message
“info” field supplied by the sender is used to classify the message.

void consumer_thread(void)
{
 struct k_mbox_msg recv_msg;
 char buffer[10000];

 while (1) {
 /* prepare to receive message */
 recv_msg.size = 10000;
 recv_msg.rx_source_thread = K_ANY;

 /* get message, but not its data */
 k_mbox_get(&my_mailbox, &recv_msg, NULL, K_FOREVER);

 /* get message data for only certain types of messages */
 if (is_message_type_ok(recv_msg.info)) {
 /* retrieve message data and delete the message */
 k_mbox_data_get(&recv_msg, buffer);

 /* process data in "buffer" */
 ...
 } else {
 /* ignore message data and delete the message */
 k_mbox_data_get(&recv_msg, NULL);
 }
 }
}

Retrieving Data Later Using a Message Block

A receiving thread may choose to retrieve message data into a memory block,
rather than a message buffer. This is done in much the same way as retrieving
data subsequently into a message buffer — the receiving thread first
receives the message without its data, then retrieves the data by calling
k_mbox_data_block_get(). The mailbox fills in the block descriptor
supplied by the receiving thread, allowing the thread to access the data.
The mailbox also deletes the received message, since data retrieval
has been completed. The receiving thread is then responsible for freeing
the message block back to the memory pool when the data is no longer needed.

This technique is best suited for applications where the message data has
been sent using a memory block.

注解

This technique can be used when the message data is located in a message
buffer supplied by the sending thread. The mailbox automatically allocates
a memory block and copies the message data into it. However, this is much
less efficient than simply retrieving the data into a message buffer
supplied by the receiving thread. In addition, the receiving thread
must be designed to handle cases where the data retrieval operation fails
because the mailbox cannot allocate a suitable message block from the memory
pool. If such cases are possible, the receiving thread must either try
retrieving the data at a later time or instruct the mailbox to delete
the message without retrieving the data.

The following code uses a mailbox to receive messages sent using a memory block,
thereby eliminating unneeded data copying when processing a large message.
(The messages may be sent synchronously or asynchronously.)

/* define a memory pool containing 1 block of 10000 bytes */
K_MEM_POOL_DEFINE(my_pool, 10000, 10000, 1, 4);

void consumer_thread(void)
{
 struct k_mbox_msg recv_msg;
 struct k_mem_block recv_block;

 int total;
 char *data_ptr;
 int i;

 while (1) {
 /* prepare to receive message */
 recv_msg.size = 10000;
 recv_msg.rx_source_thread = K_ANY;

 /* get message, but not its data */
 k_mbox_get(&my_mailbox, &recv_msg, NULL, K_FOREVER);

 /* get message data as a memory block and discard message */
 k_mbox_data_block_get(&recv_msg, &my_pool, &recv_block, K_FOREVER);

 /* compute sum of all message bytes in memory block */
 total = 0;
 data_ptr = (char *)(recv_block.data);
 for (i = 0; i < recv_msg.size; i++) {
 total += data_ptr++;
 }

 /* release memory block containing data */
 k_mem_pool_free(&recv_block);
 }
}

注解

An incoming message that was sent using a message buffer is also processed
correctly by this algorithm, since the mailbox automatically allocates
a memory block from the memory pool and fills it with the message data.
However, the performance benefit of using the memory block approach is lost.

Suggested Uses

Use a mailbox to transfer data items between threads whenever the capabilities
of a message queue are insufficient.

Configuration Options

Related configuration options:

	CONFIG_NUM_MBOX_ASYNC_MSGS

APIs

The following APIs for a mailbox are provided by kernel.h:

	K_MBOX_DEFINE

	k_mbox_init()

	k_mbox_put()

	k_mbox_async_put()

	k_mbox_get()

	k_mbox_data_get()

	k_mbox_data_block_get()

Pipes

A pipe is a kernel object that allows a thread to send a byte stream
to another thread. Pipes can be used to transfer chunks of data in whole
or in part, and either synchronously or asynchronously.

	Concepts

	Implementation
	Writing to a Pipe

	Reading from a Pipe

	Suggested uses

	Configuration Options

	APIs

Concepts

The pipe can be configured with a ring buffer which holds data that has been
sent but not yet received; alternatively, the pipe may have no ring buffer.

Any number of pipes can be defined. Each pipe is referenced by its memory
address.

A pipe has the following key property:

	A size that indicates the size of the pipe’s ring buffer. Note that a
size of zero defines a pipe with no ring buffer.

A pipe must be initialized before it can be used. The pipe is initially empty.

Data can be synchronously sent either in whole or in part to a pipe by a
thread. If the specified minimum number of bytes can not be immediately
satisfied, then the operation will either fail immediately or attempt to send
as many bytes as possible and then pend in the hope that the send can be
completed later. Accepted data is either copied to the pipe’s ring buffer
or directly to the waiting reader(s).

Data can be asynchronously sent in whole using a memory block to a pipe by
a thread. Once the pipe has accepted all the bytes in the memory block, it will
free the memory block and may give a semaphore if one was specified.

Data can be synchronously received from a pipe by a thread. If the specified
minimum number of bytes can not be immediately satisfied, then the operation
will either fail immediately or attempt to receive as many bytes as possible
and then pend in the hope that the receive can be completed later. Accepted
data is either copied from the pipe’s ring buffer or directly from the
waiting sender(s).

注解

The kernel does NOT allow for an ISR to send or receive data to/from a
pipe even if it does not attempt to wait for space/data.

Implementation

A pipe is defined using a variable of type struct k_pipe and an
optional character buffer of type unsigned char. It must then be
initialized by calling k_pipe_init().

The following code defines and initializes an empty pipe that has a ring
buffer capable of holding 100 bytes and is aligned to a 4-byte boundary.

unsigned char __aligned(4) my_ring_buffer[100];
struct k_pipe my_pipe;

k_pipe_init(&my_pipe, my_ring_buffer, sizeof(my_ring_buffer));

Alternatively, a pipe can be defined and initialized at compile time by
calling K_PIPE_DEFINE.

The following code has the same effect as the code segment above. Observe
that that macro defines both the pipe and its ring buffer.

K_PIPE_DEFINE(my_pipe, 100, 4);

Writing to a Pipe

Data is added to a pipe by calling k_pipe_put().

The following code builds on the example above, and uses the pipe to pass
data from a producing thread to one or more consuming threads. If the pipe’s
ring buffer fills up because the consumers can’t keep up, the producing thread
waits for a specified amount of time.

struct message_header {
 ...
};

void producer_thread(void)
{
 unsigned char *data;
 size_t total_size;
 size_t bytes_written;
 int rc;
 ...

 while (1) {
 /* Craft message to send in the pipe */
 data = ...;
 total_size = ...;

 /* send data to the consumers */
 rc = k_pipe_put(&my_pipe, data, total_size, &bytes_written,
 sizeof(struct message_header), K_NO_WAIT);

 if (rc < 0) {
 /* Incomplete message header sent */
 ...
 } else if (bytes_written < total_size) {
 /* Some of the data was sent */
 ...
 } else {
 /* All data sent */
 ...
 }
 }
}

Reading from a Pipe

Data is read from the pipe by calling k_pipe_get().

The following code builds on the example above, and uses the pipe to
process data items generated by one or more producing threads.

void consumer_thread(void)
{
 unsigned char buffer[120];
 size_t bytes_read;
 struct message_header *header = (struct message_header *)buffer;

 while (1) {
 rc = k_pipe_get(&my_pipe, buffer, sizeof(buffer), &bytes_read,
 sizeof(header), K_MSEC(100));

 if ((rc < 0) || (bytes_read < sizeof (header))) {
 /* Incomplete message header received */
 ...
 } else if (header->num_data_bytes + sizeof(header) > bytes_read) {
 /* Only some data was received */
 ...
 } else {
 /* All data was received */
 ...
 }
 }
}

Suggested uses

Use a pipe to send streams of data between threads.

注解

A pipe can be used to transfer long streams of data if desired. However
it is often preferable to send pointers to large data items to avoid
copying the data. The kernel’s memory map and memory pool object types
can be helpful for data transfers of this sort.

Configuration Options

Related configuration options:

	CONFIG_NUM_PIPE_ASYNC_MSGS

APIs

The following message queue APIs are provided by kernel.h:

	K_PIPE_DEFINE

	k_pipe_init()

	k_pipe_put()

	k_pipe_get()

	k_pipe_block_put()

Other Services

This section describes other services provided by the kernel.

	Interrupts

	Atomic Services

	Polling API

	Ring Buffers

	Floating Point Services

	C++ Support for Applications

	CPU Idling

Interrupts

An interrupt service routine (ISR) is a function that executes
asynchronously in response to a hardware or software interrupt.
An ISR normally preempts the execution of the current thread,
allowing the response to occur with very low overhead.
Thread execution resumes only once all ISR work has been completed.

	Concepts
	Preventing Interruptions

	Offloading ISR Work

	Implementation
	Defining a regular ISR

	Defining a ‘direct’ ISR

	Implementation Details

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of ISRs can be defined, subject to the constraints imposed
by underlying hardware.

An ISR has the following key properties:

	An interrupt request (IRQ) signal that triggers the ISR.

	A priority level associated with the IRQ.

	An interrupt handler function that is invoked to handle the interrupt.

	An argument value that is passed to that function.

An IDT or a vector table is used
to associate a given interrupt source with a given ISR.
Only a single ISR can be associated with a specific IRQ at any given time.

Multiple ISRs can utilize the same function to process interrupts,
allowing a single function to service a device that generates
multiple types of interrupts or to service multiple devices
(usually of the same type). The argument value passed to an ISR’s function
allows the function to determine which interrupt has been signaled.

The kernel provides a default ISR for all unused IDT entries. This ISR
generates a fatal system error if an unexpected interrupt is signaled.

The kernel supports interrupt nesting. This allows an ISR to be preempted
in mid-execution if a higher priority interrupt is signaled. The lower
priority ISR resumes execution once the higher priority ISR has completed
its processing.

An ISR’s interrupt handler function executes in the kernel’s interrupt
context. This context has its own dedicated stack area (or, on some
architectures, stack areas). The size of the interrupt context stack must be
capable of handling the execution of multiple concurrent ISRs if interrupt
nesting support is enabled.

重要

Many kernel APIs can be used only by threads, and not by ISRs. In cases
where a routine may be invoked by both threads and ISRs the kernel
provides the k_is_in_isr() API to allow the routine to
alter its behavior depending on whether it is executing as part of
a thread or as part of an ISR.

Preventing Interruptions

In certain situations it may be necessary for the current thread to
prevent ISRs from executing while it is performing time-sensitive
or critical section operations.

A thread may temporarily prevent all IRQ handling in the system using
an IRQ lock. This lock can be applied even when it is already in effect,
so routines can use it without having to know if it is already in effect.
The thread must unlock its IRQ lock the same number of times it was locked
before interrupts can be once again processed by the kernel while the thread
is running.

重要

The IRQ lock is thread-specific. If thread A locks out interrupts
then performs an operation that allows thread B to run
(e.g. giving a semaphore or sleeping for N milliseconds), the thread’s
IRQ lock no longer applies once thread A is swapped out. This means
that interrupts can be processed while thread B is running unless
thread B has also locked out interrupts using its own IRQ lock.
(Whether interrupts can be processed while the kernel is switching
between two threads that are using the IRQ lock is architecture-specific.)

When thread A eventually becomes the current thread once again, the kernel
re-establishes thread A’s IRQ lock. This ensures thread A won’t be
interrupted until it has explicitly unlocked its IRQ lock.

Alternatively, a thread may temporarily disable a specified IRQ
so its associated ISR does not execute when the IRQ is signaled.
The IRQ must be subsequently enabled to permit the ISR to execute.

重要

Disabling an IRQ prevents all threads in the system from being preempted
by the associated ISR, not just the thread that disabled the IRQ.

Offloading ISR Work

An ISR should execute quickly to ensure predictable system operation.
If time consuming processing is required the ISR should offload some or all
processing to a thread, thereby restoring the kernel’s ability to respond
to other interrupts.

The kernel supports several mechanisms for offloading interrupt-related
processing to a thread.

	An ISR can signal a helper thread to do interrupt-related processing
using a kernel object, such as a fifo, lifo, or semaphore.

	An ISR can signal an alert which causes the system workqueue thread
to execute an associated alert handler function.
(See Alerts.)

	An ISR can instruct the system workqueue thread to execute a work item.
(See TBD.)

When an ISR offloads work to a thread, there is typically a single context
switch to that thread when the ISR completes, allowing interrupt-related
processing to continue almost immediately. However, depending on the
priority of the thread handling the offload, it is possible that
the currently executing cooperative thread or other higher-priority threads
may execute before the thread handling the offload is scheduled.

Implementation

Defining a regular ISR

An ISR is defined at run-time by calling IRQ_CONNECT. It must
then be enabled by calling irq_enable().

重要

IRQ_CONNECT() is not a C function and does some inline assembly magic
behind the scenes. All its arguments must be known at build time.
Drivers that have multiple instances may need to define per-instance
config functions to configure each instance of the interrupt.

The following code defines and enables an ISR.

#define MY_DEV_IRQ 24 /* device uses IRQ 24 */
#define MY_DEV_PRIO 2 /* device uses interrupt priority 2 */
/* argument passed to my_isr(), in this case a pointer to the device */
#define MY_ISR_ARG DEVICE_GET(my_device)
#define MY_IRQ_FLAGS 0 /* IRQ flags. Unused on non-x86 */

void my_isr(void *arg)
{
 ... /* ISR code */
}

void my_isr_installer(void)
{
 ...
 IRQ_CONNECT(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_ISR_ARG, MY_IRQ_FLAGS);
 irq_enable(MY_DEV_IRQ);
 ...
}

Defining a ‘direct’ ISR

Regular Zephyr interrupts introduce some overhead which may be unacceptable
for some low-latency use-cases. Specifically:

	The argument to the ISR is retrieved and passed to the ISR

	If power management is enabled and the system was idle, all the hardware
will be resumed from low-power state before the ISR is executed, which can be
very time-consuming

	Although some architectures will do this in hardware, other architectures
need to switch to the interrupt stack in code

	After the interrupt is serviced, the OS then performs some logic to
potentially make a scheduling decision.

Zephyr supports so-called ‘direct’ interrupts, which are installed via
IRQ_DIRECT_CONNECT. These direct interrupts have some special
implementation requirements and a reduced feature set; see the definition
of IRQ_DIRECT_CONNECT for details.

The following code demonstrates a direct ISR:

#define MY_DEV_IRQ 24 /* device uses IRQ 24 */
#define MY_DEV_PRIO 2 /* device uses interrupt priority 2 */
/* argument passed to my_isr(), in this case a pointer to the device */
#define MY_IRQ_FLAGS 0 /* IRQ flags. Unused on non-x86 */

ISR_DIRECT_DECLARE(my_isr)
{
 do_stuff();
 ISR_DIRECT_PM(); /* PM done after servicing interrupt for best latency */
 return 1; /* We should check if scheduling decision should be made */
}

void my_isr_installer(void)
{
 ...
 IRQ_DIRECT_CONNECT(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_IRQ_FLAGS);
 irq_enable(MY_DEV_IRQ);
 ...
}

Implementation Details

Interrupt tables are set up at build time using some special build tools. The
details laid out here apply to all architectures except x86, which are
covered in the x86 Details section below.

Any invocation of IRQ_CONNECT will declare an instance of
struct _isr_list which is placed in a special .intList section:

struct _isr_list {
 /** IRQ line number */
 s32_t irq;
 /** Flags for this IRQ, see ISR_FLAG_* definitions */
 s32_t flags;
 /** ISR to call */
 void *func;
 /** Parameter for non-direct IRQs */
 void *param;
};

Zephyr is built in two phases; the first phase of the build produces
zephyr_prebuilt.elf which contains all the entries in the .intList section
preceded by a header:

struct {
 void *spurious_irq_handler;
 void *sw_irq_handler;
 u32_t num_isrs;
 u32_t num_vectors;
 struct _isr_list isrs[]; <- of size num_isrs
};

This data consisting of the header and instances of struct _isr_list inside
zephyr_prebuilt.elf is then used by the gen_isr_tables.py script to generate a
C file defining a vector table and software ISR table that are then compiled
and linked into the final application.

The priority level of any interrupt is not encoded in these tables, instead
IRQ_CONNECT also has a runtime component which programs the desired
priority level of the interrupt to the interrupt controller. Some architectures
do not support the notion of interrupt priority, in which case the priority
argument is ignored.

Vector Table

A vector table is generated when CONFIG_GEN_IRQ_VECTOR_TABLE is enabled. This
data structure is used natively by the CPU and is simply an array of function
pointers, where each element n corresponds to the IRQ handler for IRQ line n,
and the function pointers are:

	For ‘direct’ interrupts declared with IRQ_DIRECT_CONNECT, the
handler function will be placed here.

	For regular interrupts declared with IRQ_CONNECT, the address
of the common software IRQ handler is placed here. This code does common
kernel interrupt bookkeeping and looks up the ISR and parameter from the
software ISR table.

	For interrupt lines that are not configured at all, the address of the
spurious IRQ handler will be placed here. The spurious IRQ handler
causes a system fatal error if encountered.

Some architectures (such as the Nios II internal interrupt controller) have a
common entry point for all interrupts and do not support a vector table, in
which case the CONFIG_GEN_IRQ_VECTOR_TABLE option should be disabled.

Some architectures may reserve some initial vectors for system exceptions
and declare this in a table elsewhere, in which case
CONFIG_GEN_IRQ_START_VECTOR needs to be set to properly offset the indices
in the table.

SW ISR Table

This is an array of struct _isr_table_entry:

struct _isr_table_entry {
 void *arg;
 void (*isr)(void *);
};

This is used by the common software IRQ handler to look up the ISR and its
argument and execute it. The active IRQ line is looked up in an interrupt
controller register and used to index this table.

x86 Details

The x86 architecture has a special type of vector table called the Interrupt
Descriptor Table (IDT) which must be laid out in a certain way per the x86
processor documentation. It is still fundamentally a vector table, and the
gen_idt tool uses the .intList section to create it. However, on APIC-based
systems the indexes in the vector table do not correspond to the IRQ line. The
first 32 vectors are reserved for CPU exceptions, and all remaining vectors (up
to index 255) correspond to the priority level, in groups of 16. In this
scheme, interrupts of priority level 0 will be placed in vectors 32-47, level 1
48-63, and so forth. When the gen_idt tool is constructing the IDT, when it
configures an interrupt it will look for a free vector in the appropriate range
for the requested priority level and set the handler there.

There are some APIC variants (such as MVIC) where priorities cannot be set
by the user and the position in the vector table does correspond to the
IRQ line. Systems like this will enable CONFIG_X86_FIXED_IRQ_MAPPING.

On x86 when an interrupt or exception vector is executed by the CPU, there is
no foolproof way to determine which vector was fired, so a software ISR table
indexed by IRQ line is not used. Instead, the IRQ_CONNECT call
creates a small assembly language function which calls the common interrupt
code in _interrupt_enter() with the ISR and parameter as arguments.
It is the address of this assembly interrupt stub which gets placed in the IDT.
For interrupts declared with IRQ_DIRECT_CONNECT the parameterless
ISR is placed directly in the IDT.

On systems where the position in the vector table corresponds to the
interrupt’s priority level, the interrupt controller needs to know at
runtime what vector is associated with an IRQ line. gen_idt additionally
creates an _irq_to_interrupt_vector array which maps an IRQ line to its
configured vector in the IDT. This is used at runtime by IRQ_CONNECT
to program the IRQ-to-vector association in the interrupt controller.

Suggested Uses

Use a regular or direct ISR to perform interrupt processing that requires a
very rapid response, and can be done quickly without blocking.

注解

Interrupt processing that is time consuming, or involves blocking,
should be handed off to a thread. See Offloading ISR Work for
a description of various techniques that can be used in an application.

Configuration Options

Related configuration options:

	CONFIG_ISR_STACK_SIZE

Additional architecture-specific and device-specific configuration options
also exist.

APIs

The following interrupt-related APIs are provided by irq.h:

	IRQ_CONNECT

	IRQ_DIRECT_CONNECT

	ISR_DIRECT_HEADER

	ISR_DIRECT_FOOTER

	ISR_DIRECT_PM

	ISR_DIRECT_DECLARE

	irq_lock()

	irq_unlock()

	irq_enable()

	irq_disable()

	irq_is_enabled()

The following interrupt-related APIs are provided by kernel.h:

	k_is_in_isr()

	k_is_preempt_thread()

Atomic Services

An atomic variable is a 32-bit variable that can be read and modified
by threads and ISRs in an uninterruptible manner.

	Concepts

	Implementation
	Defining an Atomic Variable

	Manipulating an Atomic Variable

	Manipulating an Array of Atomic Variables

	Suggested Uses

	Configuration Options

	APIs

Concepts

Any number of atomic variables can be defined.

Using the kernel’s atomic APIs to manipulate an atomic variable
guarantees that the desired operation occurs correctly,
even if higher priority contexts also manipulate the same variable.

The kernel also supports the atomic manipulation of a single bit
in an array of atomic variables.

Implementation

Defining an Atomic Variable

An atomic variable is defined using a variable of type atomic_t.

By default an atomic variable is initialized to zero. However, it can be given
a different value using ATOMIC_INIT:

atomic_t flags = ATOMIC_INIT(0xFF);

Manipulating an Atomic Variable

An atomic variable is manipulated using the APIs listed at the end of
this section.

The following code shows how an atomic variable can be used to keep track
of the number of times a function has been invoked. Since the count is
incremented atomically, there is no risk that it will become corrupted
in mid-increment if a thread calling the function is interrupted if
by a higher priority context that also calls the routine.

atomic_t call_count;

int call_counting_routine(void)
{
 /* increment invocation counter */
 atomic_inc(&call_count);

 /* do rest of routine's processing */
 ...
}

Manipulating an Array of Atomic Variables

An array of 32-bit atomic variables can be defined in the conventional manner.
However, you can also define an N-bit array of atomic variables using
ATOMIC_DEFINE.

A single bit in array of atomic variables can be manipulated using
the APIs listed at the end of this section that end with _bit().

The following code shows how a set of 200 flag bits can be implemented
using an array of atomic variables.

#define NUM_FLAG_BITS 200

ATOMIC_DEFINE(flag_bits, NUM_FLAG_BITS);

/* set specified flag bit & return its previous value */
int set_flag_bit(int bit_position)
{
 return (int)atomic_set_bit(flag_bits, bit_position);
}

Suggested Uses

Use an atomic variable to implement critical section processing that only
requires the manipulation of a single 32-bit value.

Use multiple atomic variables to implement critical section processing
on a set of flag bits in a bit array longer than 32 bits.

注解

Using atomic variables is typically far more efficient than using
other techniques to implement critical sections such as using a mutex
or locking interrupts.

Configuration Options

Related configuration options:

	CONFIG_ATOMIC_OPERATIONS_BUILTIN

	CONFIG_ATOMIC_OPERATIONS_CUSTOM

	CONFIG_ATOMIC_OPERATIONS_C

APIs

The following atomic operation APIs are provided by atomic.h:

	ATOMIC_INIT

	ATOMIC_DEFINE

	atomic_get()

	atomic_set()

	atomic_clear()

	atomic_add()

	atomic_sub()

	atomic_inc()

	atomic_dec()

	atomic_and()

	atomic_or()

	atomic_xor()

	atomic_nand()

	atomic_cas()

	atomic_set_bit()

	atomic_clear_bit()

	atomic_test_bit()

	atomic_test_and_set_bit()

	atomic_test_and_clear_bit()

Polling API

The polling API is used to wait concurrently for any one of multiple conditions
to be fulfilled.

	Concepts

	Implementation
	Using k_poll()

	Using k_poll_signal()

	Suggested Uses

	Configuration Options

	APIs

Concepts

The polling API’s main function is k_poll(), which is very similar
in concept to the POSIX poll() function, except that it operates on
kernel objects rather than on file descriptors.

The polling API allows a single thread to wait concurrently for one or more
conditions to be fulfilled without actively looking at each one individually.

There is a limited set of such conditions:

	a semaphore becomes available

	a kernel FIFO contains data ready to be retrieved

	a poll signal is raised

A thread that wants to wait on multiple conditions must define an array of
poll events, one for each condition.

All events in the array must be initialized before the array can be polled on.

Each event must specify which type of condition must be satisfied so that
its state is changed to signal the requested condition has been met.

Each event must specify what kernel object it wants the condition to be
satisfied.

Each event must specify which mode of operation is used when the condition
is satisfied.

Each event can optionally specify a tag to group multiple events together,
to the user’s discretion.

Apart from the kernel objects, there is also a poll signal pseudo-object
type that be directly signaled.

The k_poll() function returns as soon as one of the conditions it
is waiting for is fulfilled. It is possible for more than one to be fulfilled
when k_poll() returns, if they were fulfilled before
k_poll() was called, or due to the preemptive multi-threading
nature of the kernel. The caller must look at the state of all the poll events
in the array to figured out which ones were fulfilled and what actions to take.

Currently, there is only one mode of operation available: the object is not
acquired. As an example, this means that when k_poll() returns and
the poll event states that the semaphore is available, the caller of
k_poll() must then invoke k_sem_take() to take
ownership of the semaphore. If the semaphore is contested, there is no
guarantee that it will be still available when k_sem_give() is
called.

Implementation

Using k_poll()

The main API is k_poll(), which operates on an array of poll events
of type struct k_poll_event. Each entry in the array represents one
event a call to k_poll() will wait for its condition to be
fulfilled.

They can be initialized using either the runtime initializers
K_POLL_EVENT_INITIALIZER() or k_poll_event_init(), or
the static initializer K_POLL_EVENT_STATIC_INITIALIZER(). An object
that matches the type specified must be passed to the initializers. The
mode must be set to K_POLL_MODE_NOTIFY_ONLY. The state must
be set to K_POLL_STATE_NOT_READY (the initializers take care of
this). The user tag is optional and completely opaque to the API: it is
there to help a user to group similar events together. Being optional, it is
passed to the static initializer, but not the runtime ones for performance
reasons. If using runtime initializers, the user must set it separately in the
struct k_poll_event data structure. If an event in the array is to be
ignored, most likely temporarily, its type can be set to K_POLL_TYPE_IGNORE.

struct k_poll_event events[2] = {
 K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_SEM_AVAILABLE,
 K_POLL_MODE_NOTIFY_ONLY,
 &my_sem, 0),
 K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
 K_POLL_MODE_NOTIFY_ONLY,
 &my_fifo, 0),
};

or at runtime

struct k_poll_event events[2];
void some_init(void)
{
 k_poll_event_init(&events[0],
 K_POLL_TYPE_SEM_AVAILABLE,
 K_POLL_MODE_NOTIFY_ONLY,
 &my_sem);

 k_poll_event_init(&events[1],
 K_POLL_TYPE_FIFO_DATA_AVAILABLE,
 K_POLL_MODE_NOTIFY_ONLY,
 &my_fifo);

 // tags are left uninitialized if unused
}

After the events are initialized, the array can be passed to
k_poll(). A timeout can be specified to wait only for a specified
amount of time, or the special values K_NO_WAIT and
K_FOREVER to either not wait or wait until an event condition is
satisfied and not sooner.

Only one thread can poll on a semaphore or a FIFO at a time. If a second thread
tries to poll on the same semaphore or FIFO, k_poll() immediately
returns with the return value -EADDRINUSE. In that case, if other
conditions passed to k_poll() were met, their state will be set in
the corresponding poll event.

In case of success, k_poll() returns 0. If it times out, it returns
-EAGAIN.

// assume there is no contention on this semaphore and FIFO
// -EADDRINUSE will not occur; the semaphore and/or data will be available

void do_stuff(void)
{
 rc = k_poll(events, 2, 1000);
 if (rc == 0) {
 if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {
 k_sem_take(events[0].sem, 0);
 } else if (events[1].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {
 data = k_fifo_get(events[1].fifo, 0);
 // handle data
 }
 } else {
 // handle timeout
 }
}

When k_poll() is called in a loop, the events state must be reset
to K_POLL_STATE_NOT_READY by the user.

void do_stuff(void)
{
 for(;;) {
 rc = k_poll(events, 2, K_FOREVER);
 if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {
 k_sem_take(events[0].sem, 0);
 } else if (events[1].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {
 data = k_fifo_get(events[1].fifo, 0);
 // handle data
 }
 events[0].state = K_POLL_STATE_NOT_READY;
 events[1].state = K_POLL_STATE_NOT_READY;
 }
}

Using k_poll_signal()

One of the types of events is K_POLL_TYPE_SIGNAL: this is a “direct”
signal to a poll event. This can be seen as a lightweight binary semaphore only
one thread can wait for.

A poll signal is a separate object of type struct k_poll_signal that
must be attached to a k_poll_event, similar to a semaphore or FIFO. It must
first be initialized either via K_POLL_SIGNAL_INITIALIZER() or
k_poll_signal_init().

struct k_poll_signal signal;
void do_stuff(void)
{
 k_poll_signal_init(&signal);
}

It is signaled via the k_poll_signal() function. This function
takes a user result parameter that is opaque to the API and can be used to
pass extra information to the thread waiting on the event.

struct k_poll_signal signal;

// thread A
void do_stuff(void)
{
 k_poll_signal_init(&signal);

 struct k_poll_event events[1] = {
 K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,
 K_POLL_MODE_NOTIFY_ONLY,
 &signal);
 };

 k_poll(events, 1, K_FOREVER);

 if (events.signal->result == 0x1337) {
 // A-OK!
 } else {
 // weird error
 }
}

// thread B
void signal_do_stuff(void)
{
 k_poll_signal(&signal, 0x1337);
}

If the signal is to be polled in a loop, both its event state and its
signaled field must be reset on each iteration if it has been signaled.

struct k_poll_signal signal;
void do_stuff(void)
{
 k_poll_signal_init(&signal);

 struct k_poll_event events[1] = {
 K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,
 K_POLL_MODE_NOTIFY_ONLY,
 &signal);
 };

 for (;;) {
 k_poll(events, 1, K_FOREVER);

 if (events[0].signal->result == 0x1337) {
 // A-OK!
 } else {
 // weird error
 }

 events[0].signal->signaled = 0;
 events[0].state = K_POLL_STATE_NOT_READY;
 }
}

Suggested Uses

Use k_poll() to consolidate multiple threads that would be pending
on one object each, saving possibly large amounts of stack space.

Use a poll signal as a lightweight binary semaphore if only one thread pends on
it.

注解

Because objects are only signaled if no other thread is waiting for them to
become available and only one thread can poll on a specific object, polling
is best used when objects are not subject of contention between multiple
threads, basically when a single thread operates as a main “server” or
“dispatcher” for multiple objects and is the only one trying to acquire
these objects.

Configuration Options

Related configuration options:

	CONFIG_POLL

APIs

The following polling APIs are provided by kernel.h:

	K_POLL_EVENT_INITIALIZER

	K_POLL_EVENT_STATIC_INITIALIZER

	k_poll_event_init()

	k_poll()

	k_poll_signal_init()

	k_poll_signal()

Ring Buffers

A ring buffer is a circular buffer of 32-bit words, whose contents
are stored in first-in-first-out order. Data items can be enqueued and dequeued
from a ring buffer in chunks of up to 1020 bytes. Each data item also has
two associated metadata values: a type identifier and a 16-bit integer value,
both of which are application-specific.

	Concepts
	Concurrency

	Internal Operation

	Implementation
	Defining a Ring Buffer

	Enqueuing Data

	Retrieving Data

	APIs

Concepts

Any number of ring buffers can be defined. Each ring buffer is referenced
by its memory address.

A ring buffer has the following key properties:

	A data buffer of 32-bit words. The data buffer contains the data items
that have been added to the ring buffer but not yet removed.

	A data buffer size, measured in 32-bit words. This governs the maximum
amount of data (including metadata values) the ring buffer can hold.

A ring buffer must be initialized before it can be used. This sets its
data buffer to empty.

A ring buffer data item is an array of 32-bit words from 0 to 1020 bytes
in length. When a data item is enqueued its contents are copied
to the data buffer, along with its associated metadata values (which occupy
one additional 32-bit word).
If the ring buffer has insufficient space to hold the new data item
the enqueue operation fails.

A data items is dequeued from a ring buffer by removing the oldest
enqueued item. The contents of the dequeued data item, as well as its
two metadata values, are copied to areas supplied by the retriever.
If the ring buffer is empty, or if the data array supplied by the retriever
is not large enough to hold the data item’s data, the dequeue operation fails.

Concurrency

The ring buffer APIs do not provide any concurrency control.
Depending on usage (particularly with respect to number of concurrent
readers/writers) applications may need to protect the ring buffer with
mutexes and/or use semaphores to notify consumers that there is data to
read.

For the trivial case of one producer and one consumer, concurrency
shouldn’t be needed.

Internal Operation

The ring buffer always maintains an empty 32-bit word in its data buffer
to allow it to distinguish between empty and full states.

If the size of the data buffer is a power of two, the ring buffer
uses efficient masking operations instead of expensive modulo operations
when enqueuing and dequeuing data items.

Implementation

Defining a Ring Buffer

A ring buffer is defined using a variable of type struct ring_buf.
It must then be initialized by calling sys_ring_buf_init().

The following code defines and initializes an empty ring buffer
(which is part of a larger data structure). The ring buffer’s data buffer
is capable of holding 64 words of data and metadata information.

#define MY_RING_BUF_SIZE 64

struct my_struct {
 struct ring_buf rb;
 u32_t buffer[MY_RING_BUF_SIZE];
 ...
};
struct my_struct ms;

void init_my_struct {
 sys_ring_buf_init(&ms.rb, sizeof(ms.buffer), ms.buffer);
 ...
}

Alternatively, a ring buffer can be defined and initialized at compile time
using one of two macros at file scope. Each macro defines both the ring
buffer itself and its data buffer.

The following code defines a ring buffer with a power-of-two sized data buffer,
which can be accessed using efficient masking operations.

/* Buffer with 2^8 (or 256) words */
SYS_RING_BUF_DECLARE_POW2(my_ring_buf, 8);

The following code defines a ring buffer with an arbitrary-sized data buffer,
which can be accessed using less efficient modulo operations.

#define MY_RING_BUF_WORDS 93
SYS_RING_BUF_DECLARE_SIZE(my_ring_buf, MY_RING_BUF_WORDS);

Enqueuing Data

A data item is added to a ring buffer by calling sys_ring_buf_put().

u32_t my_data[MY_DATA_WORDS];
int ret;

ret = sys_ring_buf_put(&ring_buf, TYPE_FOO, 0, my_data, SIZE32_OF(my_data));
if (ret == -EMSGSIZE) {
 /* not enough room for the data item */
 ...
}

If the data item requires only the type or application-specific integer value
(i.e. it has no data array), a size of 0 and data pointer of NULL
can be specified.

int ret;

ret = sys_ring_buf_put(&ring_buf, TYPE_BAR, 17, NULL, 0);
if (ret == -EMSGSIZE) {
 /* not enough room for the data item */
 ...
}

Retrieving Data

A data item is removed from a ring buffer by calling
sys_ring_buf_get().

u32_t my_data[MY_DATA_WORDS];
u16_t my_type;
u8_t my_value;
u8_t my_size;
int ret;

my_size = SIZE32_OF(my_data);
ret = sys_ring_buf_get(&ring_buf, &my_type, &my_value, my_data, &my_size);
if (ret == -EMSGSIZE) {
 printk("Buffer is too small, need %d u32_t\n", my_size);
} else if (ret == -EAGAIN) {
 printk("Ring buffer is empty\n");
} else {
 printk("Got item of type %u value &u of size %u dwords\n",
 my_type, my_value, my_size);
 ...
}

APIs

The following ring buffer APIs are provided by include/misc/ring_buffer.h:

	SYS_RING_BUF_DECLARE_POW2()

	SYS_RING_BUF_DECLARE_SIZE()

	sys_ring_buf_init()

	sys_ring_buf_is_empty()

	sys_ring_buf_space_get()

	sys_ring_buf_put()

	sys_ring_buf_get()

Floating Point Services

The kernel allows threads to use floating point registers on board
configurations that support these registers.

注解

Floating point services are currently available only for boards
based on the ARM Cortex-M4 or the Intel x86 architectures. The
services provided are architecture specific.

The kernel does not support the use of floating point registers by ISRs.

	Concepts
	No FP registers mode

	Unshared FP registers mode

	Shared FP registers mode

	Implementation
	Performing Floating Point Arithmetic

	Suggested Uses

	Configuration Options

	APIs

Concepts

The kernel can be configured to provide only the floating point services
required by an application. Three modes of operation are supported,
which are described below. In addition, the kernel’s support for the SSE
registers can be included or omitted, as desired.

No FP registers mode

This mode is used when the application has no threads that use floating point
registers. It is the kernel’s default floating point services mode.

If a thread uses any floating point register,
the kernel generates a fatal error condition and aborts the thread.

Unshared FP registers mode

This mode is used when the application has only a single thread
that uses floating point registers.

The kernel initializes the floating point registers so they can be used
by any thread. The floating point registers are left unchanged
whenever a context switch occurs.

注解

Incorrect operation may result if two or more threads use
floating point registers, as the kernel does not attempt to detect
(or prevent) multiple threads from using these registers.

Shared FP registers mode

This mode is used when the application has two or more threads that use
floating point registers. Depending upon the underlying CPU architecture,
the kernel supports one or more of the following thread sub-classes:

	non-user: A thread that cannot use any floating point registers

	FPU user: A thread that can use the standard floating point registers

	SSE user: A thread that can use both the standard floating point registers
and SSE registers

The kernel initializes the floating point registers so they can be used
by any thread, then saves and restores these registers during
context switches to ensure the computations performed by each FPU user
or SSE user are not impacted by the computations performed by the other users.

On the ARM Cortex-M4 architecture the kernel treats all threads
as FPU users when shared FP registers mode is enabled. This means that the
floating point registers are saved and restored during a context switch, even
when the associated threads are not using them. Each thread must provide
an extra 132 bytes of stack space where these register values can be saved.

On the x86 architecture the kernel treats each thread as a non-user,
FPU user or SSE user on a case-by-case basis. A “lazy save” algorithm is used
during context switching which updates the floating point registers only when
it is absolutely necessary. For example, the registers are not saved when
switching from an FPU user to a non-user thread, and then back to the original
FPU user. The following table indicates the amount of additional stack space a
thread must provide so the registers can be saved properly.

	Thread type
	FP register use
	Extra stack space required

	cooperative
	any
	0 bytes

	preemptive
	none
	0 bytes

	preemptive
	FPU
	108 bytes

	preemptive
	SSE
	464 bytes

The x86 kernel automatically detects that a given thread is using
the floating point registers the first time the thread accesses them.
The thread is tagged as an SSE user if the kernel has been configured
to support the SSE registers, or as an FPU user if the SSE registers are
not supported. If this would result in a thread that is an FPU user being
tagged as an SSE user, or if the application wants to avoid the exception
handling overhead involved in auto-tagging threads, it is possible to
pre-tag a thread using one of the techniques listed below.

	A statically-created x86 thread can be pre-tagged by passing the
K_FP_REGS or K_SSE_REGS option to
K_THREAD_DEFINE.

	A dynamically-created x86 thread can be pre-tagged by passing the
K_FP_REGS or K_SSE_REGS option to
k_thread_create().

	An already-created x86 thread can pre-tag itself once it has started
by passing the K_FP_REGS or K_SSE_REGS option to
k_float_enable().

If an x86 thread uses the floating point registers infrequently it can call
k_float_disable() to remove its tagging as an FPU user or SSE user.
This eliminates the need for the kernel to take steps to preserve
the contents of the floating point registers during context switches
when there is no need to do so.
When the thread again needs to use the floating point registers it can re-tag
itself as an FPU user or SSE user by calling k_float_enable().

Implementation

Performing Floating Point Arithmetic

No special coding is required for a thread to use floating point arithmetic
if the kernel is properly configured.

The following code shows how a routine can use floating point arithmetic
to avoid overflow issues when computing the average of a series of integer
values.

int average(int *values, int num_values)
{
 double sum;
 int i;

 sum = 0.0;

 for (i = 0; i < num_values; i++) {
 sum += *values;
 values++;
 }

 return (int)((sum / num_values) + 0.5);
}

Suggested Uses

Use the kernel floating point services when an application needs to
perform floating point operations.

Configuration Options

To configure unshared FP registers mode, enable the CONFIG_FLOAT
configuration option and leave the CONFIG_FP_SHARING configuration
option disabled.

To configure shared FP registers mode, enable both the CONFIG_FLOAT
configuration option and the CONFIG_FP_SHARING configuration option.
Also, ensure that any thread that uses the floating point registers has
sufficient added stack space for saving floating point register values
during context switches, as described above.

Use the CONFIG_SSE configuration option to enable support for
SSEx instructions (x86 only).

APIs

The following floating point APIs (x86 only) are provided by kernel.h:

	k_float_enable()

	k_float_disable()

C++ Support for Applications

The kernel supports applications written in both C and C++. However, to
use C++ in an application you must configure the kernel to include C++
support and the build system must select the correct compiler.

The build system selects the C++ compiler based on the suffix of the files.
Files identified with either a cxx or a cpp suffix are compiled using
the C++ compiler. For example, myCplusplusApp.cpp is compiled using C++.

The kernel currently provides only a subset of C++ functionality. The
following features are not supported:

	Dynamic object management with the new and delete operators

	RTTI

	Exceptions

	Static global object destruction

While not an exhaustive list, support for the following functionality is
included:

	Inheritance

	Virtual functions

	Virtual tables

	Static global object constructors

Static global object constructors are initialized after the drivers are
initialized but before the application main() function. Therefore,
use of C++ is restricted to application code.

注解

Do not use C++ for kernel, driver, or system initialization code.

CPU Idling

Although normally reserved for the idle thread, in certain special
applications, a thread might want to make the CPU idle.

	Concepts

	Implementation
	Making the CPU idle

	Making the CPU idle in an atomic fashion

	Suggested Uses

	APIs

Concepts

Making the CPU idle causes the kernel to pause all operations until an event,
normally an interrupt, wakes up the CPU. In a regular system, the idle thread
is responsible for this. However, in some constrained systems, it is possible
that another thread takes this duty.

Implementation

Making the CPU idle

Making the CPU idle is simple: call the k_cpu_idle() API. The CPU will stop
executing instructions until an event occurs. Make sure interrupts are not
locked before invoking it. Most likely, it will be called within a loop.

static k_sem my_sem;

void my_isr(void *unused)
{
 k_sem_give(&my_sem);
}

void main(void)
{
 k_sem_init(&my_sem, 0, 1);

 /* wait for semaphore from ISR, then do related work */

 for (;;) {

 /* wait for ISR to trigger work to perform */
 if (k_sem_take(&my_sem, K_NO_WAIT) == 0) {

 /* ... do processing */

 }

 /* put CPU to sleep to save power */
 k_cpu_idle();
 }
}

Making the CPU idle in an atomic fashion

It is possible that there is a need to do some work atomically before making
the CPU idle. In such a case, k_cpu_atomic_idle() should be used instead.

In fact, there is a race condition in the previous example: the interrupt could
occur between the time the semaphore is taken, finding out it is not available
and making the CPU idle again. In some systems, this can cause the CPU to idle
until another interrupt occurs, which might be never, thus hanging the
system completely. To prevent this, k_cpu_atomic_idle() should have been used,
like in this example.

static k_sem my_sem;

void my_isr(void *unused)
{
 k_sem_give(&my_sem);
}

void main(void)
{
 k_sem_init(&my_sem, 0, 1);

 for (;;) {

 unsigned int key = irq_lock();

 /*
 * Wait for semaphore from ISR; if acquired, do related work, then
 * go to next loop iteration (the semaphore might have been given
 * again); else, make the CPU idle.
 */

 if (k_sem_take(&my_sem, K_NO_WAIT) == 0) {

 irq_unlock(key);

 /* ... do processing */

 } else {
 /* put CPU to sleep to save power */
 k_cpu_atomic_idle(key);
 }
 }
}

Suggested Uses

Use k_cpu_atomic_idle() when a thread has to do some real work in addition to
idling the CPU to wait for an event. See example above.

Use k_cpu_idle() only when a thread is only responsible for idling the CPU,
i.e. not doing any real work, like in this example below.

void main(void)
{
 /* ... do some system/application initialization */

 /* thread is only used for CPU idling from this point on */
 for (;;) {
 k_cpu_idle();
 }
}

注解

Do not use these APIs unless absolutely necessary. In a normal system,
the idle thread takes care of power management, including CPU idling.

APIs

The following CPU idling APIs are provided by kernel.h:

	k_cpu_idle()

	k_cpu_atomic_idle()

Zephyr Project Security

These documents describe the requirements, processes, and developer guidelines
for ensuring security is addressed within the Zephyr project.

	Zephyr Security Overview

	Secure Coding Guidelines

Zephyr Security Overview

	Revision history

	Rev
	Date
	Description

	1.0 Draft
	July 27, 2016
	Initial draft version

	1.0-rc1
	April 21, 2017
	Draft for review by TSC

Introduction

This document outlines the steps of the Zephyr Security board towards a
defined security process that helps developers build more secure
software while addressing security compliance requirements. It presents
the key ideas of the security process and outlines which documents need
to be created. After the process is implemented and all supporting
documents are created, this document is a top-level overview and entry
point.

Overview and Scope

We begin with an overview of the Zephyr development process, which
mainly focuses on security functionality.

In subsequent sections, the individual parts of the process are treated
in detail. As depicted in Figure 1, these main steps are:

	Secure Development: Defines the system architecture and
development process that ensures adherence to relevant coding
guidelines and quality assurance procedures.

	Secure Design: Defines security procedures and implement measures
to enforce them. A security architecture of the system and
relevant sub-modules is created, threats are identified, and
countermeasures designed. Their correct implementation and the
validity of the threat models are checked by code reviews.
Finally, a process shall be defined for reporting, classifying,
and mitigating security issues..

	Security Certification: Defines the certifiable part of the
Zephyr RTOS. This includes an evaluation target, its assets, and
how these assets are protected. Certification claims shall be
determined and backed with appropriate evidence.

[image: ../_images/security-process-steps.png]
Figure 1. Security Process Steps

Intended Audience

This document is a guideline for the development of a security process
by the Zephyr Security Committee and the Zephyr Technical Steering
Committee. It provides an overview of the Zephyr security process for
(security) engineers and architects.

Nomenclature

In this document, the keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”,
“SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” are to be interpreted as described in RFC2119 [https://www.ietf.org/rfc/rfc2119.txt].

These words are used to define absolute requirements (or prohibitions),
highly recommended requirements, and truly optional requirements. As
noted in RFC-2119, “These terms are frequently used to specify behavior
with security implications. The effects on security of not implementing
a MUST or SHOULD, or doing something the specification says MUST NOT or
SHOULD NOT be done may be very subtle. Document authors should take the
time to elaborate the security implications of not following
recommendations or requirements as most implementors will not have had
the benefit of the experience and discussion that produced the
specification.”

Security Document Update

This document is a living document. As new requirements, features, and
changes are identified, they will be added to this document through the
following process:

	Changes will be submitted from the interested party(ies) via pull
requests to the Zephyr documentation repository.

	The security committee will review these changes and provide feedback
or acceptance of the changes.

	Once accepted, these changes will become part of the document.

Current Security Definition

This section recapitulates the current status of secure development
within the Zephyr RTOS. Currently, focus is put on functional security
and code quality assurance, although additional security features are
scoped.

The three major security measures currently implemented are:

	Security Functionality with a focus on cryptographic
algorithms and protocols. Support for cryptographic hardware is
scoped for future releases.The Zephyr runtime architecture is a
monolithic binary and removes the need for dynamic loaders ,
thereby reducing the exposed attack surface.

	Quality Assurance is driven by using a development process that
requires all code to be reviewed before being committed to the
common repository. Furthermore, the reuse of proven building
blocks such as network stacks increases the overall quality level
and guarantees stable APIs. Static code analyses are planned for
the near future.

	Execution Protection including thread separation, stack and
memory protection is currently not available in the upstream
Zephyr RTOS but is planned for future releases.

These topics are discussed in more detail in the following subsections.

Security Functionality

The security functionality in Zephyr hinges mainly on the inclusion of
cryptographic algorithms, and on its monolithic system design.

The cryptographic features are provided through a set of cryptographic
libraries. Applications can choose TinyCrypt2 or mbedTLS based on their
needs. TinyCrypt2 supports key cryptographic algorithms required by the
connectivity stacks. Tinycrypt2, however, only provides a limited set of
algorithms. mbedTLS supports a wider range of algorithms, but at the
cost of additional requirements such as malloc support. Applications can
choose the solution that matches their individual requirements. Future
work may include APIs to abstract the underlying crypto library choice.

APIs for vendor specific cryptographic IPs in both hardware and software
are planned, including secure key storage in the form of secure access
modules (SAMs), Trusted Platform Modules (TPMs), and
Trusted Execution Environments (TEEs).

The security architecture is based on a monolithic design where the
Zephyr kernel and all applications are compiled into a single static
binary. System calls are implemented as function calls without requiring
context switches. Static linking eliminates the potential for
dynamically loading malicious code. Memory protection and task
separation techniques are in scope for future releases.

Quality Assurance

The Zephyr project uses an automated quality assurance process. The goal
is to have a process including mandatory code reviews, feature and issue
management/tracking, and static code analyses.

Code reviews are documented and enforced using a voting system before
getting checked into the repository by the responsible subsystem’s
maintainer. The main goals of the code review are:

	Verifying correct functionality of the implementation

	Increasing the readability and maintainability of the contributed
source code

	Ensuring appropriate usage of string and memory functions

	Validation of the user input

	Reviewing the security relevant code for potential issues

The current coding guidelines focus mostly on coding styles and
conventions. Functional correctness is ensured by the build system and
the experience of the reviewer. Especially for security relevant code,
concrete and detailed guidelines need to be developed and aligned with
the developers (see: Secure Coding Guidelines).

Static code analyses are run on the Zephyr code tree on a regular basis
using the open source Coverity Scan tool. Coverity Scan now includes
complexity analysis.

Bug and issue tracking and management is performed using Jira. The term
“survivability” was coined to cover pro-active security tasks such as
security issue categorization and management. Initial effort has been
started on the definition of vulnerability categorization and mitigation
processes within Jira.

Issues determined by Coverity should have more stringent reviews before
they are closed as non issues (at least another person educated in
security processes need to agree on non-issue before closing).

A security subcommittee has been formed to develop a security process in
more detail; this document is part of that process.

Execution Protection

Execution protection is planned for future releases and is roughly
categorized into the following tasks:

	Memory separation: Memory will be partitioned into regions and
assigned attributes based on the owner of that region of memory.
Threads will only have access to regions they control.

	Stack protection: Stack guards would provide mechanisms for
detecting and trapping stack overruns. Individual threads should
only have access to their own stacks.

	Thread separation: Individual threads should only have access to
their own memory resources. As threads are scheduled, only memory
resources owned by that thread will be accessible.Topics such as
program flow protection and other measures for tamper resistance
are currently not in scope.

System Level Security (Ecosystem, ...)

System level security encompasses a wide variety of categories. Some
examples of these would be:

	Secure/trusted boot

	Over the air (OTA) updates

	External Communication

	Device authentication

	Access control of onboard resources
	Flash updating

	Secure storage

	Peripherals

	Root of trust

	Reduction of attack surface

Some of these categories are interconnected and rely on multiple pieces
to be in place to produce a full solution for the application.

Secure Development Process

The development of secure code shall adhere to certain criteria. These
include coding guidelines and development processes that can be roughly
separated into two categories related to software quality and related to
software security. Furthermore, a system architecture document shall be
created and kept up-to-date with future development.

System Architecture

[image: ../_images/security-zephyr-system-architecture.png]
Figure 2: Zephyr System Architecture

A high-level schematic of the Zephyr system architecture is given in
Figure 2. It separates the architecture into an OS part (kernel + OS
Services) and a user-specific part (Application Services). The OS
part itself contains low-level, platform specific drivers and the
generic implementation of I/O APIs, file systems, kernel-specific
functions, and the cryptographic library.

A document describing the system architecture and design choices shall
be created and kept up to date with future development. This document
shall include the base architecture of the Zephyr OS and an overview of
important submodules. For each of the modules, a dedicated architecture
document shall be created and evaluated against the implementation.
These documents shall serve as an entry point to new developers and as a
basis for the security architecture. Please refer to the
Zephyr Kernel subsystem documentation for
detailed information.

Secure Coding Guidelines

Designing an open software system such as Zephyr to be secure requires
adhering to a defined set of design standards. These standards are
included in the Zephyr Project documentation, specifically in its
Secure Coding Guidelines section. In [SALT75], the following, widely
accepted principles for protection mechanisms are defined to prevent
security violations and limit their impact:

	Open design as a design guideline incorporates the maxim that
protection mechanisms cannot be kept secret on any system in
widespread use. Instead of relying on secret, custom-tailored
security measures, publicly accepted cryptographic algorithms and
well established cryptographic libraries shall be used.

	Economy of mechanism specifies that the underlying design of a
system shall be kept as simple and small as possible. In the
context of the Zephyr project, this can be realized, e.g., by
modular code [PAUL09] and abstracted APIs.

	Complete mediation requires that each access to every object and
process needs to be authenticated first. Mechanisms to store
access conditions shall be avoided if possible.

	Fail-safe defaults defines that access is restricted by default
and permitted only in specific conditions defined by the system
protection scheme, e.g., after successful authentication.
Furthermore, default settings for services shall be chosen in a
way to provide maximum security. This corresponds to the “Secure
by Default” paradigm [MS12].

	Separation of privilege is the principle that two conditions or
more need to be satisfied before access is granted. In the
context of the Zephyr project, this could encompass split keys
[PAUL09].

	Least privilege describes an access model in which each user,
program, thread, and fiber shall have the smallest possible
subset of permissions in the system required to perform their
task. This positive security model aims to minimize the attack
surface of the system.

	Least common mechanism specifies that mechanisms common to more
than one user or process shall not be shared if not strictly
required. The example given in [SALT75] is a function that should
be implemented as a shared library executed by each user and not
as a supervisor procedure shared by all users.

	Psychological acceptability requires that security features are
easy to use by the developers in order to ensure its usage and
the correctness of its application.

In addition to these general principles, the following points are
specific to the development of a secure RTOS:

	Complementary Security/Defense in Depth: do not rely on a single
threat mitigation approach. In case of the complementary security
approach, parts of the threat mitigation are performed by the
underlying platform. In case such mechanisms are not provided by
the platform, or are not trusted, a defense in depth [MS12]
paradigm shall be used.

	Less commonly used services off by default: to reduce the
exposure of the system to potential attacks, features or services
shall not be enabled by default if they are only rarely used (a
threshold of 80% is given in [MS12]). For the Zephyr project,
this can be realized using the configuration management. Each
functionality and module shall be represented as a configuration
option and needs to be explicitly enabled. Then, all features,
protocols, and drivers not required for a particular use case can
be disabled. The user shall be notified if low-level options and
APIs are enabled but not used by the application.

	Change management: to guarantee a traceability of changes to the
system, each change shall follow a specified process including a
change request, impact analysis, ratification, implementation,
and validation phase. In each stage, appropriate documentation
shall be provided. All commits shall be related to a bug report
or change request in the issue tracker. Commits without a valid
reference shall be denied.

Based on these design principles and commonly accepted best practices, a
secure development guide shall be developed, published, and implemented
into the Zephyr development process. Further details on this are given
in the Secure Design section.

Quality Assurance

The quality assurance part encompasses the following criteria:

	Adherence to the Coding Guidelines with respect to coding style,
naming schemes of modules, functions, variables, and so forth.
This increases the readability of the Zephyr code base and eases
the code review. These coding guidelines are enforced by
automated scripts prior to check-in.

	Adherence to Deployment Guidelines is required to ensure
consistent releases with a well-documented feature set and a
trackable list of security issues.

	Code Reviews ensure the functional correctness of the code base
and shall be performed on each proposed code change prior to
check-in. Code reviews shall be performed by at least one
independent reviewer other than the author(s) of the code change.
These reviews shall be performed by the subsystem maintainers and
developers on a functional level and are to be distinguished from
security reviews as laid out in Chapter 4. Please refer to the
development model documentation [https://wiki.zephyrproject.org/view/Development_Model] on the Zephyr project Wiki.

	Static Code Analysis tools efficiently detect common coding
mistakes in large code bases. All code shall be analyzed using an
appropriate tool prior to merges into the main repository. This
is not per individual commit, but is to be run on some interval
on specific branches. It is mandatory to remove all findings or
waive potential false-positives before each release. To process
process documentation. Waivers shall be documented centrally and
in form of a comment inside the source code itself. The
documentation shall include the employed tool and its version,
the date of the analysis, the branch and parent revision number,
the reason for the waiver, the author of the respective code, and
the approver(s) of the waiver. This shall as a minimum run on the
main release branch and on the security branch. It shall be
ensured that each release has zero issues with regard to static
code analysis (including waivers). Please refer to the
development model documentation [https://wiki.zephyrproject.org/view/Development_Model] on the Zephyr project Wiki.

	Complexity Analyses shall be performed as part of the development
process and metrics such as cyclomatic complexity shall be
evaluated. The main goal is to keep the code as simple as
possible.

	
	Automation: the review process and checks for coding rule

	adherence are a mandatory part of the pre-commit checks. To
ensure consistent application, they shall be automated as part of
the pre-commit procedure. Prior to merging large pieces of code
in from subsystems, in addition to review process and coding rule
adherence, all static code analysis must have been run and issues
resolved.

Release and Lifecycle Management

Lifecycle management contains several aspects:

	Device management encompasses the possibility to update the
operating system and/or security related sub-systems of Zephyr
enabled devices in the field.

	Lifecycle management: system stages shall be defined and
documented along with the transactions between the stages in a
system state diagram. For security reasons, this shall include
locking of the device in case an attack has been detected, and a
termination if the end of life is reached.

	Release management describes the process of defining the release
cycle, documenting releases, and maintaining a record of known
vulnerabilities and mitigations. Especially for certification
purposes the integrity of the release needs to be ensured in a
way that later manipulation (e.g. inserting of backdoors, etc.)
can be easily detected.

	Rights management and NDAs: if required by the chosen
certification, the confidentiality and integrity of the system
needs to be ensured by an appropriate rights management (e.g.
separate source code repository) and non-disclosure agreements
between the relevant parties. In case of a repository shared
between several parties, measures shall be taken that no
malicious code is checked in.

These points shall be evaluated with respect to their impact on the
development process employed for the Zephyr project.

Secure Design

In order to obtain a certifiable system or product, the security process
needs to be clearly defined and its application needs to be monitored
and driven. This process includes the development of security related
modules in all of its stages and the management of reported security
issues. Furthermore, threat models need to be created for currently
known and future attack vectors, and their impact on the system needs to
be investigated and mitigated. Please refer to the
secure coding guidelines [https://www.zephyrproject.org/doc/contribute/security.html] outlined in the Zephyr project documentation
for detailed information.

The software security process includes:

	Adherence to the Secure Development Guidelines is mandatory to
avoid that individual components breach the system security and
to minimize the vulnerability of individual modules. While this
can be partially achieved by automated tests, it is inevitable to
investigate the correct implementation of security features such
as countermeasures manually in security-critical modules.

	Security Reviews shall be performed by a security architect in
preparation of each security-targeted release and each time a
security-related module of the Zephyr project is changed. This
process includes the validation of the effectiveness of
implemented security measures, the adherence to the global
security strategy and architecture, and the preparation of audits
towards a security certification if required.

	Security Issue Management encompasses the evaluation of potential
system vulnerabilities and their mitigation as described in the
Security Issue Management Section.

These criteria and tasks need to be integrated into the development
process for secure software and shall be automated wherever possible. On
system level, and for each security related module of the secure branch
of Zephyr, a directly responsible security architect shall be defined to
guide the secure development process.

Security Architecture

The general guidelines above shall be accompanied by an architectural
security design on system- and module-level. The high level
considerations include

	The identification of security and compliance requirements

	Functional security such as the use of cryptographic functions
whenever applicable

	Design of countermeasures against known attack vectors

	Recording of security relevant auditable events

	Support for Trusted Platform Modules (TPM) and
Trusted Execution Environments (TEE)

	Mechanisms to allow for in-the-field updates of devices using
Zephyr

	Task scheduler and separation

The security architecture development is based on assets derived from
the structural overview of the overall system architecture. Based on
this, the individual steps include:

	Identification of assets such as user data, authentication and
encryption keys, key generation data (obtained from RNG),
security relevant status information.

	Identification of threats against the assets such as breaches of
confidentiality, manipulation of user data, etc.

	Definition of requirements regarding security and protection of
the assets, e.g. countermeasures or memory protection schemes.

The security architecture shall be harmonized with the existing system
architecture and implementation to determine potential deviations and
mitigate existing weaknesses. Newly developed sub-modules that are
integrated into the secure branch of the Zephyr project shall provide
individual documents describing their security architecture.
Additionally, their impact on the system level security shall be
considered and documented.

Security Issue Management

In order to quickly respond to security threats towards the Zephyr RTOS,
a well-defined security issue management needs to be established.

Such issues shall be reported through the Zephyr Jira bug tracking
system. Some JIRA modifications will be necessary to accommodate
management of security issues. In addition, there will be guidelines
that govern visibility, control, and resolution of security issues. The
following is the current proposal:

	A boolean field shall be added to JIRA bugs to mark it security
sensitive (or any other name that makes sense). This renders the
entry invisible to anyone except as described below.

	Security sensitive bugs are only accessible (view/modify) to members
of the Security Group; members of this Security Group are:
	members of the Security Subcommittee

	other as proposed and ratified Security Subcommittee, who will
also have the authority to remove others

	the reporter

	Ability to add other users for individual issues

	Security Subcommittee meetings have to review the embargoed bugs on
every meeting with more than three people in attendance. Said
review process shall decide if new issues needs to be embargoed
or not.

	Security sensitive bugs shall be made public (by removing the
security sensitive indicator) after an embargo period of TBD
days. The Security Subcommittee is the only entity with authority
to extend the embargo period on a case by case basis; the JIRA
entry should be updated with the rationale for the embargo
extension so at some point said rationale will be made public.If
the Security Subcommittee does not act upon a security sensitive
bug after its TBD days of embargo are over, it shall be
automatically made public by removing the security sensitive
setting.

	Likewise, there shall be code repositories marked as security
sensitive, accessible only to the Security Group members where
the code to fix said issues is being worked on and reviewed. The
person/s contributing the fix shall also have access, but fix
contributors shall have only access to the tree for said fix, not
to other security sensitive trees.

	A CVE space shall be allocated to assign Zephyr issues when the SWG
decides such is needed.

	The severity of the issue with regard to security shall be entered by
the reporter.

	All security relevant issues shall trigger an automated notification
on the Zephyr security mailing list (security@lists.zephyrproject.org).
Any member of the
security board can then triage the severity of the issue
according to the Common Vulnerability Scoring System v3.0 [https://www.first.org/cvss/specification-document]

	Depending on the resulting severity score of the issue, the issue is
prioritized and assigned to the owner of the affected module.
Additionally, the system security architect and the security
architect of the module are notified and shall take the
responsibility to mitigate the issue and review the solution or
counter-measure. In any case, the security issue shall be
documented centrally, including the affected modules, software
releases, and applicable workarounds for immediate mitigation. A
list of known security issues per public release of the Zephyr
shall be published and maintained by the security board after a
risk assessment.

Threat Modeling and Mitigation

The modeling of security threats against the Zephyr RTOS is required for
the development of an accurate security architecture and for most
certification schemes. The first step of this process is the definition
of assets to be protected by the system. The next step then models how
these assets are protected by the system and which threats against them
are present. After a threat has been identified, a corresponding threat
model is created. This model contains the asset and system
vulnerabilities, as well as the description of the potential exploits of
these vulnerabilities. Additionally, the impact on the asset, the module
it resides in, and the overall system is to be estimated. This threat
model is then considered in the module and system security architecture
and appropriate counter-measures are defined to mitigate the threat or
limit the impact of exploits.

In short, the threat modeling process can be separated into these steps
(adapted from Application Thread Modeling [https://www.owasp.org/index.php/Application_Threat_Modeling]:

	Definition of assets

	Application decomposition and creation of appropriate data flow
diagrams (DFDs)

	Threat identification and categorization using the STRIDE [https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx] and
CVSS [https://www.first.org/cvss/specification-document] approaches

	Determination of countermeasures and other mitigation approaches

This procedure shall be carried out during the design phase of modules
and before major changes of the module or system architecture.
Additionally, new models shall be created or existing ones shall be
updated whenever new vulnerabilities or exploits are discovered. During
security reviews, the threat models and the mitigation techniques shall
be evaluated by the responsible security architect.

From these threat models and mitigation techniques tests shall be
derived that prove the effectiveness of the countermeasures. These tests
shall be integrated into the continuous integration workflow to ensure
that the security is not impaired by regressions.

Vulnerability Analyses

In order to find weak spots in the software implementation,
vulnerability analyses (VA) shall be performed. Of special interest are
investigations on cryptographic algorithms, critical OS tasks, and
connectivity protocols.

On a pure software level, this encompasses

	Penetration testing of the RTOS on a particular hardware
platform, which involves testing the respective Zephyr OS
configuration and hardware as one system.

	Side channel attacks (timing invariance, power invariance, etc.)
should be considered. For instance, ensuring timing
invariance of the cryptographic algorithms and modules is
required to reduce the attack surface. This applies to both the
software implementations and when using cryptographic hardware.

	Fuzzing tests shall be performed on both exposed APIs and
protocols.

The list given above serves primarily illustration purposes. For each
module and for the complete Zephyr system (in general on a particular
hardware platform), a suitable VA plan shall be created and executed.
The findings of these analyses shall be considered in the security issue
management process, and learnings shall be formulated as guidelines and
incorporated into the secure coding guide.

If possible (as in case of fuzzing analyses), these tests shall be
integrated into the continuous integration process.

Security Certification

One goal of creating a secure branch of the Zephyr RTOS is to create a
certifiable system or certifiable submodules thereof. The certification
scope and scheme is yet to be decided. However, many certification such
as Common Criteria [CCITSE12] require evidence that the evaluation
claims are indeed fulfilled, so a general certification process is
outlined in the following. Based on the final choices for the
certification scheme and evaluation level, this process needs to be
refined.

Generic Certification Process

In general, the steps towards a certification or precertification
(compare [MICR16]) are:

	The definition of assets to be protected within the Zephyr RTOS.
Potential candidates are confidential information such as
cryptographic keys, user data such as communication logs, and
potentially IP of the vendor or manufacturer.

	Developing a threat model and security architecture to
protect the assets against exploits of vulnerabilities of the
system. As a complete threat model includes the overall product
including the hardware platform, this might be realized by a
split model containing a pre-certified secure branch of Zephyr
which the vendor could use to certify their Zephyr-enabled
product.

	Formulating an evaluation target that includes the
certification claims on the security of the assets to be
evaluated and certified, as well as assumptions on the operating
conditions.

	Providing proof that the claims are fulfilled. This includes
consistent documentation of the security development process,
etc.

These steps are partially covered in previous sections as well. In
contrast to these sections, the certification process only requires to
consider those components that shall be covered by the certification.
The security architecture, for example, considers assets on system level
and might include items not relevant for the certification.

Certification Options

For the security certification as such, the following options can be
pursued:

	Abstract (pre-)certification of Zephyr as a pure software system:
this option requires assumptions on the underlying hardware
platform and the final application running on top of Zephyr. If
these assumptions are met by the hardware and the application, a
full certification can be more easily achieved. This option is
the most flexible approach but puts the largest burden on the
product vendor.

	Certification of Zephyr on specific hardware platform without a
specific application in mind: this scenario describes the
enablement of a secure platform running the Zephyr RTOS. The
hardware manufacturer certifies the platform under defined
assumptions on the application. If these are met, the final
product can be certified with little effort.

	Certification of an actual product: in this case, a full product
including a specific hardware, the Zephyr RTOS, and an
application is certified.

In all three cases, the certification scheme (e.g. FIPS 140-2 [NIST02]
or Common Criteria [CCITSE12]), the scope of the certification
(main-stream Zephyr, security branch, or certain modules), and the
certification/assurance level need to be determined.

In case of partial certifications (options 1 and 2), assumptions on
hardware and/or software are required for certifications. These can
include [GHS10]

	Appropriate physical security of the hardware platform and its
environment.

	Sufficient protection of storage and timing channels on
the hardware platform itself and all connected devices. (No mentioning of
remote connections.)

	Only trusted/assured applications running on the device

	The device and its software stack is configured and operated by
properly trained and trusted individuals with no malicious
intent.

These assumptions shall be part of the security claim and evaluation
target documents.

References

See Security Document Citations

Secure Coding Guidelines

Traditionally, microcontroller-based systems have not placed much
emphasis on security.
They have usually been thought of as isolated, disconnected
from the world, and not very vulnerable, just because of the
difficulty in accessing them. The Internet of Things has changed
this. Now, code running on small microcontrollers often has access to
the internet, or at least to other devices (that may themselves have
vulnerabilities). Given the volume they are often deployed at,
uncontrolled access can be devastating [1].

This document describes the requirements and process for ensuring
security is addressed within the Zephyr project. All code submitted
should comply with these guidelines.

Much of this document comes from the CII best practices [https://github.com/linuxfoundation/cii-best-practices-badge] document.

Introduction and Scope

This document covers guidelines for the Zephyr Project [https://www.zephyrproject.org/], from a
security perspective. Many of the ideas contained herein are captured
from other open source efforts.

We begin with an overview of secure design as it relates to
Zephyr. This is followed by
a section on Secure development knowledge, which
gives basic requirements that a developer working on the project will
need to have. This section gives references to other security
documents, and full details of how to write secure software are beyond
the scope of this document. This section also describes
vulnerability knowledge that at least one of the primary developers
should have. This knowledge will be necessary for the review process
described below this.

Following this is a description of the review process used to
incorporate changes into the Zephyr codebase. This is followed by
documentation about how security-sensitive issues are handled by the
project.

Finally, the document covers how changes are to be made to this
document.

Secure Coding Guidelines

Designing an open software system such as Zephyr to be secure requires
adhering to a defined set of design standards. In [SALT75], the following,
widely accepted principles for protection mechanisms are defined to
help prevent security violations and limit their impact:

	Open design as a design guideline incorporates the maxim that
protection mechanisms cannot be kept secret on any system in
widespread use. Instead of relying on secret, custom-tailored
security measures, publicly accepted cryptographic algorithms and
well established cryptographic libraries shall be used.

	Economy of mechanism specifies that the underlying design of a
system shall be kept as simple and small as possible. In the context
of the Zephyr project, this can be realized, e.g., by modular code
[PAUL09] and abstracted APIs.

	Complete mediation requires that each access to every object and
process needs to be authenticated first. Mechanisms to store access
conditions shall be avoided if possible.

	Fail-safe defaults defines that access is restricted by default
and permitted only in specific conditions defined by the system
protection scheme, e.g., after successful authentication.
Furthermore, default settings for services shall be chosen in a way
to provide maximum security. This corresponds to the “Secure by
Default” paradigm [MS12].

	Separation of privilege is the principle that two conditions or
more need to be satisfied before access is granted. In the context
of the Zephyr project, this could encompass split keys [PAUL09].

	Least privilege describes an access model in which each user,
program, and thread, shall have the smallest possible subset
of permissions in the system required to perform their task. This
positive security model aims to minimize the attack surface of the
system.

	Least common mechanism specifies that mechanisms common to more
than one user or process shall not be shared if not strictly
required. The example given in [SALT75] is a function that should be
implemented as a shared library executed by each user and not as a
supervisor procedure shared by all users.

	Psychological acceptability requires that security features are
easy to use by the developers in order to ensure their usage and the
correctness of its application.

In addition to these general principles, the following points are
specific to the development of a secure RTOS:

	Complementary Security/Defense in Depth: do not rely on a single
threat mitigation approach. In case of the complementary security
approach, parts of the threat mitigation are performed by the
underlying platform. In case such mechanisms are not provided by the
platform, or are not trusted, a defense in depth [MS12] paradigm
shall be used.

	Less commonly used services off by default: to reduce the
exposure of the system to potential attacks, features or services
shall not be enabled by default if they are only rarely used (a
threshold of 80% is given in [MS12]). For the Zephyr project, this can
be realized using the configuration management. Each functionality
and module shall be represented as a configuration option and needs
to be explicitly enabled. Then, all features, protocols, and drivers
not required for a particular use case can be disabled. The user
shall be notified if low-level options and APIs are enabled but not
used by the application.

	Change management: to guarantee a traceability of changes to the
system, each change shall follow a specified process including a
change request, impact analysis, ratification, implementation, and
validation phase. In each stage, appropriate documentation shall be
provided. All commits shall be related to a bug report or change
request in the issue tracker. Commits without a valid reference
shall be denied.

Secure development knowledge

Secure designer

The Zephyr project must have at least one primary developer who knows
how to design secure software.

This requires understanding the following design principles,
including the 8 principles from Saltzer and Schroeder [http://web.mit.edu/Saltzer/www/publications/protection/]:

	economy of mechanism (keep the design as simple and small as
practical, e.g., by adopting sweeping simplifications)

	fail-safe defaults (access decisions shall deny by default, and
projects’ installation shall be secure by default)

	complete mediation (every access that might be limited must be
checked for authority and be non-bypassable)

	open design (security mechanisms should not depend on attacker
ignorance of its design, but instead on more easily protected and
changed information like keys and passwords)

	separation of privilege (ideally, access to important objects should
depend on more than one condition, so that defeating one protection
system won’t enable complete access. For example, multi-factor
authentication, such as requiring both a password and a hardware
token, is stronger than single-factor authentication)

	least privilege (processes should operate with the least privilege
necessary)

	least common mechanism (the design should minimize the mechanisms
common to more than one user and depended on by all users, e.g.,
directories for temporary files)

	psychological acceptability (the human interface must be designed
for ease of use - designing for “least astonishment” can help)

	limited attack surface (the set of the
different points where an attacker can try to enter or extract data)

	input validation with whitelists (inputs should typically be checked
to determine if they are valid before they are accepted; this
validation should use whitelists (which only accept known-good
values), not blacklists (which attempt to list known-bad values)).

Vulnerability Knowledge

A “primary developer” in a project is anyone who is familiar with the
project’s code base, is comfortable making changes to it, and is
acknowledged as such by most other participants in the project. A
primary developer would typically make a number of contributions over
the past year (via code, documentation, or answering questions).
Developers would typically be considered primary developers if they
initiated the project (and have not left the project more than three
years ago), have the option of receiving information on a private
vulnerability reporting channel (if there is one), can accept commits
on behalf of the project, or perform final releases of the project
software. If there is only one developer, that individual is the
primary developer.

At least one of the primary developers must know of common kinds of
errors that lead to vulnerabilities in this kind of software, as well
as at least one method to counter or mitigate each of them.

Examples (depending on the type of software) include SQL
injection, OS injection, classic buffer overflow, cross-site
scripting, missing authentication, and missing authorization. See the
CWE/SANS top 25 [http://cwe.mitre.org/top25/] or OWASP Top 10 [https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project] for commonly used lists.

Security Subcommittee

There shall be a “security subcommittee”, responsible for
enforcing this guideline, monitoring reviews, and improving these
guidelines.

This team will be established according to the Zephyr Project charter.

Code Review

The Zephyr project shall use a code review system that all changes are
required to go through. Each change shall be reviewed by at least one
primary developer that is not the author of the change. This
developer shall determine if this change affects the security of the
system (based on their general understanding of security), and if so,
shall request the developer with vulnerability knowledge, or the
secure designer to also review the code. Any of these individuals
shall have the ability to block the change from being merged into the
mainline code until the security issues have been addressed.

Issues and Bug Tracking

The Zephyr project shall have an issue tracking system (such as JIRA [https://www.atlassian.com/software/jira])
that can be used to record and track defects that are found in the
system.

Because security issues are often sensitive, this issue tracking
system shall have a field to indicate a security issue. Setting this
field shall result in the issue only being visible to a
project-maintained core security team. In addition, there shall be a
field to allow core security members to add additional users that will
have visibility to a given issue.

This embargo, or limited visibility, shall only be for a fixed
duration, with a default being a project-decided value. However,
because security considerations are often external to the Zephyr
project itself, it may be necessary to increase this embargo time.
The time necessary shall be clearly annotated in the issue itself.

The list of issues shall be reviewed at least once a month by the
security committee on the Zephyr Project. This review should focus on
tracking the fixes, determining if any external parties need to be
notified or involved, and determining when to lift the embargo on the
issue. The embargo should not be lifted via an automated means, but
the review team should avoid unnecessary delay in lifting issues that
have been resolved.

Modifications to This Document

Changes to this document shall be reviewed by the security committee,
and approved by consensus.

	[1]	An attack [http://www.theverge.com/2016/10/21/13362354/dyn-dns-ddos-attack-cause-outage-status-explained] resulted in a significant portion of DNS
infrastructure being taken down.

Developer Guides

	Porting Guides

	Application Development Primer

	API Documentation

Porting Guides

This section contains details regarding porting the Zephyr kernel to new
architectures, SoCs and boards.

	Architecture Porting Guide

	Board Porting Guide

	Legacy Applications Porting Guide

	Migrating from Zephyr v1.6 IP Stack to v1.7

Architecture Porting Guide

An architecture port is needed to enable Zephyr to run on an ISA or an ABI that is not currently supported.

The following are examples of ISAs and ABIs that Zephyr supports:

	x86_32 ISA with System V ABI

	x86_32 ISA with IAMCU ABI

	ARMv7-M ISA with Thumb2 instruction set and ARM Embedded ABI (aeabi)

	ARCv2 ISA

An architecture port can be divided in several parts; most are required and
some are optional:

	The early boot sequence: each architecture has different steps it must
take when the CPU comes out of reset (required).

	Interrupt and exception handling: each architecture handles asynchronous
and unrequested events in a specific manner (required).

	Thread context switching: the Zephyr context switch is dependent on the
ABI and each ISA has a different set of registers to save (required).

	Thread creation and termination: A thread’s initial stack frame is ABI
and architecture-dependent, and thread abortion possibly as well (required).

	Device drivers: most often, the system clock timer and the interrupt
controller are tied to the architecture (some required, some optional).

	Utility libraries: some common kernel APIs rely on a
architecture-specific implementation for performance reasons (required).

	CPU idling/power management: most architectures implement instructions
for putting the CPU to sleep (partly optional, most likely very desired).

	Fault management: for implementing architecture-specific debug help and
handling of fatal error in threads (partly optional).

	Linker scripts and toolchains: architecture-specific details will most
likely be needed in the build system and when linking the image (required).

Early Boot Sequence

The goal of the early boot sequence is to take the system from the state it is
after reset to a state where is can run C code and thus the common kernel
initialization sequence. Most of the time, very few steps are needed, while
some architectures require a bit more work to be performed.

Common steps for all architectures:

	Setup an initial stack.

	If running an XIP kernel, copy initialized data

	from ROM to RAM.

	If not using an ELF loader, zero the BSS section.

	Jump to _Cstart(), the early kernel initialization
	_Cstart() is responsible for context switching out of the fake
context running at startup into the main thread.

Some examples of architecture-specific steps that have to be taken:

	If given control in real mode on x86_32, switch to 32-bit protected mode.

	Setup the segment registers on x86_32 to handle boot loaders that leave them
in an unknown or broken state.

	Initialize a board-specific watchdog on Cortex-M3/4.

	Switch stacks from MSP to PSP on Cortex-M.

	Use a different approach than calling into _Swap() on Cortex-M to prevent
race conditions.

	Setup FIRQ and regular IRQ handling on ARCv2.

Interrupt and Exception Handling

Each architecture defines interrupt and exception handling differently.

When a device wants to signal the processor that there is some work to be done
on its behalf, it raises an interrupt. When a thread does an operation that is
not handled by the serial flow of the software itself, it raises an exception.
Both, interrupts and exceptions, pass control to a handler. The handler is
known as an ISR in the case of
interrupts. The handler perform the work required the exception or the
interrupt. For interrupts, that work is device-specific. For exceptions, it
depends on the exception, but most often the core kernel itself is responsible
for providing the handler.

The kernel has to perform some work in addition to the work the handler itself
performs. For example:

	Prior to handing control to the handler:
	Save the currently executing context.

	Possibly getting out of power saving mode, which includes waking up
devices.

	Updating the kernel uptime if getting out of tickless idle mode.

	After getting control back from the handler:
	Decide whether to perform a context switch.

	When performing a context switch, restore the context being context
switched in.

This work is conceptually the same across architectures, but the details are
completely different:

	The registers to save and restore.

	The processor instructions to perform the work.

	The numbering of the exceptions.

	etc.

It thus needs an architecture-specific implementation, called the
interrupt/exception stub.

Another issue is that the kernel defines the signature of ISRs as:

void (*isr)(void *parameter)

Architectures do not have a consistent or native way of handling parameters to
an ISR. As such there are two commonly used methods for handling the
parameter.

	Using some architecture defined mechanism, the parameter value is forced in
the stub. This is commonly found in X86-based architectures.

	The parameters to the ISR are inserted and tracked via a separate table
requiring the architecture to discover at runtime which interrupt is
executing. A common interrupt handler demuxer is installed for all entries of
the real interrupt vector table, which then fetches the device’s ISR and
parameter from the separate table. This approach is commonly used in the ARC
and ARM architectures via the CONFIG_GEN_ISR_TABLES implementation.
You can find examples of the stubs by looking at _interrupt_enter() in
x86, _IntExit() in ARM, _isr_wrapper() in ARM, or the full
implementation description for ARC in arch/arc/core/isr_wrapper.S.

Each architecture also has to implement primitives for interrupt control:

	locking interrupts: irq_lock(), irq_unlock().

	registering interrupts: IRQ_CONNECT().

	programming the priority if possible irq_priority_set().

	enabling/disabling interrupts: irq_enable(), irq_disable().

注解

IRQ_CONNECT is a macro that uses assembler and/or linker script
tricks to connect interrupts at build time, saving boot time and text size.

The vector table should contain a handler for each interrupt and exception that
can possibly occur. The handler can be as simple as a spinning loop. However,
we strongly suggest that handlers at least print some debug information. The
information helps figuring out what went wrong when hitting an exception that
is a fault, like divide-by-zero or invalid memory access, or an interrupt that
is not expected (spurious interrupt). See the ARM implementation in
arch/arm/core/fault.c for an example.

Thread Context Switching

Multi-threading is the basic purpose to have a kernel at all. Zephyr supports
two types of threads: preemptible and cooperative.

Two crucial concepts when writing an architecture port are the following:

	Cooperative threads run at a higher priority than preemptible ones, and
always preempt them.

	After handling an interrupt, if a cooperative thread was interrupted, the
kernel always goes back to running that thread, since it is not preemptible.

A context switch can happen in several circumstances:

	When a thread executes a blocking operation, such as taking a semaphore that
is currently unavailable.

	When a preemptible thread unblocks a thread of higher priority by releasing
the object on which it was blocked.

	When an interrupt unblocks a thread of higher priority than the one currently
executing, if the currently executing thread is preemptible.

	When a thread runs to completion.

	When a thread causes a fatal exception and is removed from the running
threads. For example, referencing invalid memory,

Therefore, the context switching must thus be able to handle all these cases.

The kernel keeps the next thread to run in a “cache”, and thus the context
switching code only has to fetch from that cache to select which thread to run.

There are two types of context switches: cooperative and preemptive.

	A cooperative context switch happens when a thread willfully gives the
control to another thread. There are two cases where this happens
	When a thread explicitly yields.

	When a thread tries to take an object that is currently unavailable and is
willing to wait until the object becomes available.

	A preemptive context switch happens either because an ISR or a
thread causes an operation that schedules a thread of higher priority than the
one currently running, if the currently running thread is preemptible.
An example of such an operation is releasing an object on which the thread
of higher priority was waiting.

注解

Control is never taken from cooperative thread when one of them is the
running thread.

A cooperative context switch is always done by having a thread call the
_Swap() kernel internal symbol. When _Swap is called, the
kernel logic knows that a context switch has to happen: _Swap does not
check to see if a context switch must happen. Rather, _Swap decides
what thread to context switch in. _Swap is called by the kernel logic
when an object being operated on is unavailable, and some thread
yielding/sleeping primitives.

注解

On x86 and Nios2, _Swap is generic enough and the architecture
flexible enough that _Swap can be called when exiting an interrupt
to provoke the context switch. This should not be taken as a rule, since
neither the ARM Cortex-M or ARCv2 port do this.

Since _Swap is cooperative, the caller-saved registers from the ABI are
already on the stack. There is no need to save them in the k_thread structure.

A context switch can also be performed preemptively. This happens upon exiting
an ISR, in the kernel interrupt exit stub:

	_interrupt_enter on x86 after the handler is called.

	_IntExit on ARM.

	_firq_exit and _rirq_exit on ARCv2.

In this case, the context switch must only be invoked when the interrupted
thread was preemptible, not when it was a cooperative one, and only when the
current interrupt is not nested.

The kernel also has the concept of “locking the scheduler”. This is a concept
similar to locking the interrupts, but lighter-weight since interrupts can
still occur. If a thread has locked the scheduler, is it temporarily
non-preemptible.

So, the decision logic to invoke the context switch when exiting an interrupt
is simple:

	If the interrupted thread is not preemptible, do not invoke it.

	Else, fetch the cached thread from the ready queue, and:
	If the cached thread is not the current thread, invoke the context switch.

	Else, do not invoke it.

This is simple, but crucial: if this is not implemented correctly, the kernel
will not function as intended and will experience bizarre crashes, mostly due
to stack corruption.

注解

If running a coop-only system, i.e. if CONFIG_NUM_PREEMPT_PRIORITIES
is 0, no preemptive context switch ever happens. The interrupt code can be
optimized to not take any scheduling decision when this is the case.

Thread Creation and Termination

To start a new thread, a stack frame must be constructed so that the context
switch can pop it the same way it would pop one from a thread that had been
context switched out. This is to be implemented in an architecture-specific
_new_thread internal routine.

The thread entry point is also not to be called directly, i.e. it should not be
set as the PC for the new thread. Rather it must be
wrapped in _thread_entry. This means that the PC in the stack
frame shall be set to _thread_entry, and the thread entry point shall
be passed as the first parameter to _thread_entry. The specifics of
this depend on the ABI.

The need for an architecture-specific thread termination implementation depends
on the architecture. There is a generic implementation, but it might not work
for a given architecture.

One reason that has been encountered for having an architecture-specific
implementation of thread termination is that aborting a thread might be
different if aborting because of a graceful exit or because of an exception.
This is the case for ARM Cortex-M, where the CPU has to be taken out of handler
mode if the thread triggered a fatal exception, but not if the thread
gracefully exits its entry point function.

This means implementing an architecture-specific version of
k_thread_abort(), and setting the Kconfig option
CONFIG_ARCH_HAS_THREAD_ABORT as needed for the architecture (e.g. see
arch/arm//core/cortex_m/Kconfig).

Device Drivers

The kernel requires very few hardware devices to function. In theory, the only
required device is the interrupt controller, since the kernel can run without a
system clock. In practice, to get access to most, if not all, of the sanity
check test suite, a system clock is needed as well. Since these two are usually
tied to the architecture, they are part of the architecture port.

Interrupt Controllers

There can be significant differences between the interrupt controllers and the
interrupt concepts across architectures.

For example, x86 has the concept of an IDT
and different interrupt controllers. Although modern systems mostly
standardized on the APIC,
some small Quark-based systems use the MVIC. Also, the position of an interrupt in the IDT
determines its priority.

On the other hand, the ARM Cortex-M has the NVIC as part of the architecture definition. There is no need
for an IDT-like table that is separate from the NVIC vector table. The position
in the table has nothing to do with priority of an IRQ: priorities are
programmable per-entry.

The ARCv2 has its interrupt unit as part of the architecture definition, which
is somewhat similar to the NVIC. However, where ARC defines interrupts as
having a one-to-one mapping between exception and interrupt numbers (i.e.
exception 1 is IRQ1, and device IRQs start at 16), ARM has IRQ0 being
equivalent to exception 16 (and weirdly enough, exception 1 can be seen as
IRQ-15).

All these differences mean that very little, if anything, can be shared between
architectures with regards to interrupt controllers.

System Clock

x86 has APIC timers and the HPET as part of its architecture definition. ARM
Cortex-M has the SYSTICK exception. Finally, ARCv2 has the timer0/1 device.

Kernel timeouts are handled in the context of the system clock timer driver’s
interrupt handler.

Tickless Idle

The kernel has support for tickless idle. Tickless idle is the concept where no
system clock timer interrupt is to be delivered to the CPU when the kernel is
about to go idle and the closest timeout expiry is passed a certain threshold.
When this condition happens, the system clock is reprogrammed far in the future
instead of for a periodic tick. For this to work, the system clock timer driver
must support it.

Tickless idle is optional but strongly recommended to achieve low-power
consumption.

The kernel has built-in support for going into tickless idle.

The system clock timer driver must implement some hooks to support tickless
idle. See existing drivers for examples.

The interrupt entry stub (_interrupt_enter, _isr_wrapper) needs
to be adapted to handle exiting tickless idle. See examples in the code for
existing architectures.

Console Over Serial Line

There is one other device that is almost a requirement for an architecture
port, since it is so useful for debugging. It is a simple polling, output-only,
serial port driver on which to send the console (printk,
printf) output.

It is not required, and a RAM console (CONFIG_RAM_CONSOLE)
can be used to send all output to a circular buffer that can be read
by a debugger instead.

Utility Libraries

The kernel depends on a few functions that can be implemented with very few
instructions or in a lock-less manner in modern processors. Those are thus
expected to be implemented as part of an architecture port.

	Atomic operators.
	If instructions do not exist for a given architecture,
a generic version that wraps irq_lock() or irq_unlock()
around non-atomic operations exists. It is configured using the
CONFIG_ATOMIC_OPERATIONS_C Kconfig option.

	Find-least-significant-bit-set and find-most-significant-bit-set.
	If instructions do not exist for a given architecture, it is always
possible to implement these functions as generic C functions.

It is possible to use compiler built-ins to implement these, but be careful
they use the required compiler barriers.

CPU Idling/Power Management

The kernel provides support for CPU power management with two functions:
k_cpu_idle() and k_cpu_atomic_idle().

k_cpu_idle() can be as simple as calling the power saving instruction
for the architecture with interrupts unlocked, for example hlt on x86,
wfi or wfe on ARM, sleep on ARC. This function can be
called in a loop within a context that does not care if it get interrupted or
not by an interrupt before going to sleep. There are basically two scenarios
when it is correct to use this function:

	In a single-threaded system, in the only thread when the thread is not used
for doing real work after initialization, i.e. it is sitting in a loop doing
nothing for the duration of the application.

	In the idle thread.

k_cpu_atomic_idle(), on the other hand, must be able to atomically
re-enable interrupts and invoke the power saving instruction. It can thus be
used in real application code, again in single-threaded systems.

Normally, idling the CPU should be left to the idle thread, but in some very
special scenarios, these APIs can be used by applications.

Both functions must exist for a given architecture. However, the implementation
can be simply the following steps, if desired:

	unlock interrupts

	NOP

However, a real implementation is strongly recommended.

Fault Management

Each architecture provides two fatal error handlers:

	_NanoFatalErrorHandler, called by software for unrecoverable errors.

	_SysFatalErrorHandler, which makes the decision on how to handle
the thread where the error is generated, most likely by terminating it.

See the current architecture implementations for examples.

Toolchain and Linking

Toolchain support has to be added to the build system.

Some architecture-specific definitions are needed in include/toolchain/gcc.h.
See what exists in that file for currently supported architectures.

Each architecture also needs its own linker script, even if most sections can
be derived from the linker scripts of other architectures. Some sections might
be specific to the new architecture, for example the SCB section on ARM and the
IDT section on x86.

Board Porting Guide

When building an application you must specify the target hardware and
the exact board or model. Specifying the board name results in a binary that
is suited for the target hardware by selecting the right Zephyr features and
components and setting the right Zephyr configuration for that specific target
hardware.

A board is defined as a special configuration of an SoC with possible additional
components.
For example, a board might have sensors and flash memory implemented as
additional features on top of what the SoC provides. Such additional hardware is
configured and referenced in the Zephyr board configuration.

The board implements at least one SoC and thus inherits all of the features
that are provided by the SoC. When porting a board to Zephyr, you should
first make sure the SoC is implemented in Zephyr.

Hardware Configuration Hierarchy

Hardware definitions in Zephyr follow a well-defined hierarchy of configurations
and layers, below are the layers from top to bottom:

	Board

	SoC

	SoC Series

	SoC Family

	CPU Core

	Architecture

This design contributes to code reuse and implementation of device drivers and
features at the bottom of the hierarchy making a board configuration as simple
as a selection of features that are implemented by the underlying layers. The
figures below shows this hierarchy with a few example of boards currently
available in the source tree:

[image: Configuration Hierarchy]
Configuration Hierarchy

Hierarchy Example

	Board
	FRDM K64F
	nRF52 NITROGEN
	nRF51XX
	Quark SE C1000
Devboard
	Arduino
101

	SOC
	MK64F12
	nRF52832
	nRF51XX
	Quark SE C1000
	Curie

	SOC Series
	Kinetis K6x
Series
	Nordic NRF52
	Nordic NRF51
	Quark SE
	Quark SE

	SOC Family
	NXP Kinetis
	Nordic NRF5
	Nordic NRF5
	Quark
	Quark

	CPU Core
	Cortex-M4
	Cortex-M4
	Cortex-M0+
	Lakemont
	Lakemont

	Architecture
	ARM
	ARM
	ARM
	x86
	x86

Architecture

If your CPU architecture is already supported by Zephyr, there is no
architecture work involved in porting to your board. If your CPU architecture
is not supported by the Zephyr kernel, you can add support by following the
instructions available at Architecture Porting Guide.

CPU Core

Some OS code depends on the CPU core that your board is using. For
example, a given CPU core has a specific assembly language instruction set, and
may require special cross compiler or compiler settings to use the appropriate
instruction set.

If your CPU architecture is already supported by Zephyr, there is no CPU core
work involved in porting to your platform or board. You need only to select the
appropriate CPU in your configuration and the rest will be taken care of by the
configuration system in Zephyr which will select the features implemented
by the corresponding CPU.

Platform

This layer implements most of the features that need porting and is split into
three layers to allow for code reuse when dealing with implementations with
slight differences.

SoC Family

This layer is a container of all SoCs of the same class that, for example
implement one single type of CPU core but differ in peripherals and features.
The base hardware will in most cases be the same across all SoCs and MCUs of
this family.

SoC Series

Moving closer to the SoC, the series is derived from an SoC family. A series is
defined by a feature set that serves the purpose of distinguishing different
SoCs belonging to the same family.

SoC

Finally, an SoC is actual hardware component that is physically available on a
board.

Board

A board implements an SoC with all its features, together with peripherals
available on the board that differentiates the board with additional interfaces
and features not available in the SoC.

While adding your board support, make sure to add it to the list of
platforms in the appropriate architecture .ini file in
scripts/sanity_chk/arches/.

Legacy Applications Porting Guide

注解

This document is still work in progress.

This guide will help you move your applications from the nanokernel/microkernel
model to the unified kernel. The unified kernel was introduced with
Zephyr Kernel 1.6.0 which was released late 2016.

A list of the major changes that came with the unified kernel can be found in
the section Changes from Version 1 Kernel.

API Changes

As described in the section Kernel APIs the kernel now has one
unified and consistent API with new naming.

Same Arguments

In many cases, a simple search and replace is enough to move from the legacy to
the new APIs, for example:

	task_abort() -> k_thread_abort()

	task_sem_count_get() -> k_sem_count_get()

Additional Arguments

The number of arguments to some APIs have changed,

	nano_sem_init() -> k_sem_init()

This function now accepts 2 additional arguments:

	Initial semaphore count

	Permitted semaphore count

When porting your application, make sure you have set the right arguments. For
example, calls to the old API:

nano_sem_init(sem)

depending on the usage becomes in most cases:

k_sem_init(sem, 0, UINT_MAX);

Return Codes

Many kernel APIs now return 0 to indicate success and a non-zero error code
to indicate the reason for failure. You should pay special attention to this
change when checking for return codes from kernel APIs, for example:

	k_sem_take() now returns 0 on success, in the legacy API
nano_sem_take() returned 1 when a semaphore is available.

Application Porting

The existing synchronization_sample from the Zephyr tree will be used to
guide you with porting a legacy application to the new kernel.

The code has been ported to the new kernel and is shown below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

	#include <zephyr.h>
#include <misc/printk.h>

/*
 * The hello world demo has two threads that utilize semaphores and sleeping
 * to take turns printing a greeting message at a controlled rate. The demo
 * shows both the static and dynamic approaches for spawning a thread; a real
 * world application would likely use the static approach for both threads.
 */

/* size of stack area used by each thread */
#define STACKSIZE 1024

/* scheduling priority used by each thread */
#define PRIORITY 7

/* delay between greetings (in ms) */
#define SLEEPTIME 500

/*
 * @param my_name thread identification string
 * @param my_sem thread's own semaphore
 * @param other_sem other thread's semaphore
 */
void helloLoop(const char *my_name,
	 struct k_sem *my_sem, struct k_sem *other_sem)
{
	while (1) {
		/* take my semaphore */
		k_sem_take(my_sem, K_FOREVER);

		/* say "hello" */
		printk("%s: Hello World from %s!\n", my_name, CONFIG_ARCH);

		/* wait a while, then let other thread have a turn */
		k_sleep(SLEEPTIME);
		k_sem_give(other_sem);
	}
}

/* define semaphores */

K_SEM_DEFINE(threadA_sem, 1, 1);	/* starts off "available" */
K_SEM_DEFINE(threadB_sem, 0, 1);	/* starts off "not available" */

/* threadB is a dynamic thread that is spawned by threadA */

void threadB(void *dummy1, void *dummy2, void *dummy3)
{
	ARG_UNUSED(dummy1);
	ARG_UNUSED(dummy2);
	ARG_UNUSED(dummy3);

	/* invoke routine to ping-pong hello messages with threadA */
	helloLoop(__func__, &threadB_sem, &threadA_sem);
}

char __noinit __stack threadB_stack_area[STACKSIZE];

/* threadA is a static thread that is spawned automatically */

void threadA(void *dummy1, void *dummy2, void *dummy3)
{
	ARG_UNUSED(dummy1);
	ARG_UNUSED(dummy2);
	ARG_UNUSED(dummy3);

	/* spawn threadB */
	k_thread_spawn(threadB_stack_area, STACKSIZE, threadB, NULL, NULL, NULL,
		 PRIORITY, 0, K_NO_WAIT);

	/* invoke routine to ping-pong hello messages with threadB */
	helloLoop(__func__, &threadA_sem, &threadB_sem);
}

K_THREAD_DEFINE(threadA_id, STACKSIZE, threadA, NULL, NULL, NULL,
		PRIORITY, 0, K_NO_WAIT);

Porting a Nanokernel Application

Below is the code for the application using the legacy kernel:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

	#include <zephyr.h>
#include <misc/printk.h>

/*
 * Nanokernel version of hello world demo has a task and a fiber that utilize
 * semaphores and timers to take turns printing a greeting message at
 * a controlled rate.
 */

/* specify delay between greetings (in ms); compute equivalent in ticks */

#define SLEEPTIME 500
#define SLEEPTICKS (SLEEPTIME * sys_clock_ticks_per_sec / 1000)

#define STACKSIZE 2000

char __stack fiberStack[STACKSIZE];

struct nano_sem nanoSemTask;
struct nano_sem nanoSemFiber;

void fiberEntry(void)
{
	struct nano_timer timer;
	u32_t data[2] = {0, 0};

	nano_sem_init(&nanoSemFiber);
	nano_timer_init(&timer, data);

	while (1) {
		/* wait for task to let us have a turn */
		nano_fiber_sem_take(&nanoSemFiber, TICKS_UNLIMITED);

		/* say "hello" */
		printk("%s: Hello World!\n", __func__);

		/* wait a while, then let task have a turn */
		nano_fiber_timer_start(&timer, SLEEPTICKS);
		nano_fiber_timer_test(&timer, TICKS_UNLIMITED);
		nano_fiber_sem_give(&nanoSemTask);
	}
}

void main(void)
{
	struct nano_timer timer;
	u32_t data[2] = {0, 0};

	task_fiber_start(&fiberStack[0], STACKSIZE,
			(nano_fiber_entry_t) fiberEntry, 0, 0, 7, 0);

	nano_sem_init(&nanoSemTask);
	nano_timer_init(&timer, data);

	while (1) {
		/* say "hello" */
		printk("%s: Hello World!\n", __func__);

		/* wait a while, then let fiber have a turn */
		nano_task_timer_start(&timer, SLEEPTICKS);
		nano_task_timer_test(&timer, TICKS_UNLIMITED);
		nano_task_sem_give(&nanoSemFiber);

		/* now wait for fiber to let us have a turn */
		nano_task_sem_take(&nanoSemTask, TICKS_UNLIMITED);
	}
}

Porting a Microkernel Application

The MDEF feature of the legacy kernel has been eliminated. Consequently, all
kernel objects are now defined directly in code.

Below is the code for the application using the legacy kernel:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	#include <zephyr.h>
#include <misc/printk.h>

/*
 * Microkernel version of hello world demo has two tasks that utilize
 * semaphores and sleeps to take turns printing a greeting message at
 * a controlled rate.
 */

/* specify delay between greetings (in ms); compute equivalent in ticks */

#define SLEEPTIME 500
#define SLEEPTICKS (SLEEPTIME * sys_clock_ticks_per_sec / 1000)

/*
 *
 * @param taskname task identification string
 * @param mySem task's own semaphore
 * @param otherSem other task's semaphore
 *
 */
void helloLoop(const char *taskname, ksem_t mySem, ksem_t otherSem)
{
	while (1) {
		task_sem_take(mySem, TICKS_UNLIMITED);

		/* say "hello" */
		printk("%s: Hello World from %s!\n", taskname, CONFIG_ARCH);

		/* wait a while, then let other task have a turn */
		task_sleep(SLEEPTICKS);
		task_sem_give(otherSem);
	}
}

void taskA(void)
{
	/* taskA gives its own semaphore, allowing it to say hello right away */
	task_sem_give(TASKASEM);

	/* invoke routine that allows task to ping-pong hello messages with taskB */
	helloLoop(__func__, TASKASEM, TASKBSEM);
}

void taskB(void)
{
	/* invoke routine that allows task to ping-pong hello messages with taskA */
	helloLoop(__func__, TASKBSEM, TASKASEM);
}

A microkernel application defines the used objects in an MDEF file, for this
porting sample using the synchronization_sample, the file is shown below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	% Application : Hello demo

% TASK NAME PRIO ENTRY STACK GROUPS
% ==================================
 TASK TASKA 7 taskA 1024 [EXE]
 TASK TASKB 7 taskB 1024 [EXE]

% SEMA NAME
% =============
 SEMA TASKASEM
 SEMA TASKBSEM

In the unified kernel the semaphore will be defined in the code as follows:

	1
2
3
4

	/* define semaphores */

K_SEM_DEFINE(threadA_sem, 1, 1);	/* starts off "available" */
K_SEM_DEFINE(threadB_sem, 0, 1);	/* starts off "not available" */

The threads (previously named tasks) are defined in the code as follows, for
thread A:

	1
2

	K_THREAD_DEFINE(threadA_id, STACKSIZE, threadA, NULL, NULL, NULL,
		PRIORITY, 0, K_NO_WAIT);

Thread B (taskB in the microkernel) will be spawned dynamically from thread A
(See Thread Creation section):

	1
2
3

		/* spawn threadB */
	k_thread_spawn(threadB_stack_area, STACKSIZE, threadB, NULL, NULL, NULL,
		 PRIORITY, 0, K_NO_WAIT);

Migrating from Zephyr v1.6 IP Stack to v1.7

Zephyr v1.6 and earlier is using network IP stack that has its origin in uIP.
The uIP stack was modified heavily to use it in Zephyr. The uIP stack had
limitations described below that required new and native IP stack to be
developed.

This document is a high level description of the changes between these two
major Zephyr releases. For individual changes, the application developer can
find more details in the network header file documentation in include/net/.

Because of this new native IP stack, the following changes are required to
migrate applications using the older v1.6 IP stack to the new v1.7 IP stack:

	Dual IPv6 and IPv4 stack support.

	In Zephyr v1.6, applications could not
use both IPv6 and IPv4 simultaneously. This is changed in Zephyr v1.7 and the
IP stack supports both IPv6 and IPv4 at the same time. In practice this means
that applications should be prepared to support both IPv6 and IPv4 in the
code.

	Multiple simultaneous network technologies support.

	In Zephyr v1.7 it is possible to have multiple network technologies enabled
at the same time. This means that applications can utilize concurrently e.g.,
IEEE 802.15.4 and Bluetooth IP networking. The different network technologies
are abstracted to network interfaces and there can be multiple network
interfaces in the system depending on configuration.

	Network Kconfig options are changed.

	Most of the networking configuration
options are renamed. Please check the Networking documentation for the
new names.

	All uIP based APIs are gone.

	Those APIs were not public in v1.6 but
applications could call them anyway. These uIP APIs were mainly used to set
IP address etc. management style operations. The new management APIs can be
found in net_if.h and net_mgmt.h in Zephyr v1.7.

	Network buffer management is changed.

	In earlier Zephyr versions, there
were big 1280 byte long buffers that applications could utilize. In Zephyr
v1.7 this is changed so that device memory is utilized more efficiently.
Now small buffer fragments are allocated to store the data, and these
fragments can then be chained together to store larger amount of data. For
applications this means that the memory received from network or sent to
network is not contiguous and application should use the helper functions
found in nbuf.h when reading and writing the network data.

	Network context/socket API is changed.

	The new API found in net_context.h
is more BSD-socket-like than the earlier API. The new context API is not
fully BSD socket compatible as it needs to support both synchronous and
asynchronous operations. Porting BSD socket application to use the
net_context_* API is easier than in Zephyr v1.6.

	CoAP library API is changed.

	The Zephyr v1.6 CoAP API is removed.
The new Zephyr v1.7 API is called ZoAP and it can be found in zoap.h header
file.

	The TinyDTLS library is removed.

	The tinydtls crypto library was used
only by CoAP in Zephyr v1.6 and it is removed in Zephyr v1.7. It is replaced
by mbedtls library.

Application Development Primer

Overview

The Zephyr Kernel’s build system is based on the Kbuild system used in the
Linux kernel.

The build system is an application-centric system and requires an application
build to initiate building the kernel source tree. The application build drives
the configuration and build process of both the application and kernel,
compiling them into a single binary.

The Zephyr Kernel’s base directory hosts the kernel source code, the
configuration options, and the kernel build definitions.

The files in the application directory links the kernel with the
application. It hosts the definitions of the application, for example,
application-specific configuration options and the application’s source code.

An application in the simplest form has the following structure:

	Application source code files: An application typically provides one
or more application-specific files, written in C or assembly language. These
files are usually located in a sub-directory called src.

	Kernel configuration files: An application typically provides
a configuration file (.conf) that specifies values for one or more
kernel configuration options. If omitted, the application’s existing kernel
configuration option values are used; if no existing values are provided,
the kernel’s default configuration values are used.

	Makefile: This file tells the build system where to find the files
mentioned above, as well as the desired target board configuration.

Once the application has been defined, it can be built with a single make
call.
The results of the build process are located in a sub-directory called
outdir/BOARD. This directory contains the files generated by the build
process, the most notable of which are listed below.

	The .config file that contains the configuration settings
used to build the application.

	The various object files (.o files and .a files) containing
custom-built kernel and application-specific code.

	The zephyr.elf file that contains the final combined application and
kernel binary.

Application Structure

Create one directory for your application and a sub-directory for the
application’s source code; this makes it easier to organize directories and
files in the structure that the kernel expects.

	Create an application directory structure outside of the kernel’s
installation directory tree. Often this is your workspace directory.

	In a console terminal, navigate to a location where you want your
application to reside.

	Create the application’s directory, enter:

$ mkdir app

注解

This directory and the path to it, are referred to in the documentation
as ~/app.

	Create a source code directory in your ~/app, enter:

$ cd app
$ mkdir src

The source code directory ~/app/src is created.

-- app
 |-- src

Application Definition

An application is integrated into the build system by including the Makefile.inc
file provided.

include $(ZEPHYR_BASE)/Makefile.inc

The following predefined variables configure the development project:

	ZEPHYR_BASE: Sets the path to the kernel’s base directory.
This variable is usually set by the zephyr_env.sh script.
It can be used to get the kernel’s base directory, as used in the
Makefile.inc inclusion above, or it can be overridden to select an
specific instance of the kernel.

	PROJECT_BASE: Provides the developer’s application project
directory path. It is set by the Makefile.inc file.

	SOURCE_DIR: Overrides the default value for the application’s
source code directory. The developer source code directory is set to
$(PROJECT_BASE)/src/ by default. This directory name should end
with slash ‘/’.

	BOARD: Selects the board that the application’s
build will use for the default configuration.

	CONF_FILE: Indicates the name of a configuration fragment file.
This file includes the kconfig configuration values that override the
default configuration values.

	O: Optional. Indicates the output directory that Kconfig uses.
The output directory stores all the files generated during the build
process. The default output directory is the $(PROJECT_BASE)/outdir
directory.

Makefiles

Overview

The build system defines a set of conventions for the correct use of Makefiles
in the kernel source directories. The correct use of Makefiles is driven by the
concept of recursion.

In the recursion model, each Makefile within a directory includes the source
code and any subdirectories to the build process. Each subdirectory follows
the same principle. Developers can focus exclusively in their own work. They
integrate their module with the build system by adding a very simple Makefile
following the recursive model.

Makefile Conventions

The following conventions restrict how to add modules and Makefiles to the
build system. These conventions ensure the correct implementation of the
recursive model.

	Each source code directory must contain a single Makefile. Directories
without a Makefile are not considered source code directories.

	The scope of every Makefile is restricted to the contents of that directory.
A Makefile can only make a direct reference to files and subdirectories on the
same level or below.

	Makefiles list the object files that are included in the link process. The
build system finds the source file that generates the object file by matching
the object file name to the source file.

	Parent directories add their child directories into the recursion model.

	The root Makefile adds the directories in the kernel base directory into the
recursion model.

Adding Source Files

The Makefile must refer the source build indirectly, specifying the object file
that results from the source file using the obj-y variable. For
example, if the file that we want to add is a C file named <file>.c the
following line should be added in the Makefile:

obj-y += <file>.o

注解

The same method applies for assembly files with the .S extension.

Source files can be added conditionally using configuration options. For
example, if the option CONFIG_VAR is set and it implies that a source
file must be added in the compilation process, then the following line adds the
source code conditionally:

obj-$(CONFIG_VAR) += <file>.o

Adding Directories

Add a subdirectory to the build system by editing the Makefile in its
directory. The subdirectory is added using the obj-y variable. The
correct syntax to add a subdirectory into the build queue is:

obj-y += <directory_name>/

The backslash at the end of the directory name signals the build system that a
directory, and not a file, is being added to the build queue.

The conventions require us to add only one directory per line and never to mix
source code with directory recursion in a single obj-y line. This
helps keep the readability of the Makefile by making it clear when an item adds
an additional lever of recursion.

Directories can also be conditionally added:

obj-y-$(CONFIG_VAR) += <directory_name>/

The subdirectory must contain its own Makefile following the rules described in
Makefile Conventions.

Application Makefile

Create an application Makefile to define basic information, such as the board
configuration used by the application. The build system uses the Makefile to
build a zephyr.elf image that contains both the application and the
kernel libraries.

	Open the Makefile and add the following mandatory
entries using any standard text editor.

注解

Ensure that there is a space before and after each =.

	Add the name of the default board configuration for your application on a
new line:

BOARD = board_configuration_name

The supported boards can be found in boards.

	Add the name of the default kernel configuration file for your
application on a new line:

CONF_FILE ?= kernel_configuration_name

	Include the mandatory Makefile on a new line:

include ${ZEPHYR_BASE}/Makefile.inc

	Save and close the Makefile.

Below is an example Makefile:

BOARD = qemu_x86
CONF_FILE = prj.conf

include ${ZEPHYR_BASE}/Makefile.inc

Application Configuration

The application’s kernel is configured using a set of configuration options
that can be customized for application-specific purposes.
The Zephyr build system takes a configuration option’s value from the first
source in which it is specified.

The available sources are (in order):

	The application’s current configuration. (i.e. The .config file.)

	The application’s default configuration. (i.e. The .conf file.)

	The board configuration used by the application.
(i.e. The board’s .defconfig file.)

	The kernel’s default configuration.
(i.e. One of the kernel’s Kconfig files.)

For information on available kernel configuration options, including
inter-dependencies between options, see the configuration.

Default Board Configuration

An application’s .conf file defines its default kernel configuration.
The settings in this file override or augment the board configuration settings.

The board configuration settings can be viewed
LENGTHlWRONGEPHY
_BASE/boards/ARCHITECTURE/BOARD/BOARD_defconfig`.

注解

When the default board configuration settings are sufficient for your
application, a .conf file is not needed. Skip ahead to
Overriding Default Configuration.

	Navigate to the app, and create the prj.conf file. Enter:

$ vim prj.conf

The default name is prj.conf. The filename must match the
CONF_FILE entry in the application Makefile.

	Edit the file and add the appropriate configuration entries.

	Add each configuration entry on a new line.

	Begin each entry with CONFIG_.

	Ensure that each entry contains no spaces
(including on either side of the = sign).

	Use a # followed by a space to comment a line.

The example below shows a comment line and a board
configuration override in the prj.conf.

Enable printk for debugging
CONFIG_PRINTK=y

	Save and close the file.

Overriding Default Configuration

Override the default board and kernel configuration to temporarily alter the
application’s configuration, perhaps to test the effect of a change.

注解

If you want to permanently alter the configuration you
should revise the .conf file.

Configure the kernel options using a menu-driven interface. While you can add
entries manually, using the configuration menu is a preferred method.

	Run the make menuconfig rule to launch the menu-driven interface.

	In a terminal session, navigate to the application directory
(~/app).

	Enter the following command:

$ make [BOARD=<type>] menuconfig

A question-based menu opens that allows you to set individual configuration
options.

[image: Main Configuration Menu]

	Set kernel configuration values using the following
key commands:

	Use the arrow keys to navigate within any menu or list.

	Press Enter to select a menu item.

	
	Type an upper case Y or N in the

	square brackets [] to
enable or disable a kernel configuration option.

	Type a numerical value in the round brackets ().

	Press Tab to navigate the command menu at the bottom of the display.

注解

When a non-default entry is selected for options that are non-numerical,
an asterisk * appears between the square brackets in the display.
There is nothing added added the display when you select the option’s
default.

	For information about any option, select the option and tab to
<Help > and press Enter.

Press Enter to return to the menu.

	After configuring the kernel options for your application, tab to
< Save > and press Enter.

The following dialog opens with the < Ok > command selected:

[image: Save Configuration Dialog]

	Press Enter to save the kernel configuration options to the default
file name; alternatively, type a file name and press Enter.

Typically, you will save to the default file name unless you are
experimenting with various configuration scenarios.

An outdir directory is created in the application directory. The
outdir directory contains symbolic links to files under
$ZEPHYR_BASE.

注解

At present, only a .config file can be built. If you have saved
files with different file names and want to build with one of these,
change the file name to .config. To keep your original
.config, rename it to something other than .config.

Kernel configuration files, such as the .config file, are saved
as hidden files in outdir. To list all your kernel configuration
files, enter ls -a at the terminal prompt.

The following dialog opens, displaying the file name the configuration
was saved to.

[image: Saved Configuration Name Dialog]

	Press Enter to return to the options menu.

	To load any saved kernel configuration file, tab to < Load > and
press Enter.

The following dialog opens with the < Ok > command selected:

[image: Configuration File Load Dialog]

	To load the last saved kernel configuration file, press < Ok >,
or to load another saved configuration file, type the file name, then select
< Ok >.

	Press Enter to load the file and return to the main menu.

	To exit the menu configuration, tab to < Exit > and press
Enter.

The following confirmation dialog opens with the < Yes >
command selected.

[image: Exit Dialog]

	Press Enter to retire the menu display and return to the console
command line.

Application-Specific Code

Application-specific source code files are normally added to the application’s
src directory. If the application adds a large number of files the
developer can group them into sub-directories under src, to whatever
depth is needed. The developer must supply a Makefile for the
src directory, as well as for each sub-directory under src.

注解

These Makefiles are distinct from the top-level application Makefile
that appears in ~/app.

Application-specific source code should not use symbol name prefixes that have
been reserved by the kernel for its own use. For more information, see

Naming Conventions [https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions].

The following requirements apply to all Makefiles in the src
directory, including any sub-directories it may have.

	During the build process, Kbuild identifies the source files to compile
into object files by matching the file names identified in
the application’s Makefile(s).

重要

A source file that is not referenced by any Makefile is not included
when the application is built.

	A Makefile cannot directly reference source code. It can only
reference object files (.o files) produced from source code files.

	A Makefile can only reference files in its own directory or in the
sub-directories of that directory.

	A Makefile may reference multiple files from a single-line entry.
However, a separate line must be used to reference each directory.

	Create a directory structure for your source code in src
and add your source code files to it.

	Create a Makefile in the src directory. Then create
an additional Makefile in each of the sub-directories under
the src directory, if any.

	Use the following syntax to add file references:

obj-y += file1.o file2.o

	Use the following syntax to add directory references:

obj-y += directory_name/**

This example is taken from the dining-philosophers-sample. To examine this file in
context, navigate to: $ZEPHYR_BASE/samples/philosophers/src.

obj-y = main.o

Support for building third-party library code

It is possible to build library code outside the application’s src
directory but it is important that both application and library code targets
the same Application Binary Interface (ABI). On most architectures there are
compiler flags that control the ABI targeted, making it important that both
libraries and applications have certain compiler flags in common. It may also
be useful for glue code to have access to Zephyr kernel header files.

To make it easier to integrate third-party components, the Zephyr build system
includes a special build target, outputexports, that takes a number of
critical variables from the Zephyr build system and copies them into
Makefile.export. This allows the critical variables to be included by
wrapper code for use in a third-party build system.

The following variables are recommended for use within the third-party build
(see Makefile.export for the complete list of exported variables):

	CROSS_COMPILE, together with related convenience variables to call the
cross-tools directly (including AR, AS, CC, CXX, CPP
and LD).

	ARCH and BOARD, together with several variables that identify the
Zephyr kernel version.

	KBUILD_CFLAGS, NOSTDINC_FLAGS and ZEPHYRINCLUDE all of which
should normally be added, in that order, to CFLAGS (or
CXXFLAGS).

	All kconfig variables, allowing features of the library code to be
enabled/disabled automatically based on the Zephyr kernel configuration.

samples/application_development/static_lib is a sample project that demonstrates
some of these features.

Build an Application

The Zephyr build system compiles and links all components of an application
into a single application image that can be run on simulated hardware or real
hardware.

	Navigate to the application directory ~/app.

	Enter the following command to build the application’s zephyr.elf
image using the configuration settings for the board type specified
in the application’s Makefile.

$ make

If desired, you can build the application using the configuration settings
specified in an alternate .conf file using the CONF_FILE
parameter. These settings will override the settings in the application’s
.config file or its default .conf file. For example:

$ make CONF_FILE=prj.alternate.conf

If desired, you can build the application for a different board type than the
one specified in the application’s Makefile using the BOARD
parameter. For example:

$ make BOARD=arduino_101

Both the CONF_FILE and BOARD parameters can be specified
when building the application.

Rebuilding an Application

Application development is usually fastest when changes are continually tested.
Frequently rebuilding your application makes debugging less painful
as the application becomes more complex. It’s usually a good idea to
rebuild and test after any major changes to the application’s source files,
Makefiles, or configuration settings.

重要

The Zephyr build system rebuilds only the parts of the application image
potentially affected by the changes. Consequently, rebuilding an application
is often significantly faster than building it the first time.

Sometimes the build system doesn’t rebuild the application correctly
because it fails to recompile one or more necessary files. You can force
the build system to rebuild the entire application from scratch with the
following procedure:

	Navigate to the application directory ~/app.

	Enter the following command to delete the application’s generated files
for the specified board type, except for the .config file that
contains the application’s current configuration information.

$ make [BOARD=<type>] clean

Alternatively, enter the following command to delete all generated files
for all board types, including the .config files that contain
the application’s current configuration information for those board types.

$ make pristine

	Rebuild the application normally following the steps specified
in Build an Application above.

Run an Application

An application image can be run on real or emulated hardware. The kernel has
built-in emulator support for QEMU. It allows you to run and test an application
virtually, before (or in lieu of) loading and running it on actual target
hardware.

	Open a terminal console and navigate to the application directory
~/app.

	Enter the following command to build and run the application
using a QEMU-supported board configuration, such as qemu_cortex_m3 or
qemu_x86.

$ make [BOARD=<type> ...] run

The Zephyr build system generates a zephyr.elf image file
and then begins running it in the terminal console.

	Press Ctrl A, X to stop the application from running
in QEMU.

The application stops running and the terminal console prompt
redisplays.

Application Debugging

This section is a quick hands-on reference to start debugging your
application with QEMU. Most content in this section is already covered on
QEMU [http://wiki.qemu.org/Main_Page] and GNU_Debugger [http://www.gnu.org/software/gdb] reference manuals.

In this quick reference you find shortcuts, specific environmental variables and
parameters that can help you to quickly set up your debugging environment.

The simplest way to debug an application running in QEMU is using the GNU
Debugger and setting a local GDB server in your development system through QEMU.

You will need an ELF binary image for debugging purposes. The build system
generates the image in the output directory. By default, the kernel binary name
is zephyr.elf. The name can be changed using a Kconfig option.

We will use the standard 1234 TCP port to open a GDB
server instance. This port number can be changed for a port that best suits the
development environment.

You can run Qemu to listen for a “gdb connection” before it starts executing any
code to debug it.

qemu -s -S <image>

will setup Qemu to listen on port 1234 and wait for a GDB connection to it.

The options used above have the following meaning:

	-S Do not start CPU at startup; rather, you must type ‘c’ in the
monitor.

	-s Shorthand for -gdb tcp::1234: open a GDB server on
TCP port 1234.

To debug with QEMU and to start a GDB server and wait for a remote connect, run
the following inside an application:

make BOARD=qemu_x86 debugserver

The build system will start a QEMU instance with the CPU halted at startup
and with a GDB server instance listening at the TCP port 1234.

Using a local GDB configuration .gdbinit can help initialize your GDB
instance on every run.
In this example, the initialization file points to the GDB server instance.
It configures a connection to a remote target at the local host on the TCP
port 1234. The initialization sets the kernel’s root directory as a
reference.

The .gdbinit file contains the following lines:

target remote localhost:1234
dir ZEPHYR_BASE

注解

Substitute ZEPHYR_BASE for the current kernel’s root directory.

Execute the application to debug from the same directory that you chose for
the gdbinit file. The command can include the --tui option
to enable the use of a terminal user interface. The following commands
connects to the GDB server using gdb. The command loads the symbol
table from the elf binary file. In this example, the elf binary file name
corresponds to zephyr.elf file:

$ gdb --tui zephyr.elf

注解

The GDB version on the development system might not support the –tui
option.

If you are not using a .gdbinit file, issue the following command inside GDB to
connect to the remove GDB server on port 1234:

(gdb) target remote localhost:1234

Finally, The command below connects to the GDB server using the Data
Displayer Debugger (ddd). The command loads the symbol table from the
elf binary file, in this instance, the zephyr.elf file.

The DDD may not be installed in your
development system by default. Follow your system instructions to install
it.

ddd --gdb --debugger "gdb zephyr.elf"

Both commands execute the gdb. The command name might
change depending on the toolchain you are using and your cross-development
tools.

API Documentation

Welcome to the Zephyr Project’s API
documentation.

This section contains the API documentation automatically extracted from the
code. If you are looking for a specific API, enter it on the search box.
The search results display all sections containing information
about that API.

The Zephyr APIs are used the same way on all SoCs and boards.

	Kernel APIs
	Threads

	Workqueues

	Clocks

	Timers

	Memory Slabs

	Memory Pools

	Heap Memory Pool

	Semaphores

	Mutexes

	Alerts

	Fifos

	Lifos

	Stacks

	Message Queues

	Mailboxes

	Pipes

	Interrupt Service Routines (ISRs)

	Atomic Services

	Floating Point Services

	Ring Buffers

	Device Driver Interface
	Device Model

	Bluetooth API
	Generic Access Profile (GAP)

	Connection Management

	Generic Attribute Profile (GATT)

	Mesh Profile

	Universal Unique Identifiers (UUIDs)

	Logical Link Control and Adaptation Protocol (L2CAP)

	Serial Port Emulation (RFCOMM)

	Data Buffers

	Persistent Storage

	HCI Drivers

	HCI RAW channel

	Networking API
	Network core helpers

	Network buffers

	Network packet management

	IPv4/IPv6 primitives and helpers

	Network interface

	Network Management

	Network layer 2 management

	Network link address

	Application network context

	BSD Sockets compatible API

	Network offloading support

	Network statistics

	Trickle timer support

	UDP

	Network technologies

	Network and application libraries

	Input / Output Driver APIs
	ADC Interface

	GPIO Interface

	I2C Interface

	I2S Interface

	IPM Interface

	PWM Interface

	Pinmux Interface

	SPI Interface

	Random Interface

	UART Interface

	Sensor Interface

	Power Management APIs
	Power Management Hook Interface

	Device Power Management APIs

	File System APIs
	File System Functions

	File System Data Structures

Kernel APIs

This section contains APIs for the kernel’s core services,
as described in the Zephyr Kernel Primer.

重要

Unless otherwise noted these APIs can be used by threads, but not by ISRs.

	Threads

	Workqueues

	Clocks

	Timers

	Memory Slabs

	Memory Pools

	Heap Memory Pool

	Semaphores

	Mutexes

	Alerts

	Fifos

	Lifos

	Stacks

	Message Queues

	Mailboxes

	Pipes

	Interrupt Service Routines (ISRs)

	Atomic Services

	Floating Point Services

	Ring Buffers

Threads

A thread is an independently scheduled series of instructions that implements
a portion of an application’s processing. Threads are used to perform processing
that is too lengthy or too complex to be performed by an ISR.
(See Threads.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Workqueues

A workqueue processes a series of work items by executing the associated
functions in a dedicated thread. Workqueues are typically used by an ISR
or high-priority thread to offload non-urgent processing.
(See Workqueue Threads.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Clocks

Kernel clocks enable threads and ISRs to measure the passage of time
with either normal and high precision.
(See Kernel Clocks.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Timers

Timers enable threads to measure the passage of time, and to optionally execute
an action when the timer expires.
(See Timers.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Memory Slabs

Memory slabs enable the dynamic allocation and release of fixed-size
memory blocks.
(See Memory Slabs.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Memory Pools

Memory pools enable the dynamic allocation and release of variable-size
memory blocks.
(See Memory Pools.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Heap Memory Pool

The heap memory pools enable the dynamic allocation and release of memory
in a malloc()-like manner.
(See Heap Memory Pool.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Semaphores

Semaphores provide traditional counting semaphore capabilities.
(See Semaphores.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mutexes

Mutexes provide traditional reentrant mutex capabilities
with basic priority inheritance.
(See Mutexes.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Alerts

Alerts enable an application to perform asynchronous signaling,
somewhat akin to Unix-style signals.
(See Alerts.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Fifos

Fifos provide traditional first in, first out (FIFO) queuing of data items
of any size.
(See Fifos.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Lifos

Lifos provide traditional last in, first out (LIFO) queuing of data items
of any size.
(See Lifos.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Stacks

Stacks provide traditional last in, first out (LIFO) queuing of 32-bit
data items.
(See Stacks.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Message Queues

Message queues provide a simple message queuing mechanism
for fixed-size data items.
(See Message Queues.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mailboxes

Mailboxes provide an enhanced message queuing mechanism
for variable-size messages.
(See Mailboxes.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Pipes

Pipes provide a traditional anonymous pipe mechanism for sending
variable-size chunks of data, in whole or in part.
(See Pipes.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Interrupt Service Routines (ISRs)

An interrupt service routine is a series of instructions that is
executed asynchronously in response to a hardware or software interrupt.
(See Interrupts.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Atomic Services

The atomic services enable multiple threads and ISRs to read and modify
32-bit variables in an uninterruptible manner.
(See Atomic Services.)

重要

All atomic services APIs can be used by both threads and ISRs.

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Floating Point Services

The floating point services enable threads to use a board’s floating point
registers.
(See Floating Point Services.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Ring Buffers

Ring buffers enable simple first in, first out (FIFO) queuing
of variable-size data items.
(See Ring Buffers.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Device Driver Interface

	Device Model

Device Model

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Bluetooth API

	Generic Access Profile (GAP)

	Connection Management

	Generic Attribute Profile (GATT)

	Mesh Profile

	Universal Unique Identifiers (UUIDs)

	Logical Link Control and Adaptation Protocol (L2CAP)

	Serial Port Emulation (RFCOMM)

	Data Buffers

	Persistent Storage

	HCI Drivers

	HCI RAW channel

This is the full set of available Bluetooth APIs. It’s important to note
that the set that will in practice be available for the application
depends on the exact Kconfig options that have been chosen, since most
of the Bluetooth functionality is build-time selectable. E.g. any
connection-related APIs require CONFIG_BT_CONN and any
BR/EDR (Bluetooth Classic) APIs require CONFIG_BT_BREDR.

Generic Access Profile (GAP)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Connection Management

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Generic Attribute Profile (GATT)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mesh Profile

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Universal Unique Identifiers (UUIDs)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Logical Link Control and Adaptation Protocol (L2CAP)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Serial Port Emulation (RFCOMM)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Data Buffers

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Persistent Storage

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HCI Drivers

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HCI RAW channel

HCI RAW channel API is intended to expose HCI interface to the remote entity.
The local Bluetooth controller gets owned by the remote entity and host
Bluetooth stack is not used. RAW API provides direct access to packets which
are sent and received by the Bluetooth HCI driver.

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Networking API

	Network core helpers

	Network buffers

	Network packet management

	IPv4/IPv6 primitives and helpers

	Network interface

	Network Management

	Network layer 2 management

	Network link address

	Application network context

	BSD Sockets compatible API

	Network offloading support

	Network statistics

	Trickle timer support

	UDP

	Network technologies

	Network and application libraries

This is the full set of networking public APIs. Their exposure
depends on relevant Kconfig options. For instance IPv6 related
APIs will not be present if CONFIG_NET_IPV6 has not
been selected.

Network core helpers

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network buffers

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network packet management

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

IPv4/IPv6 primitives and helpers

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network Management

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network layer 2 management

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network link address

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Application network context

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

BSD Sockets compatible API

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network offloading support

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network statistics

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Trickle timer support

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

UDP

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network technologies

Ethernet

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

IEEE 802.15.4

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network and application libraries

Network application

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

DHCPv4

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

MQTT 3.1.1

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

CoAP

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

DNS Resolve

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HTTP

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Input / Output Driver APIs

	ADC Interface

	GPIO Interface

	I2C Interface

	I2S Interface

	IPM Interface

	PWM Interface

	Pinmux Interface

	SPI Interface

	Random Interface

	UART Interface

	Sensor Interface

ADC Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

GPIO Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

I2C Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

I2S Interface

The I2S (Inter-IC Sound) API provides support for the standard I2S interface
as well as common non-standard extensions such as PCM Short/Long Frame Sync
and Left/Right Justified Data Formats.

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

IPM Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

PWM Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Pinmux Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

SPI Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Random Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

UART Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Sensor Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Power Management APIs

Power Management Hook Interface

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Device Power Management APIs

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

File System APIs

File System Functions

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

File System Data Structures

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Device and Driver Support

	Device Drivers and Device Model
	Introduction

	Standard Drivers

	Synchronous Calls

	Driver APIs

	Driver Data Structures

	Subsystems and API Structures

	Single Driver, Multiple Instances

	Initialization Levels

	System Drivers

	Device Tree in Zephyr
	Introduction to Device Tree

	System build requirements

	Zephyr and Device Tree

	Device tree file formats

	Currently supported boards

	Adding support for a board

	Adding support for device tree in drivers

	Source Tree Hierarchy

	YAML definitions for device nodes

Device Drivers and Device Model

Introduction

The Zephyr kernel supports a variety of device drivers. The specific set of
device drivers available for an application’s board configuration varies
according to the associated hardware components and device driver software.

The Zephyr device model provides a consistent device model for configuring the
drivers that are part of a system. The device model is responsible
for initializing all the drivers configured into the system.

Each type of driver (UART, SPI, I2C) is supported by a generic type API.

In this model the driver fills in the pointer to the structure containing the
function pointers to its API functions during driver initialization. These
structures are placed into the RAM section in initialization level order.

Standard Drivers

Device drivers which are present on all supported board configurations
are listed below.

	Interrupt controller: This device driver is used by the kernel’s
interrupt management subsystem.

	Timer: This device driver is used by the kernel’s system clock and
hardware clock subsystem.

	Serial communication: This device driver is used by the kernel’s
system console subsystem.

	Random number generator: This device driver provides a source of random
numbers.

重要

Certain implementations of this device driver do not generate sequences of
values that are truly random.

Synchronous Calls

Zephyr provides a set of device drivers for multiple boards. Each driver
should support an interrupt-based implementation, rather than polling, unless
the specific hardware does not provide any interrupt.

High-level calls accessed through device-specific APIs, such as i2c.h
or spi.h, are usually intended as synchronous. Thus, these calls should be
blocking.

Driver APIs

The following APIs for device drivers are provided by device.h. The APIs
are intended for use in device drivers only and should not be used in
applications.

	DEVICE_INIT()

	create device object and set it up for boot time initialization.

	DEVICE_AND_API_INIT()

	Create device object and set it up for boot time initialization.
This also takes a pointer to driver API struct for link time
pointer assignment.

	DEVICE_NAME_GET()

	Expands to the full name of a global device object.

	DEVICE_GET()

	Obtain a pointer to a device object by name.

	DEVICE_DECLARE()

	Declare a device object.

Driver Data Structures

The device initialization macros populate some data structures at build time
which are
split into read-only and runtime-mutable parts. At a high level we have:

struct device {
 struct device_config *config;
 void *driver_api;
 void *driver_data;
};

The config member is for read-only configuration data set at build time. For
example, base memory mapped IO addresses, IRQ line numbers, or other fixed
physical characteristics of the device. This is the config_info structure
passed to the DEVICE_*INIT() macros.

The driver_data struct is kept in RAM, and is used by the driver for
per-instance runtime housekeeping. For example, it may contain reference counts,
semaphores, scratch buffers, etc.

The driver_api struct maps generic subsystem APIs to the device-specific
implementations in the driver. It is typically read-only and populated at
build time. The next section describes this in more detail.

Subsystems and API Structures

Most drivers will be targeting a device-independent subsystem API.
Applications can simply program to that generic API, and application
code is not specific to any particular driver implementation.

A subsystem API definition typically looks like this:

typedef int (*subsystem_do_this_t)(struct device *device, int foo, int bar);
typedef void (*subsystem_do_that_t)(struct device *device, void *baz);

struct subsystem_api {
 subsystem_do_this_t do_this;
 subsystem_do_that_t do_that;
};

static inline int subsystem_do_this(struct device *device, int foo, int bar)
{
 struct subsystem_api *api;

 api = (struct subsystem_api *)device->driver_api;
 return api->do_this(device, foo, bar);
}

static inline void subsystem_do_that(struct device *device, void *baz)
{
 struct subsystem_api *api;

 api = (struct subsystem_api *)device->driver_api;
 api->do_that(device, foo, bar);
}

In general, it’s best to use __ASSERT() macros instead of
propagating return values unless the failure is expected to occur during
the normal course of operation (such as a storage device full). Bad
parameters, programming errors, consistency checks, pathological/unrecoverable
failures, etc., should be handled by assertions.

When it is appropriate to return error conditions for the caller to check, 0
should be returned on success and a POSIX errno.h code returned on failure.
See https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions#return-codes for
details about this.

A driver implementing a particular subsystem will define the real implementation
of these APIs, and populate an instance of subsystem_api structure:

static int my_driver_do_this(struct device *device, int foo, int bar)
{
 ...
}

static void my_driver_do_that(struct device *device, void *baz)
{
 ...
}

static struct subsystem_api my_driver_api_funcs = {
 .do_this = my_driver_do_this,
 .do_that = my_driver_do_that
};

The driver would then pass my_driver_api_funcs as the api argument to
DEVICE_AND_API_INIT(), or manually assign it to device->driver_api
in the driver init function.

注解

Since pointers to the API functions are referenced in the driver_api
struct, they will always be included in the binary even if unused;
gc-sections linker option will always see at least one reference to
them. Providing for link-time size optimizations with driver APIs in
most cases requires that the optional feature be controlled by a
Kconfig option.

Single Driver, Multiple Instances

Some drivers may be instantiated multiple times in a given system. For example
there can be multiple GPIO banks, or multiple UARTS. Each instance of the driver
will have a different config_info struct and driver_data struct.

Configuring interrupts for multiple drivers instances is a special case. If each
instance needs to configure a different interrupt line, this can be accomplished
through the use of per-instance configuration functions, since the parameters
to IRQ_CONNECT() need to be resolvable at build time.

For example, let’s say we need to configure two instances of my_driver, each
with a different interrupt line. In drivers/subsystem/subsystem_my_driver.h:

typedef void (*my_driver_config_irq_t)(struct device *device);

struct my_driver_config {
 u32_t base_addr;
 my_driver_config_irq_t config_func;
};

In the implementation of the common init function:

void my_driver_isr(struct device *device)
{
 /* Handle interrupt */
 ...
}

int my_driver_init(struct device *device)
{
 const struct my_driver_config *config = device->config->config_info;

 /* Do other initialization stuff */
 ...

 config->config_func(device);

 return 0;
}

Then when the particular instance is declared:

#if CONFIG_MY_DRIVER_0

DEVICE_DECLARE(my_driver_0);

static void my_driver_config_irq_0
{
 IRQ_CONNECT(MY_DRIVER_0_IRQ, MY_DRIVER_0_PRI, my_driver_isr,
 DEVICE_GET(my_driver_0), MY_DRIVER_0_FLAGS);
}

const static struct my_driver_config my_driver_config_0 = {
 .base_addr = MY_DRIVER_0_BASE_ADDR;
 .config_func = my_driver_config_irq_0;
}

static struct my_driver_data_0;

DEVICE_AND_API_INIT(my_driver_0, MY_DRIVER_0_NAME, my_driver_init,
 &my_driver_data_0, &my_driver_config_0, SECONDARY,
 MY_DRIVER_0_PRIORITY, &my_driver_api_funcs);

#endif /* CONFIG_MY_DRIVER_0 */

Note the use of DEVICE_DECLARE() to avoid a circular dependency on providing
the IRQ handler argument and the definition of the device itself.

Initialization Levels

Drivers may depend on other drivers being initialized first, or
require the use of kernel services. The DEVICE_INIT() APIs allow the user to
specify at what time during the boot sequence the init function will be
executed. Any driver will specify one of five initialization levels:

	PRE_KERNEL_1

	Used for devices that have no dependencies, such as those that rely
solely on hardware present in the processor/SOC. These devices cannot
use any kernel services during configuration, since the services are
not yet available. The interrupt subsystem will be configured however
so it’s OK to set up interrupts. Init functions at this level run on the
interrupt stack.

	PRE_KERNEL_2

	Used for devices that rely on the initialization of devices initialized
as part of the PRIMARY level. These devices cannot use any kernel
services during configuration, since the kernel services are not yet
available. Init functions at this level run on the interrupt stack.

	POST_KERNEL

	Used for devices that require kernel services during configuration.
Init functions at this level run in context of the kernel main task.

	APPLICATION

	Used for application components (i.e. non-kernel components) that need
automatic configuration. These devices can use all services provided by
the kernel during configuration. Init functions at this level run on
the kernel main task.

Within each initialization level you may specify a priority level, relative to
other devices in the same initialization level. The priority level is specified
as an integer value in the range 0 to 99; lower values indicate earlier
initialization. The priority level must be a decimal integer literal without
leading zeroes or sign (e.g. 32), or an equivalent symbolic name (e.g.
\#define MY_INIT_PRIO 32); symbolic expressions are not permitted (e.g.
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT + 5).

System Drivers

In some cases you may just need to run a function at boot. Special SYS_INIT
macros exist that map to DEVICE_INIT() or DEVICE_INIT_PM() calls.
For SYS_INIT() there are no config or runtime data structures and there
isn’t a way
to later get a device pointer by name. The same policies for initialization
level and priority apply.

For SYS_INIT_PM() you can obtain pointers by name, see
power management section.

SYS_INIT()

SYS_INIT_PM()

Device Tree in Zephyr

Introduction to Device Tree

Device tree is a way of describing hardware and configuration information
for boards. Device tree was adopted for use in the Linux kernel for the
PowerPC architecture. However, it is now in use for ARM and other
architectures.

The device tree is a data structure for dynamically describing hardware
using a Device Tree Source (DTS) data structure language, and compiled
into a compact Device Tree Blob (DTB) using a Device Tree Compiler (DTC).
Rather than hard coding every detail of a board’s hardware into the
operating system, the hardware-describing DTB is passed to the operating
system at boot time. This allows the same compiled Linux kernel to support
different hardware configurations within an architecture family (e.g., ARM,
x86, PowerPC) and moves a significant part of the hardware description out of
the kernel binary itself.

Traditional usage of device tree involves storing of the Device Tree Blob.
The DTB is then used during runtime for configuration of device drivers. In
Zephyr, the DTS information will be used only during compile time.
Information about the system is extracted from the compiled DTS and used to
create the application image.

Device tree uses a specific format to describe the device nodes in a system.
This format is described in EPAPR document [http://www.devicetree.org/specifications-pdf].

More device tree information can be found at the device tree repository [https://git.kernel.org/pub/scm/utils/dtc/dtc.git].

System build requirements

The Zephyr device tree feature requires a device tree compiler (DTC) and Python
YAML packages. Refer to the installation guide for your specific host OS:

	Development Environment Setup on Windows

	Development Environment Setup on Linux

	Development Environment Setup on Mac OS

Zephyr and Device Tree

In Zephyr, device tree is used to not only describe hardware, but also to
describe Zephyr-specific configuration information. The Zephyr-specific
information is intended to augment the device tree descriptions. The main
reason for this is to leverage existing device tree files that a SoC vendor may
already have defined for a given platform.

Today, configuration in Zephyr comes from a number of different places. It can
come from Kconfig files, CMSIS header files, vendor header files, prj.conf
files, and other miscellaneous sources. The intent of using device tree is to
replace or curtail the use of Kconfig files throughout the system, and instead
use device tree files to describe the configuration of device nodes. CMSIS and
vendor header files can be used in conjunction with the device tree to fully
describe hardware. Device tree is not intended to replace CMSIS or vendor
include files.

The device tree files are compiled using the device tree compiler. The compiler
runs the .dts file through the C preprocessor to resolve any macro or #defines
utilized in the file. The output of the compile is another dts formatted file.

After compilation, a python script extracts information from the compiled device
tree file using a set of rules specified in YAML files. The extracted
information is placed in a header file that is used by the rest of the code as
the project is compiled.

A temporary fixup file is required for device tree support on most devices.
This .fixup file resides in the dts architecture directory and has the same
name as the master .dts file. The only difference is the suffix is .fixup.
This fixup file maps the generated include information to the current
driver/source usage.

Device tree file formats

Hardware and software is described inside of device tree files in clear text format.
These files have the file suffix of .dtsi or .dts. The .dtsi files are meant to
be included by other files. Typically for a given board you have some number of
.dtsi include files that pull in common device descriptions that are used across
a given SoC family.

Example: FRDM K64F Board and Hexiwear K64

Both of these boards are based on the same NXP Kinetis SoC family, the K6X. The
following shows the include hierarchy for both boards.

dts/arm/frdm_k64.dts includes the following two files:

dts/arm/nxp/nxp_k6x.dtsi
dts/arm/armv7-m.dtsi

dts/arm/hexiwear_k64.dts includes the same two files:

dts/arm/nxp/nxp_k6x.dtsi
dts/arm/armv7-m.dtsi

The board-specific .dts files enable nodes, define the Zephyr-specific items,
and also adds board-specific changes like gpio/pinmux assignments. These types
of things will vary based on the board layout and application use.

Currently supported boards

Device tree is currently supported on all ARM targets. Support for all other
architectures is to be completed by release 1.9.

Adding support for a board

Adding device tree support for a given board requires adding a number of files.
These files will contain the DTS information that describes a platform, the
YAML descriptions that define the contents of a given Device Tree peripheral
node, and also any fixup files required to support the platform.

When writing Device Tree Source files, it is good to separate out common
peripheral information that could be used across multiple SoC families or
boards. DTS files are identified by their file suffix. A .dtsi suffix denotes
a DTS file that is used as an include in another DTS file. A .dts suffix
denotes the primary DTS file for a given board.

The primary DTS file will contain at a minimum a version line, optional
includes, and the root node definition. The root node will contain a model and
compatible that denotes the unique board described by the .dts file.

Device Tree Source File Template

/dts-v1/
/ {
 model = "Model name for your board";
 compatible = "compatible for your board";
 /* rest of file */
};

One suggestion for starting from scratch on a platform/board is to examine other
boards and their device tree source files.

The following is a more precise list of required files:

	Base architecture support
	Add architecture-specific DTS directory, if not already present.
Example: dts/arm for ARM.

	Add target to dts/<ARCH>/Makefile or create Makefile if not present

	Add target specific device tree files for base SoC. These should be
.dtsi files to be included in the board-specific device tree files.

	Add target specific YAML files in the dts/<ARCH>/yaml directory.
Create the yaml directory if not present.

	SoC family support
	Add one or more SoC family .dtsi files that describe the hardware
for a set of devices. The file should contain all the relevant
nodes and base configuration that would be applicable to all boards
utilizing that SoC family.

	Add SoC family YAML files that describe the nodes present in the .dtsi file.

	Board specific support
	Add a board level .dts file that includes the SoC family .dtsi files
and enables the nodes required for that specific board.

	Board .dts file should specify the SRAM and FLASH devices, if present.

	Add board-specific YAML files, if required. This would occur if the
board has additional hardware that is not covered by the SoC family
.dtsi/.yaml files.

	Fixup files
	Fixup files contain mappings from existing Kconfig options to the actual
underlying DTS derived configuration #defines. Fixup files are temporary
artifacts until additional DTS changes are made to make them unnecessary.

Adding support for device tree in drivers

As drivers and other source code is converted over to make use of device tree
generated information, these drivers may require changes to match the generated
#define information.

Source Tree Hierarchy

The device tree files are located in a couple of different directories. The
directory split is done based on architecture, and there is also a common
directory where architecture agnostic device tree and yaml files are located.

Assuming the current working directory is the ZEPHYR_BASE, the directory
hierarchy looks like the following:

dts/common/
dts/common/yaml
dts/<ARCH>/
dts/<ARCH>/yaml

The common directories contain a skeleton.dtsi include file that defines the
address and size cells. The yaml subdirectory contains common yaml files for
Zephyr-specific nodes/properties and generic device properties common across
architectures.

Example: DTS/YAML files for NXP FRDM K64F:

dts/arm/armv7-m.dtsi
dts/arm/k6x/nxp_k6x.dtsi
dts/arm/frdm_k64f.dts
dts/arm/yaml/arm,v7m-nvic.yaml
dts/arm/yaml/k64gpio.yaml
dts/arm/yaml/k64pinmux.yaml
dts/arm/yaml/k64uart.yaml

YAML definitions for device nodes

Device tree can describe hardware and configuration, but it doesn’t tell the
system which pieces of information are useful, or how to generate configuration
data from the device tree nodes. For this, we rely on YAML files to describe
the contents or definition of a device tree node.

A YAML description must be provided for every device node that is to be a source
of information for the system. This YAML description can be used for more than
one purpose. It can be used in conjunction with the device tree to generate
include information. It can also be used to validate the device tree files
themselves. A device tree file can successfully compile and still not contain
the necessary pieces required to build the rest of the software. YAML provides
a means to detect that issue.

YAML files reside in a subdirectory inside the common and architecture-specific
device tree directories. A YAML template file is provided to show the required
format. This file is located at:

dts/common/yaml/device_node.yaml.template

YAML files must end in a .yaml suffix. YAML files are scanned during the
information extraction phase and are matched to device tree nodes via the
compatible property.

Subsystems

This section contains information about subsystem and the API they expose
to applications.

	Bluetooth

	Standard C Library

	Logging

	Networking

	Power Management

	Sensor Drivers

	Shell

	Testing

	USB device stack

Bluetooth

Zephyr comes integrated with a feature-rich and highly configurable
Bluetooth stack:

	Bluetooth 5.0 compliant (ESR10)

	Bluetooth Low Energy Controller support (LE Link Layer)
	BLE 5.0 compliant

	Unlimited role and connection count, all roles supported

	Concurrent multi-protocol support ready

	Intelligent scheduling of roles to minimize overlap

	Portable design to any open BLE radio, currently supports Nordic
Semiconductor nRF51 and nRF52

	Generic Access Profile (GAP) with all possible LE roles
	Peripheral & Central

	Observer & Broadcaster

	GATT (Generic Attribute Profile)
	Server (to be a sensor)

	Client (to connect to sensors)

	Pairing support, including the Secure Connections feature from Bluetooth 4.2

	IPSP/6LoWPAN for IPv6 connectivity over Bluetooth LE
	IPSP node sample application in samples/bluetooth/ipsp

	Basic Bluetooth BR/EDR (Classic) support
	Generic Access Profile (GAP)

	Logical Link Control and Adaptation Protocol (L2CAP)

	Serial Port emulation (RFCOMM protocol)

	Service Discovery Protocol (SDP)

	Clean HCI driver abstraction
	3-Wire (H:5) & 5-Wire (H:4) UART

	SPI

	Local controller support as a virtual HCI driver

	Raw HCI interface to run Zephyr as a Controller instead of a full Host stack
	Possible to export HCI over a physical transport

	samples/bluetooth/hci_uart sample for HCI over UART

	samples/bluetooth/hci_usb sample for HCI over USB

	Verified with multiple popular controllers

	Highly configurable
	Features, buffer sizes/counts, stack sizes, etc.

Source tree layout

The stack is split up as follows in the source tree:

	subsys/bluetooth/host

	The host stack. This is where the HCI command & event handling
as well as connection tracking happens. The implementation of the
core protocols such as L2CAP, ATT & SMP is also here.

	subsys/bluetooth/controller

	Bluetooth Controller implementation. Implements the controller-side of
HCI, the Link Layer as well as access to the radio transceiver.

	include/bluetooth/

	Public API header files. These are the header files applications need
to include in order to use Bluetooth functionality.

	drivers/bluetooth/

	HCI transport drivers. Every HCI transport needs its own driver. E.g.
the two common types of UART transport protocols (3-Wire & 5-Wire)
have their own drivers.

	samples/bluetooth/

	Sample Bluetooth code. This is a good reference to get started with
Bluetooth application development.

	tests/bluetooth/

	Test applications. These applications are used to verify the
functionality of the Bluetooth stack, but are not necessary the best
source for sample code (see samples/bluetooth instead).

	doc/subsystems/bluetooth/

	Extra documentation, such as PICS documents.

Further reading

More information on the stack and its usage can be found
here and in the following subsections:

	Bluetooth API

	Developing Bluetooth Applications

	Qualification Testing

Bluetooth API

	Generic Access Profile (GAP)

	Connection Management

	Generic Attribute Profile (GATT)

	Mesh Profile

	Universal Unique Identifiers (UUIDs)

	Logical Link Control and Adaptation Protocol (L2CAP)

	Serial Port Emulation (RFCOMM)

	Data Buffers

	Persistent Storage

	HCI Drivers

	HCI RAW channel

This is the full set of available Bluetooth APIs. It’s important to note
that the set that will in practice be available for the application
depends on the exact Kconfig options that have been chosen, since most
of the Bluetooth functionality is build-time selectable. E.g. any
connection-related APIs require CONFIG_BT_CONN and any
BR/EDR (Bluetooth Classic) APIs require CONFIG_BT_BREDR.

Generic Access Profile (GAP)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Connection Management

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Generic Attribute Profile (GATT)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mesh Profile

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Universal Unique Identifiers (UUIDs)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Logical Link Control and Adaptation Protocol (L2CAP)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Serial Port Emulation (RFCOMM)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Data Buffers

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Persistent Storage

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HCI Drivers

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HCI RAW channel

HCI RAW channel API is intended to expose HCI interface to the remote entity.
The local Bluetooth controller gets owned by the remote entity and host
Bluetooth stack is not used. RAW API provides direct access to packets which
are sent and received by the Bluetooth HCI driver.

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Developing Bluetooth Applications

Initialization

The Bluetooth subsystem is initialized using the bt_enable()
function. The caller should ensure that function succeeds by checking
the return code for errors. If a function pointer is passed to
bt_enable(), the initialization happens asynchronously, and the
completion is notified through the given function.

Bluetooth Application Example

A simple Bluetooth beacon application is shown below. The application
initializes the Bluetooth Subsystem and enables non-connectable
advertising, effectively acting as a Bluetooth Low Energy broadcaster.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	
/*
 * Set Advertisement data. Based on the Eddystone specification:
 * https://github.com/google/eddystone/blob/master/protocol-specification.md
 * https://github.com/google/eddystone/tree/master/eddystone-url
 */
static const struct bt_data ad[] = {
	BT_DATA_BYTES(BT_DATA_FLAGS, BT_LE_AD_NO_BREDR),
	BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0xaa, 0xfe),
	BT_DATA_BYTES(BT_DATA_SVC_DATA16,
		 0xaa, 0xfe, /* Eddystone UUID */
		 0x10, /* Eddystone-URL frame type */
		 0x00, /* Calibrated Tx power at 0m */
		 0x00, /* URL Scheme Prefix http://www. */
		 'z', 'e', 'p', 'h', 'y', 'r',
		 'p', 'r', 'o', 'j', 'e', 'c', 't',
		 0x08) /* .org */
};

/* Set Scan Response data */
static const struct bt_data sd[] = {
	BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
};

static void bt_ready(int err)
{
	if (err) {
		printk("Bluetooth init failed (err %d)\n", err);
		return;
	}

	printk("Bluetooth initialized\n");

	/* Start advertising */
	err = bt_le_adv_start(BT_LE_ADV_NCONN, ad, ARRAY_SIZE(ad),
			 sd, ARRAY_SIZE(sd));
	if (err) {
		printk("Advertising failed to start (err %d)\n", err);
		return;
	}

	printk("Beacon started\n");
}

void main(void)
{
	int err;

	printk("Starting Beacon Demo\n");

	/* Initialize the Bluetooth Subsystem */
	err = bt_enable(bt_ready);
	if (err) {
		printk("Bluetooth init failed (err %d)\n", err);
	}
}

The key APIs employed by the beacon sample are bt_enable()
that’s used to initialize Bluetooth and then bt_le_adv_start()
that’s used to start advertising a specific combination of advertising
and scan response data.

Testing with QEMU

It’s possible to test Bluetooth applications using QEMU. In order to do
so, a Bluetooth controller needs to be exported from the host OS (Linux)
to the emulator.

Using Host System Bluetooth Controller in QEMU

The host OS’s Bluetooth controller is connected to the second QEMU
serial line using a UNIX socket. This socket employs the QEMU option
-serial unix:/tmp/bt-server-bredr. This option is already
added to QEMU through QEMU_EXTRA_FLAGS in most Bluetooth
sample Makefiles’ and made available through the ‘run’ make target.

On the host side, BlueZ allows to export its Bluetooth controller
through a so-called user channel for QEMU to use:

	Make sure that the Bluetooth controller is down

	Use the btproxy tool to open the listening UNIX socket, type:

$ sudo tools/btproxy -u
Listening on /tmp/bt-server-bredr

	Choose one of the Bluetooth sample applications located in
samples/bluetooth.

	To run Bluetooth application in QEMU, type:

$ make run

Running QEMU now results in a connection with the second serial line to
the bt-server-bredr UNIX socket, letting the application
access the Bluetooth controller.

Qualification Testing

PICS Features

The PICS features for each supported protocol & profile can be found in
the following documents:

	GAP PICS

	GATT PICS

	L2CAP PICS

	SM PICS

	RFCOMM PICS

GAP PICS

PTS version: 6.4

* - different than PTS defaults

^ - field not available on PTS

M - mandatory

O - optional

Device Configuration

	Parameter Name
	Selected
	Description

	TSPC_GAP_0_1
	False (*)
	BR/EDR (C.1)

	TSPC_GAP_0_2
	True
	LE (C.2)

	TSPC_GAP_0_3
	False (*)
	BR/EDR/LE (C.3)

Version Configuration

	Parameter Name
	Selected
	Description

	TSPC_GAP_0A_1
	False (*)
	Core Specification Addendum 3 (CSA3) (C.1)

	TSPC_GAP_0A_2
	False (*)
	Core Specification Addendum 4 (CSA4) (C.2)

	TSPC_GAP_0A_3
	False (*)
	Core Spec version 4.1 (Core v4.1) (C.3)

	TSPC_GAP_0A_4
	True
	Core Spec version 4.2 (Core v4.2) (C.4)

Modes

	Parameter Name
	Selected
	Description

	TSPC_GAP_1_1
	False (*)
	Non-discoverable mode (C.1)

	TSPC_GAP_1_2
	False (*)
	Limited-discoverable Mode (O)

	TSPC_GAP_1_3
	False (*)
	General-discoverable mode (O)

	TSPC_GAP_1_4
	False (*)
	Non-connectable mode (O)

	TSPC_GAP_1_5
	False (*)
	Connectable mode (M)

	TSPC_GAP_1_6
	False (*)
	Non-bondable mode (O)

	TSPC_GAP_1_7
	False (*)
	Bondable mode (C.2)

	TSPC_GAP_1_8
	False (*)
	Non-Synchronizable Mode (C.3)

	TSPC_GAP_1_9
	False (*)
	Synchronizable Mode (C.4)

Security Aspects

	Parameter Name
	Selected
	Description

	TSPC_GAP_2_1
	False (*)
	Authentication procedure (C.1)

	TSPC_GAP_2_2
	False (*)
	Support of LMP-Authentication (M)

	TSPC_GAP_2_3
	False (*)
	Initiate LMP-Authentication (C.5)

	TSPC_GAP_2_4
	False (*)
	Security mode 1 (C.2)

	TSPC_GAP_2_5
	False (*)
	Security mode 2 (O)

	TSPC_GAP_2_6
	False (*)
	Security mode 3 (C.7)

	TSPC_GAP_2_7
	False (*)
	Security mode 4 (C.4)

	TSPC_GAP_2_8
	False (*)
	Support of Authenticated link key (C.6)

	TSPC_GAP_2_9
	False (*)
	Support of Unauthenticated link key (C.6)

	TSPC_GAP_2_10
	False (*)
	No security (C.6)

	TSPC_GAP_2_11
	False (*)
	Secure Connections Only Mode (C.8)

Idle Mode Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_3_1
	False (*)
	Initiation of general inquiry (C.1)

	TSPC_GAP_3_2
	False (*)
	Initiation of limited inquiry (C.1)

	TSPC_GAP_3_3
	False (*)
	Initiation of name discover (O)

	TSPC_GAP_3_4
	False (*)
	Initiation of device discovery (O)

	TSPC_GAP_3_5
	False (*)
	Initiation of general bonding (O)

	TSPC_GAP_3_6
	False (*)
	Initiation of dedicated bonding (O)

Establishment Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_4_1
	False (*)
	Support link establishment as initiator (M)

	TSPC_GAP_4_2
	False (*)
	Support link establishment as acceptor (M)

	TSPC_GAP_4_3
	False (*)
	Support channel establishment as initiator (O)

	TSPC_GAP_4_4
	False (*)
	Support channel establishment as acceptor (M)

	TSPC_GAP_4_5
	False (*)
	Support connection establishment as
initiator (O)

	TSPC_GAP_4_6
	False (*)
	Support connection establishment as
acceptor (O)

	TSPC_GAP_4_7
	False (*)
	Support synchronization establishment
as receiver (C.1)

LE Roles

	Parameter Name
	Selected
	Description

	TSPC_GAP_5_1
	True
	Broadcaster (C.1)

	TSPC_GAP_5_2
	True
	Observer (C.1)

	TSPC_GAP_5_3
	True
	Peripheral (C.1)

	TSPC_GAP_5_4
	True
	Central (C.1)

Broadcaster Physical Layer

	Parameter Name
	Selected
	Description

	TSPC_GAP_6_1
	True
	Transmitter (M)

	TSPC_GAP_6_2
	True
	Receiver (O)

Broadcaster Link Layer States

	Parameter Name
	Selected
	Description

	TSPC_GAP_7_1
	True
	Standby (M)

	TSPC_GAP_7_2
	True
	Advertising (M)

Broadcaster Link Layer Advertising Event Types

	Parameter Name
	Selected
	Description

	TSPC_GAP_8_1
	True
	Non-Connectable Undirected Event (M)

	TSPC_GAP_8_2
	True
	Scannable Undirected Event (O)

Broadcaster Link Layer Advertising Data Types

	Parameter Name
	Selected
	Description

	TSPC_GAP_8A_1
	True
	AD Type-Service UUID (O)

	TSPC_GAP_8A_2
	True
	AD Type-Local Name (O)

	TSPC_GAP_8A_3
	True
	AD Type-Flags (C.2)

	TSPC_GAP_8A_4
	True
	AD Type-Manufacturer Specific Data (O)

	TSPC_GAP_8A_5
	False (*)
	AD Type-TX Power Level (O)

	TSPC_GAP_8A_6
	False (*)
	AD Type-Security Manager Out of Band
(OOB) (C.1)

	TSPC_GAP_8A_7
	False (*)
	AD Type-Security manager TK Value (O)

	TSPC_GAP_8A_8
	False (*)
	AD Type-Slave Connection Interval Range (O)

	TSPC_GAP_8A_9
	False (*)
	AD Type-Service Solicitation (O)

	TSPC_GAP_8A_10
	True
	AD Type-Service Data (O)

	TSPC_GAP_8A_11
	True
	AD Type-Appearance (O)

	TSPC_GAP_8A_12
	False (*)
	AD Type-Public Target Address (O)

	TSPC_GAP_8A_13
	False (*)
	AD Type-Random Target Address (O)

	TSPC_GAP_8A_14
	False (*)
	AD Type-Advertising Interval (O)

	TSPC_GAP_8A_15
	False (*)
	AD Type-LE Bluetooth Device Address (O)

	TSPC_GAP_8A_16
	False (*)
	AD Type-LE Role (O)

	TSPC_GAP_8A_17
	(^)
	AD Type-URI (C.3)

Broadcaster Connection Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_9_1
	True
	Non-Connectable Mode (M)

Broadcaster Broadcasting and Observing Features

	Parameter Name
	Selected
	Description

	TSPC_GAP_10_1
	True
	Broadcast Mode (M)

Broadcaster Privacy Feature

	Parameter Name
	Selected
	Description

	TSPC_GAP_11_1
	False (*)
	Privacy Feature v1.0 (C.2)

	TSPC_GAP_11_1A
	False (*)
	Privacy Feature v1.1 (C.3)

	TSPC_GAP_11_1B
	(^)
	Privacy Feature v1.2 (C.5)

	TSPC_GAP_11_2
	False (*)
	Resolvable Private Address Generation
Procedure (C.1)

	TSPC_GAP_11_3
	False (*)
	Non-Resolvable Private Address Generation
Procedure (C.4)

Observer Physical Layer

	Parameter Name
	Selected
	Description

	TSPC_GAP_12_1
	True
	Receiver (M)

	TSPC_GAP_12_2
	True
	Transmitter (O)

Observer Link Layer States

	Parameter Name
	Selected
	Description

	TSPC_GAP_13_1
	True
	Standby (M)

	TSPC_GAP_13_2
	True
	Scanning (M)

Observer Link Layer Scanning Types

	Parameter Name
	Selected
	Description

	TSPC_GAP_14_1
	True
	Passive Scanning (M)

	TSPC_GAP_14_2
	True
	Active Scanning (O)

Observer Connection Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_15_1
	True
	Non-Connectable Mode (M)

Observer Broadcasting and Observing Features

	Parameter Name
	Selected
	Description

	TSPC_GAP_16_1
	True
	Observation Procedure (M)

Observer Privacy Feature

	Parameter Name
	Selected
	Description

	TSPC_GAP_17_1
	False (*)
	Privacy Feature v1.0 (C.4)

	TSPC_GAP_17_1A
	False (*)
	Privacy Feature v1.1 (C.5)

	TSPC_GAP_17_1B
	(^)
	Privacy Feature v1.2 (C.6)

	TSPC_GAP_17_2
	False (*)
	Non-Resolvable Private Address Generation
Procedure (C.1)

	TSPC_GAP_17_3
	False (*)
	Resolvable Private Address Resolution
Procedure (C.2)

	TSPC_GAP_17_4
	False (*)
	Resolvable Private Address Generation
Procedure (C.3)

Peripheral Physical Layer

	Parameter Name
	Selected
	Description

	TSPC_GAP_18_1
	True
	Transmitter (M)

	TSPC_GAP_18_2
	True
	Receiver (M)

Peripheral Link Layer States

	Parameter Name
	Selected
	Description

	TSPC_GAP_19_1
	True
	Standby (M)

	TSPC_GAP_19_2
	True
	Advertising (M)

	TSPC_GAP_19_3
	True
	Connection, Slave Role (C.1)

Peripheral Link Layer Advertising Event Types

	Parameter Name
	Selected
	Description

	TSPC_GAP_20_1
	True
	Connectable Undirected Event (C.1)

	TSPC_GAP_20_2
	True
	Connectable Directed Event (C.2)

	TSPC_GAP_20_3
	True
	Non-Connectable Undirected Event (O)

	TSPC_GAP_20_4
	True
	Scannable Undirected Event (O)

Peripheral Link Layer Advertising Data Types

	Parameter Name
	Selected
	Description

	TSPC_GAP_20A_1
	True
	AD Type-Service UUID (C.1)

	TSPC_GAP_20A_2
	True
	AD Type-Local Name (C.1)

	TSPC_GAP_20A_3
	True
	AD Type-Flags (C.2)

	TSPC_GAP_20A_4
	True
	AD Type-Manufacturer Specific Data (C.1)

	TSPC_GAP_20A_5
	False (*)
	AD Type-TX Power Level (C.1)

	TSPC_GAP_20A_6
	False (*)
	AD Type-Security Manager Out of Band (OOB)
(C.3)

	TSPC_GAP_20A_7
	False (*)
	AD Type-Security manager TK Value (C.1)

	TSPC_GAP_20A_8
	False (*)
	AD Type-Slave Connection Interval Range (C.1)

	TSPC_GAP_20A_9
	False (*)
	AD Type-Service Solicitation (C.1)

	TSPC_GAP_20A_10
	True
	AD Type-Service Data (C.1)

	TSPC_GAP_20A_11
	True
	AD Type-Appearance (C.1)

	TSPC_GAP_20A_12
	False (*)
	AD Type-Public Target Address (C.1)

	TSPC_GAP_20A_13
	False (*)
	AD Type-Random Target Address (C.1)

	TSPC_GAP_20A_14
	False (*)
	AD Type-Advertising Interval (C.1)

	TSPC_GAP_20A_15
	False (*)
	AD Type-LE Bluetooth Device Address (C.1)

	TSPC_GAP_20A_16
	False (*)
	AD Type-LE Role (C.1)

	TSPC_GAP_20A_17
	(^)
	AD Type-URI (C.4)

Peripheral Link Layer Control Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_21_1
	True
	Connection Update Procedure (C.1)

	TSPC_GAP_21_2
	True
	Channel Map Update Procedure (C.1)

	TSPC_GAP_21_3
	True
	Encryption Procedure (C.2)

	TSPC_GAP_21_4
	True
	Feature Exchange Procedure (C.1)

	TSPC_GAP_21_5
	True
	Version Exchange Procedure (C.1)

	TSPC_GAP_21_6
	True
	Termination Procedure (C.1)

	TSPC_GAP_21_7
	False (*)
	LE Ping Procedure (C.3)

	TSPC_GAP_21_8
	True
	Slave Initiated Feature Exchange Procedure
(C.4)

	TSPC_GAP_21_9
	True
	Connection Parameter Request Procedure (C.5)

Peripheral Discovery Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_22_1
	True
	Non-Discoverable Mode (C.1)

	TSPC_GAP_22_2
	True
	Limited Discoverable Mode (C.2)

	TSPC_GAP_22_3
	True
	General Discoverable Mode (C.3)

	TSPC_GAP_22_4
	True
	Name Discovery Procedure (C.4)

Peripheral Connection Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_23_1
	True
	Non-Connectable Mode (M)

	TSPC_GAP_23_2
	False (*)
	Directed Connectable Mode (C.1)

	TSPC_GAP_23_3
	True
	Undirected Connectable Mode (C.2)

	TSPC_GAP_23_4
	True
	Connection Parameter Update Procedure (C.2)

	TSPC_GAP_23_5
	True
	Terminate Connection Procedure (C.2)

Peripheral Bonding Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_24_1
	True
	Non-Bondable Mode (M)

	TSPC_GAP_24_2
	True
	Bondable Mode (C.1)

	TSPC_GAP_24_3
	True
	Bonding Procedure (C.1)

	TSPC_GAP_24_4
	True
	Multiple Bonds (C.2)

Peripheral Security Aspects Features

	Parameter Name
	Selected
	Description

	TSPC_GAP_25_1
	True
	Security Mode (C.2)

	TSPC_GAP_25_2
	True
	Security Mode 2 (C.2)

	TSPC_GAP_25_3
	True
	Authentication Procedure (C.2)

	TSPC_GAP_25_4
	False (*)
	Authorization Procedure (C.2)

	TSPC_GAP_25_5
	True
	Connection Data Signing Procedure (C.2)

	TSPC_GAP_25_6
	True
	Authenticate Signed Data Procedure (C.2)

	TSPC_GAP_25_7
	True
	Authenticated Pairing
(LE security mode 1 level 3) (C.1)

	TSPC_GAP_25_8
	True
	Unauthenticated Pairing
(LE security mode 1 level 2) (C.1)

	TSPC_GAP_25_9
	(^)
	LE Security Mode 1 Level 4 (C.3)

	TSPC_GAP_25_10
	(^)
	Secure Connections Only Mode (C.4)

Peripheral Privacy Feature

	Parameter Name
	Selected
	Description

	TSPC_GAP_26_1
	False (*)
	Privacy Feature (C.5)

	TSPC_GAP_26_1A
	False (*)
	Privacy Feature v1.1 (C.3)

	TSPC_GAP_26_1B
	(^)
	Privacy Feature v1.2 (C.6)

	TSPC_GAP_26_2
	False (*)
	Non-Resolvable Private Address Generation
Procedure (C.1)

	TSPC_GAP_26_3
	False (*)
	Resolvable Private Address Generation
Procedure (C.2)

	TSPC_GAP_26_4
	False (*)
	Resolvable Private Address Generation
Procedure (C.4)

Peripheral GAP Characteristics

	Parameter Name
	Selected
	Description

	TSPC_GAP_27_1
	True
	Device Name (M)

	TSPC_GAP_27_2
	True
	Appearance (M)

	TSPC_GAP_27_3
	False (*)
	Peripheral Privacy Flag (C.1)

	TSPC_GAP_27_4
	False (*)
	Reconnection Address (C.2)

	TSPC_GAP_27_5
	False (*)
	Peripheral Preferred Connection Parameters
(C.3)

	TSPC_GAP_27_6
	True
	Writable Device Name (C.3)

	TSPC_GAP_27_7
	True
	Writable Appearance (C.3)

	TSPC_GAP_27_8
	False (*)
	Writable Peripheral Privacy Flag (C.4)

Central Physical Layer

	Parameter Name
	Selected
	Description

	TSPC_GAP_28_1
	True
	Transmitter (M)

	TSPC_GAP_28_2
	True
	Receiver (M)

Central Link Layer States

	Parameter Name
	Selected
	Description

	TSPC_GAP_29_1
	True
	Standby (M)

	TSPC_GAP_29_2
	True
	Scanning (M)

	TSPC_GAP_29_3
	True
	Initiating (M)

	TSPC_GAP_29_4
	True
	Connection, Master Role (M)

Central Link Layer Scanning Types

	Parameter Name
	Selected
	Description

	TSPC_GAP_30_1
	True
	Passive Scanning (O)

	TSPC_GAP_30_2
	True
	Active Scanning (C.1)

Central Link Layer Control Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_31_1
	True
	Connection Update Procedure (M)

	TSPC_GAP_31_2
	True
	Channel Map Update Procedure (M)

	TSPC_GAP_31_3
	True
	Encryption Procedure (O)

	TSPC_GAP_31_4
	True
	Feature Exchange Procedure (M)

	TSPC_GAP_31_5
	True
	Version Exchange Procedure (M)

	TSPC_GAP_31_6
	True
	Termination Procedure (M)

	TSPC_GAP_31_7
	False (*)
	LE Ping Procedure (C.1)

	TSPC_GAP_31_8
	True
	Slave Initiated Feature Exchange Procedure
(C.2)

	TSPC_GAP_31_9
	False (*)
	Connection Parameter Request Procedure (C.1)

Central Discovery Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_32_1
	True
	Limited Discovery Procedure (C.2)

	TSPC_GAP_32_2
	True
	General Discovery Procedure (C.1)

	TSPC_GAP_32_3
	True
	Name Discovery Procedure (C.3)

Central Connection Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_33_1
	True
	Auto Connection Establishment Procedure (C.3)

	TSPC_GAP_33_2
	True
	General Connection Establishment Procedure (C.1)

	TSPC_GAP_33_3
	False (*)
	Selective Connection Establishment Procedure
(C.3)

	TSPC_GAP_33_4
	True
	Direct Connection Establishment Procedure (C.2)

	TSPC_GAP_33_5
	True
	Connection Parameter Update Procedure (C.2)

	TSPC_GAP_33_6
	True
	Terminate Connection Procedure (C.2)

Central Bonding Modes and Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_34_1
	True
	Non-Bondable Mode (C.1)

	TSPC_GAP_34_2
	True
	Bondable Mode (C.2)

	TSPC_GAP_34_3
	True
	Bonding Procedure (C.2)

Central Security Features

	Parameter Name
	Selected
	Description

	TSPC_GAP_35_1
	True
	Security Mode 1 (O)

	TSPC_GAP_35_2
	True
	Security Mode 2 (O)

	TSPC_GAP_35_3
	True
	Authentication Procedure (O)

	TSPC_GAP_35_4
	False (*)
	Authorization Procedure (O)

	TSPC_GAP_35_5
	True
	Connection Data Signing Procedure (O)

	TSPC_GAP_35_6
	True
	Authenticate Signed Data Procedure (O)

	TSPC_GAP_35_7
	True
	Authenticated Pairing
(LE security mode 1 level 3) (C.1)

	TSPC_GAP_35_8
	True
	Unauthenticated Pairing
(LE security mode 1 level 2) (C.1)

	TSPC_GAP_35_9
	(^)
	LE Security Mode 1 Level 4 (C.2)

	TSPC_GAP_35_10
	(^)
	Secure Connections Only Mode (C.3)

Central Privacy Feature

	Parameter Name
	Selected
	Description

	TSPC_GAP_36_1
	False (*)
	Privacy Feature v1.0 (C.2)

	TSPC_GAP_36_1A
	False (*)
	Privacy Feature v1.1 (C.4)

	TSPC_GAP_36_1B
	(^)
	Privacy Feature v1.2 (C.7)

	TSPC_GAP_36_2
	False (*)
	Non-Resolvable Private Address Generation
Procedure (C.1)

	TSPC_GAP_36_3
	False (*)
	Resolvable Private Address Resolution
Procedure (C.3)

	TSPC_GAP_36_4
	False (*)
	Write to Privacy Characteristic
(Enable/Disable Privacy) (C.5)

	TSPC_GAP_36_5
	False (*)
	Resolvable Private Address Generation
Procedure (C.6)

Central GAP Characteristics

	Parameter Name
	Selected
	Description

	TSPC_GAP_37_1
	True
	Device Name (M)

	TSPC_GAP_37_2
	True
	Appearance (M)

	TSPC_GAP_37_3
	(^)
	Central Address Resolution (C.1)

BR/EDR/LE Roles

	Parameter Name
	Selected
	Description

	TSPC_GAP_38_1
	False (*)
	Broadcaster (C.1)

	TSPC_GAP_38_2
	False (*)
	Observer (C.1)

	TSPC_GAP_38_3
	False (*)
	Peripheral (C.1)

	TSPC_GAP_38_4
	False (*)
	Central (C.1)

Central BR/EDR/LE Modes

	Parameter Name
	Selected
	Description

	TSPC_GAP_39_1
	False (*)
	Non-Discoverable Mode (C.1)

	TSPC_GAP_39_2
	False (*)
	Discoverable Mode (C.2)

	TSPC_GAP_39_3
	False (*)
	Non-Connectable Mode (C.3)

	TSPC_GAP_39_4
	False (*)
	Connectable Mode (M)

	TSPC_GAP_39_5
	False (*)
	Non-Bondable Mode (C.4)

	TSPC_GAP_39_6
	False (*)
	Bondable Mode (C.5)

Central BR/EDR/LE Idle Mode Procedures

	Parameter Name
	Selected
	Description

	TSPC_GAP_40_1
	False (*)
	General Discovery (C.1)

	TSPC_GAP_40_2
	False (*)
	Limited Discovery (C.2)

	TSPC_GAP_40_3
	False (*)
	Device Type Discovery (C.3)

	TSPC_GAP_40_4
	False (*)
	Name Discovery (C.4)

	TSPC_GAP_40_5
	False (*)
	Link Establishment (C.5)

Central BR/EDR/LE Security Aspects

	Parameter Name
	Selected
	Description

	TSPC_GAP_41_1
	False (*)
	Security Aspects (M)

	TSPC_GAP_41_2
	(^)
	Cross-Transport Key Derivation (C.1)

Peripheral BR/EDR/LE Modes

	Parameter Name
	Selected
	Description

	TSPC_GAP_42_1
	False (*)
	Non-Discoverable Mode (C.1)

	TSPC_GAP_42_2
	False (*)
	Discoverable Mode (C.2)

	TSPC_GAP_42_3
	False (*)
	Non-Connectable Mode (C.3)

	TSPC_GAP_42_4
	False (*)
	Connectable Mode (M)

	TSPC_GAP_42_5
	False (*)
	Non-Bondable Mode (C.4)

	TSPC_GAP_42_6
	False (*)
	Bondable Mode (C.5)

Peripheral BR/EDR/LE Security Aspects

	Parameter Name
	Selected
	Description

	TSPC_GAP_43_1
	False (*)
	Peripheral BR/EDR/LE: Non-Discoverable Mode

	TSPC_GAP_43_2
	(^)
	Cross-Transport Key Derivation (C.1)

Central Simultaneous BR/EDR and LE Transports

	Parameter Name
	Selected
	Description

	TSPC_GAP_44_1
	False (*)
	Simultaneous BR/EDR and LE Transports - BR/EDR
Slave to the same device (C.1)

	TSPC_GAP_44_2
	False (*)
	Simultaneous BR/EDR and LE Transports - BR/EDR
Master to the same device (C.1)

Peripheral Simultaneous BR/EDR and LE Transports

	Parameter Name
	Selected
	Description

	TSPC_GAP_45_1
	False (*)
	Simultaneous BR/EDR and LE Transports - BR/EDR
Slave to the same device (C.1)

	TSPC_GAP_45_2
	False (*)
	Simultaneous BR/EDR and LE Transports - BR/EDR
Master to the same device (C.1)

	Parameter Name
	Selected
	Description

	TSPC_GATT_1_1
	True
	GATT Client Role (O)

	TSPC_GATT_1_2
	True
	GATT Server Role (O)

	TSPC_SM_1_1
	True
	Master Role (Initiator)

	TSPC_SM_1_2
	True
	Slave Role (Responder)

	TSPC_SM_2_4
	False (*)
	OOB supported (O)

GATT PICS

PTS version: 6.4

* - different than PTS defaults

^ - field not available on PTS

M - mandatory

O - optional

Generic Attribute Profile Role

	Parameter Name
	Selected
	Description

	TSPC_GATT_1_1
	True
	Generic Attribute Profile Client (C.1)

	TSPC_GATT_1_2
	True
	Generic Attribute Profile Server (C.2)

	TSPC_GATT_1A_1
	False (*)
	Complete GATT client (C.3)

	TSPC_GATT_1A_2
	False (*)
	Complete GATT server (C.4)

ATT Bearer Transport

	Parameter Name
	Selected
	Description

	TSPC_GATT_2_1
	False (*)
	Attribute Protocol Supported over BR/EDR
(L2CAP fixed channel support) (C.1)

	TSPC_GATT_2_2
	True
	Attribute Protocol Supported over LE (C.2)

Generic Attribute Profile Support

	Parameter Name
	Selected
	Description

	TSPC_GATT_3_1
	True
	Client: Exchange MTU (C.1)

	TSPC_GATT_3_2
	False (*)
	Client: Discover All Primary Services (C.1)

	TSPC_GATT_3_3
	True
	Client: Discover Primary Services Service
UUID (C.1)

	TSPC_GATT_3_4
	True
	Client: Find Included Services (C.1)

	TSPC_GATT_3_5
	True
	Client: Discover All characteristics of a
Service (C.1)

	TSPC_GATT_3_6
	True
	Client: Discover Characteristics by UUID (C.1)

	TSPC_GATT_3_7
	True
	Client: Discover All Characteristic Descriptors
(C.1)

	TSPC_GATT_3_8
	True
	Client: Read Characteristic Value (C.1)

	TSPC_GATT_3_9
	False (*)
	Client: Read using Characteristic UUID (C.1)

	TSPC_GATT_3_10
	True
	Client: Read Long Characteristic Values (C.1)

	TSPC_GATT_3_11
	True
	Client: Read Multiple Characteristic
Values (C.1)

	TSPC_GATT_3_12
	True
	Client: Write without Response (C.1)

	TSPC_GATT_3_13
	True
	Client: Signed Write Without Response (C.1)

	TSPC_GATT_3_14
	True
	Client: Write Characteristic Value (C.1)

	TSPC_GATT_3_15
	True
	Client: Write Long Characteristic Values (C.1)

	TSPC_GATT_3_16
	False (*)
	Client: Characteristic Value Reliable
Writes (C.1)

	TSPC_GATT_3_17
	True
	Client: Notifications (C.1)

	TSPC_GATT_3_18
	True
	Client: Indications (M)

	TSPC_GATT_3_19
	True
	Client: Read Characteristic Descriptors (C.1)

	TSPC_GATT_3_20
	True
	Client: Read long Characteristic Descriptors
(C.1)

	TSPC_GATT_3_21
	True
	Client: Write Characteristic Descriptors (C.1)

	TSPC_GATT_3_22
	True
	Client: Write Long Characteristic Descriptors
(C.1)

	TSPC_GATT_3_23
	True
	Client: Service Changed Characteristic (M)

Profile Attribute Types and Formats, by client

	Parameter Name
	Selected
	Description

	TSPC_GATT_3B_1
	False (*)
	Client: Primary Service Declaration (M)

	TSPC_GATT_3B_2
	False (*)
	Client: Secondary Service Declaration (M)

	TSPC_GATT_3B_3
	False (*)
	Client: Include Declaration (M)

	TSPC_GATT_3B_4
	False (*)
	Client: Characteristic Declaration (M)

	TSPC_GATT_3B_5
	False (*)
	Client: Characteristic Value Declaration (M)

	TSPC_GATT_3B_6
	False (*)
	Client: Characteristic Extended Properties (M)

	TSPC_GATT_3B_7
	False (*)
	Client: Characteristic User Description
Descriptor (M)

	TSPC_GATT_3B_8
	False (*)
	Client: Client Characteristic Configuration
Descriptor (M)

	TSPC_GATT_3B_9
	False (*)
	Client: Server Characteristic Configuration
Descriptor (M)

	TSPC_GATT_3B_10
	False (*)
	Client: Characteristic Format Descriptor (M)

	TSPC_GATT_3B_11
	False (*)
	Client: Characteristic Aggregate Format
Descriptor (M)

	TSPC_GATT_3B_12
	False (*)
	Client: Characteristic Format: Boolean (M)

	TSPC_GATT_3B_13
	False (*)
	Client: Characteristic Format: 2Bit (M)

	TSPC_GATT_3B_14
	False (*)
	Client: Characteristic Format: nibble (M)

	TSPC_GATT_3B_15
	False (*)
	Client: Characteristic Format: Uint8 (M)

	TSPC_GATT_3B_16
	False (*)
	Client: Characteristic Format: Uint12 (M)

	TSPC_GATT_3B_17
	False (*)
	Client: Characteristic Format: Uint16 (M)

	TSPC_GATT_3B_18
	False (*)
	Client: Characteristic Format: Uint24 (M)

	TSPC_GATT_3B_19
	False (*)
	Client: Characteristic Format: Uint32 (M)

	TSPC_GATT_3B_20
	False (*)
	Client: Characteristic Format: Uint48 (M)

	TSPC_GATT_3B_21
	False (*)
	Client: Characteristic Format: Uint64 (M)

	TSPC_GATT_3B_22
	False (*)
	Client: Characteristic Format: Uint128 (M)

	TSPC_GATT_3B_23
	False (*)
	Client: Characteristic Format: Sint8 (M)

	TSPC_GATT_3B_24
	False (*)
	Client: Characteristic Format: Sint12 (M)

	TSPC_GATT_3B_25
	False (*)
	Client: Characteristic Format: Sint16 (M)

	TSPC_GATT_3B_26
	False (*)
	Client: Characteristic Format: Sint24 (M)

	TSPC_GATT_3B_27
	False (*)
	Client: Characteristic Format: Sint32 (M)

	TSPC_GATT_3B_28
	False (*)
	Client: Characteristic Format: Sint48 (M)

	TSPC_GATT_3B_29
	False (*)
	Client: Characteristic Format: Sint64 (M)

	TSPC_GATT_3B_30
	False (*)
	Client: Characteristic Format: Sint128 (M)

	TSPC_GATT_3B_31
	False (*)
	Client: Characteristic Format: Float32 (M)

	TSPC_GATT_3B_32
	False (*)
	Client: Characteristic Format: Float64 (M)

	TSPC_GATT_3B_33
	False (*)
	Client: Characteristic Format: SFLOAT (M)

	TSPC_GATT_3B_34
	False (*)
	Client: Characteristic Format: FLOAT (M)

	TSPC_GATT_3B_35
	False (*)
	Client: Characteristic Format: Duint16 (M)

	TSPC_GATT_3B_36
	False (*)
	Client: Characteristic Format: utf8s (M)

	TSPC_GATT_3B_37
	False (*)
	Client: Characteristic Format: utf16s (M)

	TSPC_GATT_3B_38
	False (*)
	Client: Characteristic Format: struct (M)

Attribute Profile Support, by Server

	Parameter Name
	Selected
	Description

	TSPC_GATT_4_1
	True
	Server: Exchange MTU (C.4)

	TSPC_GATT_4_2
	True
	Server: Discover All Primary Services (M)

	TSPC_GATT_4_3
	True
	Server: Discover Primary Services Service
UUID (M)

	TSPC_GATT_4_4
	True
	Server: Find Included Services (M)

	TSPC_GATT_4_5
	True
	Server: Discover All characteristics of
a Service (M)

	TSPC_GATT_4_6
	True
	Server: Discover Characteristics by UUID (M)

	TSPC_GATT_4_7
	True
	Server: Discover All Characteristic
Descriptors (M)

	TSPC_GATT_4_8
	True
	Server: Read Characteristic Value (M)

	TSPC_GATT_4_9
	True
	Server: Read using Characteristic UUID (M)

	TSPC_GATT_4_10
	True
	Server: Read Long Characteristic Values (C.4)

	TSPC_GATT_4_11
	True
	Server: Read Multiple Characteristic
Values (C.4)

	TSPC_GATT_4_12
	True
	Server: Write without Response (C.2)

	TSPC_GATT_4_13
	True
	Server: Signed Write Without Response (C.4)

	TSPC_GATT_4_14
	True
	Server: Write Characteristic Value (C.3)

	TSPC_GATT_4_15
	True
	Server: Write Long Characteristic Values (C.4)

	TSPC_GATT_4_16
	True
	Server: Characteristic Value Reliable
Writes (C.4)

	TSPC_GATT_4_17
	True
	Server: Notifications (C.4)

	TSPC_GATT_4_18
	False (*)
	Server: Indications (C.1)

	TSPC_GATT_4_19
	True
	Server: Read Characteristic Descriptors (C.4)

	TSPC_GATT_4_20
	True
	Server: Read long Characteristic
Descriptors (C.4)

	TSPC_GATT_4_21
	True
	Server: Write Characteristic Descriptors (C.4)

	TSPC_GATT_4_22
	True
	Server: Write Long Characteristic
Descriptors (C.4)

	TSPC_GATT_4_23
	False (*)
	Server: Service Changed Characteristic (C.1)

Profile Attribute Types and Characteristic Formats

	Parameter Name
	Selected
	Description

	TSPC_GATT_4B_1
	True
	Server: Primary Service Declaration (M)

	TSPC_GATT_4B_2
	True
	Server: Secondary Service Declaration (M)

	TSPC_GATT_4B_3
	True
	Server: Include Declaration (M)

	TSPC_GATT_4B_4
	True
	Server: Characteristic Declaration (M)

	TSPC_GATT_4B_5
	True
	Server: Characteristic Value Declaration (M)

	TSPC_GATT_4B_6
	True
	Server: Characteristic Extended Properties (M)

	TSPC_GATT_4B_7
	True
	Server: Characteristic User Description
Descriptor (M)

	TSPC_GATT_4B_8
	True
	Server: Client Characteristic Configuration
Descriptor (M)

	TSPC_GATT_4B_9
	True
	Server: Server Characteristic Configuration
Descriptor (M)

	TSPC_GATT_4B_10
	True
	Server: Characteristic Format Descriptor (M)

	TSPC_GATT_4B_11
	True
	Server: Characteristic Aggregate Format
Descriptor (M)

	TSPC_GATT_4B_12
	True
	Server: Characteristic Format: Boolean (M)

	TSPC_GATT_4B_13
	True
	Server: Characteristic Format: 2Bit (M)

	TSPC_GATT_4B_14
	True
	Server: Characteristic Format: nibble (M)

	TSPC_GATT_4B_15
	True
	Server: Characteristic Format: Uint8 (M)

	TSPC_GATT_4B_16
	True
	Server: Characteristic Format: Uint12 (M)

	TSPC_GATT_4B_17
	True
	Server: Characteristic Format: Uint16 (M)

	TSPC_GATT_4B_18
	True
	Server: Characteristic Format: Uint24 (M)

	TSPC_GATT_4B_19
	True
	Server: Characteristic Format: Uint32 (M)

	TSPC_GATT_4B_20
	True
	Server: Characteristic Format: Uint48 (M)

	TSPC_GATT_4B_21
	True
	Server: Characteristic Format: Uint64 (M)

	TSPC_GATT_4B_22
	True
	Server: Characteristic Format: Uint128 (M)

	TSPC_GATT_4B_23
	True
	Server: Characteristic Format: Sint8 (M)

	TSPC_GATT_4B_24
	True
	Server: Characteristic Format: Sint12 (M)

	TSPC_GATT_4B_25
	True
	Server: Characteristic Format: Sint16 (M)

	TSPC_GATT_4B_26
	True
	Server: Characteristic Format: Sint24 (M)

	TSPC_GATT_4B_27
	True
	Server: Characteristic Format: Sint32 (M)

	TSPC_GATT_4B_28
	True
	Server: Characteristic Format: Sint48 (M)

	TSPC_GATT_4B_29
	True
	Server: Characteristic Format: Sint64 (M)

	TSPC_GATT_4B_30
	True
	Server: Characteristic Format: Sint128 (M)

	TSPC_GATT_4B_31
	True
	Server: Characteristic Format: Float32 (M)

	TSPC_GATT_4B_32
	True
	Server: Characteristic Format: Float64 (M)

	TSPC_GATT_4B_33
	True
	Server: Characteristic Format: SFLOAT (M)

	TSPC_GATT_4B_34
	True
	Server: Characteristic Format: FLOAT (M)

	TSPC_GATT_4B_35
	True
	Server: Characteristic Format: Duint16 (M)

	TSPC_GATT_4B_36
	True
	Server: Characteristic Format: utf8s (M)

	TSPC_GATT_4B_37
	True
	Server: Characteristic Format: utf16s (M)

	TSPC_GATT_4B_38
	True
	Server: Characteristic Format: struct (M)

Generic Attribute Profile Service - SDP Interoperability

	Parameter Name
	Selected
	Description

	TSPC_GATT_6_2
	False (*)
	Discover GATT Services using Service Discovery
Profile (C.1)

	TSPC_GATT_6_3
	False (*)
	Publish SDP record for GATT services support
via BR/EDR (C.2)

Attribute Protocol Transport Security

	Parameter Name
	Selected
	Description

	TSPC_GATT_7_1
	False (*)
	Security Mode 4 (C.1)

	TSPC_GATT_7_2
	True
	LE Security Mode 1 (C.2)

	TSPC_GATT_7_3
	True
	LE Security Mode 2 (C.2)

	TSPC_GATT_7_4
	True
	LE Authentication Procedure (C.2)

	TSPC_GATT_7_5
	False (*)
	LE connection data signing procedure (C.2)

	TSPC_GATT_7_6
	False (*)
	LE Authenticate signed data procedure (C.2)

	TSPC_GATT_7_7
	True
	LE Authorization Procedure (C.2)

Attribute Protocol Client Messages

	Parameter Name
	Selected
	Description

	TSPC_ATT_3_1
	False (*)
	Attribute Error Response (M)

	TSPC_ATT_3_2
	False (*)
	Exchange MTU Request (O)

	TSPC_ATT_3_4
	False (*)
	Find Information Request (O)

	TSPC_ATT_3_6
	False (*)
	Find by Type Value Request (O)

	TSPC_ATT_3_8
	False (*)
	Read by Type Request (O)

	TSPC_ATT_3_10
	False (*)
	Read Request (O)

	TSPC_ATT_3_12
	False (*)
	Read Blob Request (O)

	TSPC_ATT_3_14
	False (*)
	Read Multiple Request (O)

	TSPC_ATT_3_16
	False (*)
	Read by Group Type Request (O)

	TSPC_ATT_3_17
	False (*)
	Read by Group Type Response (C.6)

	TSPC_ATT_3_18
	False (*)
	Write Request (O)

	TSPC_ATT_3_20
	False (*)
	Write Command (O)

	TSPC_ATT_3_21
	False (*)
	Signed Write Command (O)

	TSPC_ATT_3_22
	False (*)
	Prepare Write Request (O)

	TSPC_ATT_3_24
	False (*)
	Execute Write Request (C.8)

	TSPC_ATT_3_26
	False (*)
	Handle Value Notification (M)

	TSPC_ATT_3_28
	False (*)
	Handle Value Confirmation (M)

Attribute Protocol Server Messages

	Parameter Name
	Selected
	Description

	TSPC_ATT_4_1
	True
	Attribute Error Response (M)

	TSPC_ATT_4_2
	True
	Exchange MTU Request (M)

	TSPC_ATT_4_3
	True
	Exchange MTU Response (M)

	TSPC_ATT_4_5
	True
	Find Information Response (M)

	TSPC_ATT_4_7
	True
	Find by Type Value Response (M)

	TSPC_ATT_4_8
	True
	Read by Type Request (M)

	TSPC_ATT_4_9
	False (*)
	Read by Type Response (M)

	TSPC_ATT_4_11
	True
	Read Response (M)

	TSPC_ATT_4_13
	False (*)
	Read Blob Response (C.1)

	TSPC_ATT_4_15
	False (*)
	Read Multiple Response (C.2)

	TSPC_ATT_4_17
	True
	Read by Group Type Response (M)

	TSPC_ATT_4_19
	False (*)
	Write Response (C.3)

	TSPC_ATT_4_20
	False (*)
	Write Command (O)

	TSPC_ATT_4_21
	False (*)
	Signed Write Command (O)

	TSPC_ATT_4_23
	False (*)
	Prepare Write Response (C.4)

	TSPC_ATT_4_25
	False (*)
	Execute Write Response (C.4)

	TSPC_ATT_4_26
	False (*)
	Handle Value Notification (O)

	TSPC_ATT_4_27
	False (*)
	Handle Value Indication (O)

Attribute Protocol Transport

	Parameter Name
	Selected
	Description

	TSPC_ATT_5_2
	True
	LE Security Mode 1 (C.2)

	TSPC_ATT_5_4
	True
	LE Authentication Procedure (C.2)

	TSPC_ATT_5_7
	True
	LE Authorization Procedure (C.2)

Device Configuration

	Parameter Name
	Selected
	Description

	TSPC_GAP_0_2
	True
	LE (C.2)

L2CAP PICS

PTS version: 6.4

	
	different than PTS defaults

Device Configuration

	Parameter Name
	Selected
	Description

	TSPC_L2CAP_0_1
	False (*)
	BR/EDR

	TSPC_L2CAP_0_2
	True
	Bluetooth low energy only

	TSPC_L2CAP_0_3
	False (*)
	BR/EDR/Bluetooth low energy

Roles

	Parameter Name
	Selected
	Description

	TSPC_L2CAP_1_1
	False (*)
	Data Channel Initiator

	TSPC_L2CAP_1_2
	False (*)
	Data Channel Acceptor

	TSPC_L2CAP_1_3
	True
	LE Master

	TSPC_L2CAP_1_4
	True
	LE Slave

	TSPC_L2CAP_1_5
	True
	LE Data Channel Initiator

	TSPC_L2CAP_1_6
	True
	LE Data Channel Acceptor

General Operation

	Parameter Name
	Selected
	Description

	TSPC_L2CAP_2_1
	False (*)
	Support of L2CAP signaling channel

	TSPC_L2CAP_2_2
	False (*)
	Support of configuration process

	TSPC_L2CAP_2_3
	False (*)
	Support of connection oriented data channel

	TSPC_L2CAP_2_4
	False (*)
	Support of command echo request

	TSPC_L2CAP_2_5
	False (*)
	Support of command echo response

	TSPC_L2CAP_2_6
	False (*)
	Support of command information request

	TSPC_L2CAP_2_7
	False (*)
	Support of command information response

	TSPC_L2CAP_2_8
	False (*)
	Support of a channel group

	TSPC_L2CAP_2_9
	False (*)
	Support of packet for connectionless channel

	TSPC_L2CAP_2_10
	False (*)
	Support retransmission mode

	TSPC_L2CAP_2_11
	False (*)
	Support flow control mode

	TSPC_L2CAP_2_12
	False (*)
	Enhanced Retransmission Mode

	TSPC_L2CAP_2_13
	False (*)
	Streaming Mode

	TSPC_L2CAP_2_14
	False (*)
	FCS Option

	TSPC_L2CAP_2_15
	False (*)
	Generate Local Busy Condition

	TSPC_L2CAP_2_16
	False (*)
	Send Reject

	TSPC_L2CAP_2_17
	False (*)
	Send Selective Reject

	TSPC_L2CAP_2_18
	False (*)
	Mandatory use of ERTM

	TSPC_L2CAP_2_19
	False (*)
	Mandatory use of Streaming Mode

	TSPC_L2CAP_2_20
	False (*)
	Optional use of ERTM

	TSPC_L2CAP_2_21
	False (*)
	Optional use of Streaming Mode

	TSPC_L2CAP_2_22
	False (*)
	Send data using SAR in ERTM

	TSPC_L2CAP_2_23
	False (*)
	Send data using SAR in Streaming Mode

	TSPC_L2CAP_2_24
	False (*)
	Actively request Basic Mode for a PSM that
supports the use of ERTM or Streaming Mode

	TSPC_L2CAP_2_25
	False (*)
	Supports performing L2CAP channel mode
configuration fallback from SM to ERTM

	TSPC_L2CAP_2_26
	False (*)
	Supports sending more than one unacknowledged
I-Frame when operating in ERTM

	TSPC_L2CAP_2_27
	False (*)
	Supports sending more than three unacknowledged
I-Frame when operating in ERTM

	TSPC_L2CAP_2_28
	False (*)
	Supports configuring the peer TxWindow
greater than 1

	TSPC_L2CAP_2_29
	False (*)
	AMP Support

	TSPC_L2CAP_2_30
	False (*)
	Fixed Channel Support

	TSPC_L2CAP_2_31
	False (*)
	AMP Manager Support

	TSPC_L2CAP_2_32
	False (*)
	ERTM over AMP

	TSPC_L2CAP_2_33
	False (*)
	Streaming Mode Source over AMP Support

	TSPC_L2CAP_2_34
	False (*)
	Streaming Mode Sink over AMP Support

	TSPC_L2CAP_2_35
	False (*)
	Unicast Connectionless Data, Reception

	TSPC_L2CAP_2_36
	False (*)
	Ability to transmit an unencrypted packet over
a Unicast connectionless L2CAP channel

	TSPC_L2CAP_2_37
	False (*)
	Ability to transmit an encrypted packet over
a Unicast connectionless L2CAP channel

	TSPC_L2CAP_2_38
	False (*)
	Extended Flow Specification for BR/EDR

	TSPC_L2CAP_2_39
	False (*)
	Extended Window Size

	TSPC_L2CAP_2_40
	True
	Support of Low Energy signaling channel

	TSPC_L2CAP_2_41
	True
	Support of command reject

	TSPC_L2CAP_2_42
	True
	Send Connection Parameter Update Request

	TSPC_L2CAP_2_43
	True
	Send Connection Parameter Update Response

	TSPC_L2CAP_2_44
	False (*)
	Extended Flow Specification for AMP

	TSPC_L2CAP_2_45
	True
	Send disconnect request command

	TSCP_L2CAP_2_46
	True
	Support LE Credit Based Flow Control Mode

	TSCP_L2CAP_2_47
	True
	Support for LE Data Channel

Configurable Parameters

	Parameter Name
	Selected
	Description

	TSPC_L2CAP_3_1
	True
	Support of RTX timer

	TSPC_L2CAP_3_2
	False (*)
	Support of ERTX timer

	TSPC_L2CAP_3_3
	False (*)
	Support minimum MTU size 48 octets

	TSPC_L2CAP_3_4
	False (*)
	Support MTU size larger than 48 octets

	TSPC_L2CAP_3_5
	False (*)
	Support of flush timeout value for reliable
channel

	TSPC_L2CAP_3_6
	False (*)
	Support of flush timeout value for unreliable
channel

	TSPC_L2CAP_3_7
	False (*)
	Support of bi-directional quality of service
(QoS) option field

	TSPC_L2CAP_3_8
	False (*)
	Negotiate QoS service type

	TSPC_L2CAP_3_9
	False (*)
	Negotiate and support service type ‘No traffic’

	TSPC_L2CAP_3_10
	False (*)
	Negotiate and support service type ‘Best effort’

	TSPC_L2CAP_3_11
	False (*)
	Negotiate and support service type ‘Guaranteed’

	TSPC_L2CAP_3_12
	True
	Support minimum MTU size 23 octets

	TSPC_L2CAP_3_13
	False (*)
	Negotiate and support service type ‘No traffic’
for Extended Flow Specification

	TSPC_L2CAP_3_14
	False (*)
	Negotiate and support service type ‘Best Effort’
for Extended Flow Specification

	TSPC_L2CAP_3_15
	False (*)
	Negotiate and support service type ‘Guaranteed’
for Extended Flow Specification

	TSPC_L2CAP_3_16
	True
	Support Multiple Simultaneous LE Data Channels

SM PICS

PTS version: 6.4

* - different than PTS defaults

^ - field not available on PTS

M - mandatory

O - optional

Connection Roles

	Parameter Name
	Selected
	Description

	TSPC_SM_1_1
	True
	Master Role (Initiator) (C.1)

	TSPC_SM_1_2
	True
	Slave Role (Responder) (C.2)

Security Properties

	Parameter Name
	Selected
	Description

	TSPC_SM_2_1
	True
	Authenticated MITM protection (O)

	TSPC_SM_2_2
	True
	Unauthenticated no MITM protection (C.1)

	TSPC_SM_2_3
	True
	No security requirements (M)

	TSPC_SM_2_4
	False
	OOB supported (O)

	TSPC_SM_2_5
	(^)
	LE Secure Connections (C.2)

Encryption Key Size

	Parameter Name
	Selected
	Description

	TSPC_SM_3_1
	True
	Encryption Key Size Negotiation (M)

Pairing Method

	Parameter Name
	Selected
	Description

	TSPC_SM_4_1
	True
	Just Works (O)

	TSPC_SM_4_2
	True
	Passkey Entry (C.1)

	TSPC_SM_4_3
	False (*)
	Out of Band (C.1)

Security Initiation

	Parameter Name
	Selected
	Description

	TSPC_SM_5_1
	True
	Encryption Setup using STK (C.3)

	TSPC_SM_5_2
	True
	Encryption Setup using LTK (O)

	TSPC_SM_5_3
	True
	Slave Initiated Security (C.1)

	TSPC_SM_5_4
	True
	Slave Initiated Security - Master response(C.2)

Signing Algorithm

	Parameter Name
	Selected
	Description

	TSPC_SM_6_1
	True
	Signing Algorithm - Generation (O)

	TSPC_SM_6_2
	True
	Signing Algorithm - Resolving (O)

Key Distribution

	Parameter Name
	Selected
	Description

	TSPC_SM_7_1
	True
	Encryption Key (C.1)

	TSPC_SM_7_2
	False (*)
	Identity Key (C.2)

	TSPC_SM_7_3
	True
	Signing Key (C.3)

RFCOMM PICS

PTS version: 6.4

	
	different than PTS defaults

Protocol Version

	Parameter Name
	Selected
	Description

	TSPC_RFCOMM_0_1
	False
	RFCOMM 1.1 with TS 07.10

	TSPC_RFCOMM_0_2
	True (*)
	RFCOMM 1.2 with TS 07.10

Supported Procedures

	Parameter Name
	Selected
	Description

	TSPC_RFCOMM_1_1
	True (*)
	Initialize RFCOMM Session

	TSPC_RFCOMM_1_2
	True (*)
	Respond to Initialization of an RFCOMM
Session

	TSPC_RFCOMM_1_3
	True
	Shutdown RFCOMM Session

	TSPC_RFCOMM_1_4
	True
	Respond to a Shutdown of an RFCOMM
Session

	TSPC_RFCOMM_1_5
	True (*)
	Establish DLC

	TSPC_RFCOMM_1_6
	True (*)
	Respond to Establishment of a DLC

	TSPC_RFCOMM_1_7
	True
	Disconnect DLC

	TSPC_RFCOMM_1_8
	True
	Respond to Disconnection of a DLC

	TSPC_RFCOMM_1_9
	True
	Respond to and send MSC Command

	TSPC_RFCOMM_1_10
	True
	Initiate Transfer Information

	TSPC_RFCOMM_1_11
	True
	Respond to Test Command

	TSPC_RFCOMM_1_12
	False
	Send Test Command

	TSPC_RFCOMM_1_13
	True
	React to Aggregate Flow Control

	TSPC_RFCOMM_1_14
	True
	Respond to RLS Command

	TSPC_RFCOMM_1_15
	False
	Send RLS Command

	TSPC_RFCOMM_1_16
	True
	Respond to PN Command

	TSPC_RFCOMM_1_17
	True (*)
	Send PN Command

	TSPC_RFCOMM_1_18
	True (*)
	Send Non-Supported Command (NSC)
response

	TSPC_RFCOMM_1_19
	True
	Respond to RPN Command

	TSPC_RFCOMM_1_20
	False
	Send RPN Command

	TSPC_RFCOMM_1_21
	True (*)
	Closing Multiplexer by First Sending
a DISC Command

	TSPC_RFCOMM_1_22
	True
	Support of Credit Based Flow Control

Standard C Library

The kernel currently provides only the minimal subset of the standard C library
required to meet the kernel’s own needs, primarily in the areas of string
manipulation and display.

Applications that require a more extensive C library can either submit
contributions that enhance the existing library or substitute with a replacement
library.

The Zephyr SDK and other supported toolchains comes with a bare-metal C library
based on newlib that can be used with Zephyr by selecting the
CONFIG_NEWLIB_LIBC in the application configuration file. Part of the
support for newlib is a set of hooks available under
lib/libc/newlib/libc-hooks.c which integrates the c library with basic
kernel services.

Logging

	System Logging

	Kernel Event Logger

System Logging

The system log API provides a common interface to process messages issued by
developers. These messages are currently printed on the terminal but the API is
defined in a generic way.

This API can be deactivated through the Kconfig options, see
Global Kconfig Options.
This approach prevents impacting image size and execution time when the system
log is not needed.

Each of the four SYS_LOG_X macros correspond to a different logging level,
The logging macros activate when their logging level or higher is set.

There are two configuration categories: configurations per module and global
configurations. When logging is enabled globally, it works for modules. However,
modules can disable logging locally. Every module can specify its own logging
level. The module must define the SYS_LOG_LEVEL macro before
including the include/logging/sys_log.h header file to do so. Unless a global
override is set, the module logging level will be honored. The global override
can only increase the logging level. It cannot be used to lower module logging
levels that were previously set higher.

You can set a local domain to differentiate messages. When no domain is set,
then the [general] domain appears before the message. Define the
SYS_LOG_DOMAIN macro before including the include/logging/sys_log.h
header file to set the domain.

When several macros are active, the printed messages can be differentiated in
two ways: by a tag printed before the message or by ANSI colors. See the
CONFIG_SYS_LOG_SHOW_TAGS and CONFIG_SYS_LOG_SHOW_COLOR
Kconfig options for more information.

Define the SYS_LOG_NO_NEWLINE macro before including the
include/logging/sys_log.h header file to prevent macros appending a new line at the
end of the logging message.

Global Kconfig Options

These options can be found in the following path subsys/logging/Kconfig.

CONFIG_SYS_LOG: Global switch, turns on/off all system logging.

CONFIG_SYS_LOG_DEFAULT_LEVEL: Default level, sets the logging level
used by modules that are not setting their own logging level.

CONFIG_SYS_LOG_SHOW_TAGS: Globally sets whether level tags will be
shown on log or not.

CONFIG_SYS_LOG_SHOW_COLOR: Globally sets whether ANSI colors will be
used by the system log.

CONFIG_SYS_LOG_OVERRIDE_LEVEL: It overrides module logging level when
it is not set or set lower than the override value.

Example

The following macro:

SYS_LOG_WRN("hi!");

Will produce:

[general] [WRN] main: Hi!

For the above example to work at least one of the following settings must be
true:

	The CONFIG_SYS_LOG_DEFAULT_LEVEL is set to 2 or above and module
configuration is not set.

	The module configuration is set to 2 or above.

	The CONFIG_SYS_LOG_OVERRIDE_LEVEL is set to 2 or above.

APIs

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Kernel Event Logger

The kernel event logger records the occurrence of certain types of kernel
events, allowing them to be subsequently extracted and reviewed.
This capability can be helpful in profiling the operation of an application,
either for debugging purposes or for optimizing the performance the application.

	Concepts
	Event Formats

	Timestamps

	Implementation
	Retrieving An Event

	Adding a Custom Event Type

	Configuration Options

	Related Functions

	APIs
	Event Logger

	Kernel Event Logger

Concepts

The kernel event logger does not exist unless it is configured for an
application. The capacity of the kernel event logger is also configurable.
By default, it has a ring buffer that can hold up to 128 32-bit words
of event information.

The kernel event logger is capable of recording the following predefined
event types:

	Interrupts.

	Context switching of threads.

	Kernel sleep events (i.e. entering and exiting a low power state).

The kernel event logger only records the predefined event types it has been
configured to record. Each event type can be enabled independently.

An application can also define and record custom event types.
The information recorded for a custom event, and the times
at which it is recorded, must be implemented by the application.

All events recorded by the kernel event logger remain in its ring buffer
until they are retrieved by the application for review and analysis. The
retrieval and analysis logic must be implemented by the application.

重要

An application must retrieve the events recorded by the kernel event logger
in a timely manner, otherwise new events will be dropped once the event
logger’s ring buffer becomes full. A recommended approach is to use
a cooperative thread to retrieve the events, either on a periodic basis
or as its sole responsibility.

By default, the kernel event logger records all occurrences of all event types
that have been enabled. However, it can also be configured to allow an
application to dynamically start or stop the recording of events at any time,
and to control which event types are being recorded. This permits
the application to capture only the events that occur during times
of particular interest, thereby reducing the work needed to analyze them.

注解

The kernel event logger can also be instructed to ignore context switches
involving a single specified thread. This can be used to avoid recording
context switch events involving the thread that retrieves the events
from the kernel event logger.

Event Formats

Each event recorded by the kernel event logger consists of one or more
32-bit words of data that describe the event.

An interrupt event has the following format:

struct {
 u32_t timestamp; /* time of interrupt */
 u32_t interrupt_id; /* ID of interrupt */
};

A context-switch event has the following format:

struct {
 u32_t timestamp; /* time of context switch */
 u32_t context_id; /* ID of thread that was switched out */
};

A sleep event has the following format:

struct {
 u32_t sleep_timestamp; /* time when CPU entered sleep mode */
 u32_t wake_timestamp; /* time when CPU exited sleep mode */
 u32_t interrupt_id; /* ID of interrupt that woke CPU */
};

A custom event must have a type ID that does not conflict with
any existing predefined event type ID. The format of a custom event
is application-defined, but must contain at least one 32-bit data word.
A custom event may utilize a variable size, to allow different events
of a single type to record differing amounts of information.

Timestamps

By default, the timestamp recorded with each predefined event is obtained from
the kernel’s hardware clock. This 32-bit clock counts up
extremely rapidly, which means the timestamp value wraps around frequently.
(For example, the Lakemont APIC timer for Quark SE wraps every 134 seconds.)
This wraparound must be accounted for when analyzing kernel event logger data.
In addition, care must be taken when tickless idle is enabled, in case a sleep
duration exceeds 2^32 clock cycles.

If desired, the kernel event logger can be configured to record
a custom timestamp, rather than the default timestamp.
The application registers the callback function that generates the custom 32-bit
timestamp at run-time by calling sys_k_event_logger_set_timer().

Implementation

Retrieving An Event

An event can be retrieved from the kernel event logger in a blocking or
non-blocking manner using the following APIs:

	sys_k_event_logger_get()

	sys_k_event_logger_get_wait()

	sys_k_event_logger_get_wait_timeout()

In each case, the API also returns the type and size of the event, as well
as the event information itself. The API also indicates how many events
were dropped between the occurrence of the previous event and the retrieved
event.

The following code illustrates how a thread can retrieve the events
recorded by the kernel event logger.

u16_t event_id;
u8_t dropped_count;
u32_t data[3];
u8_t data_size;

while(1) {
 /* retrieve an event */
 data_size = SIZE32_OF(data);
 res = sys_k_event_logger_get_wait(&event_id, &dropped_count, data,
 &data_size);

 if (dropped_count > 0) {
 /* ... Process the dropped events count ... */
 }

 if (res > 0) {
 /* process the event */
 switch (event_id) {
 case KERNEL_EVENT_LOGGER_CONTEXT_SWITCH_EVENT_ID:
 /* ... Process the context switch event ... */
 break;
 case KERNEL_EVENT_LOGGER_INTERRUPT_EVENT_ID:
 /* ... Process the interrupt event ... */
 break;
 case KERNEL_EVENT_LOGGER_SLEEP_EVENT_ID:
 /* ... Process the sleep event ... */
 break;
 default:
 printf("unrecognized event id %d\n", event_id);
 }
 } else if (res == -EMSGSIZE) {
 /* ... Data array is too small to hold the event! ... */
 }
}

Adding a Custom Event Type

A custom event type must use an integer type ID that does not duplicate
an existing type ID. The type IDs for the predefined events can be found
in include/logging/kernel_event_logger.h. If dynamic recording of
events is enabled, the event type ID must not exceed 32.

Custom events can be written to the kernel event logger using the following
APIs:

	sys_k_event_logger_put()

	sys_k_event_logger_put_timed()

Both of these APIs record an event as long as there is room in the kernel
event logger’s ring buffer. To enable dynamic recording of a custom event type,
the application must first call sys_k_must_log_event() to determine
if event recording is currently active for that event type.

The following code illustrates how an application can write a custom
event consisting of two 32-bit words to the kernel event logger.

#define MY_CUSTOM_EVENT_ID 8

/* record custom event only if recording is currently wanted */
if (sys_k_must_log_event(MY_CUSTOM_EVENT_ID)) {
 u32_t data[2];

 data[0] = custom_data_1;
 data[1] = custom_data_2;

 sys_k_event_logger_put(MY_CUSTOM_EVENT_ID, data, ARRAY_SIZE(data));
}

The following code illustrates how an application can write a custom event
that records just a timestamp using a single 32-bit word.

#define MY_CUSTOM_TIME_ONLY_EVENT_ID 9

if (sys_k_must_log_event(MY_CUSTOM_TIME_ONLY_EVENT_ID)) {
 sys_k_event_logger_put_timed(MY_CUSTOM_TIME_ONLY_EVENT_ID);
}

Configuration Options

Related configuration options:

	CONFIG_KERNEL_EVENT_LOGGER

	CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH

	CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT

	CONFIG_KERNEL_EVENT_LOGGER_SLEEP

	CONFIG_KERNEL_EVENT_LOGGER_BUFFER_SIZE

	CONFIG_KERNEL_EVENT_LOGGER_DYNAMIC

	CONFIG_KERNEL_EVENT_LOGGER_CUSTOM_TIMESTAMP

Related Functions

The following kernel event logger APIs are provided by
kernel_event_logger.h:

	sys_k_event_logger_register_as_collector()

	sys_k_event_logger_get()

	sys_k_event_logger_get_wait()

	sys_k_event_logger_get_wait_timeout()

	sys_k_must_log_event()

	sys_k_event_logger_put()

	sys_k_event_logger_put_timed()

	sys_k_event_logger_get_mask()

	sys_k_event_logger_set_mask()

	sys_k_event_logger_set_timer()

APIs

Event Logger

An event logger is an object that can record the occurrence of significant
events, which can be subsequently extracted and reviewed.

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Kernel Event Logger

The kernel event logger records the occurrence of significant kernel events,
which can be subsequently extracted and reviewed.
(See Kernel Event Logger.)

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Networking

The networking section contains information regarding the network stack of the
Zephyr kernel. Use the information to understand the principles behind the
operation of the stacks and how they were implemented.

	Overview

	IP Stack Architecture

	Network Connectivity API

	BSD Sockets compatible API

	L2 Stack and Drivers

	Network Management API

	Network Application API

	Initialization

	Setup

	Client / Server Applications

	Network Buffers

	Networking with QEMU

Overview

Supported Features

The networking IP stack is modular and highly configurable via build-time
configuration options. You can minimize system memory consumption by enabling
only those network features required by your application. Almost all features
can be disabled if not needed.

	IPv6 The support for IPv6 is enabled by default. Various IPv6 sub-options
can be enabled or disabled depending on networking needs.
	Developer can set the number of unicast and multicast IPv6 addresses that
are active at the same time.

	The IPv6 address for the device can be set either statically or
dynamically using SLAAC (Stateless Address Auto Configuration) (RFC 4862).

	The system also supports multiple IPv6 prefixes and the maximum
IPv6 prefix count can be configured at build time.

	The IPv6 neighbor cache can be disabled if not needed, and its size can be
configured at build time.

	The IPv6 neighbor discovery support (RFC 4861) is enabled by default.

	Multicast Listener Discovery v2 support (RFC 3810) is enabled by default.

	IPv6 header compression (6lo) is available for IPv6 connectivity for
Bluetooth IPSP (RFC 7668) and IEEE 802.15.4 networks (RFC 4944).

	IPv4 The legacy IPv4 is supported by the networking stack. It cannot be
used by IEEE 802.15.4 or Bluetooth IPSP as those network technologies support
only IPv6. IPv4 can be used in ethernet based networks. By default IPv4
support is disabled.
	DHCP (Dynamic Host Configuration Protocol) client is supported (RFC 2131).

	The IPv4 address can also be configured manually. Static IPv4 addresses
are supported by default.

	Dual stack support. The networking stack allows a developer to configure
the system to use both IPv6 and IPv4 at the same time.

	UDP User Datagram Protocol (RFC 768) is supported. The developer can
send UDP datagrams (client side support) or create a listener to receive
UDP packets destined to certain port (server side support).

	TCP Transmission Control Protocol (RFC 793) is supported. Both server
and client roles can be used the the application. The amount of TCP sockets
that are available to applications can be configured at build time.

	BSD Sockets API Experimental support for a subset of a BSD Sockets
compatible API is implemented. Both blocking and non-blocking DGRAM (UDP)
amd STREAM (TCP) sockets are supported.

	HTTP Hypertext Transfer Protocol (RFC 2116) is supported. A simple
library is provided that applications can use. Sample applications are
implemented for http-client-sample and http-server-sample.
Both http-client-sample and http-server-sample can use
TLS (Transport Layer Security) v1.2 (RFC 5246) or SSL (Secure Sockets
Layer) v3.0 (RFC 6101) functionality to encrypt the network traffic.
The secured connections are provided by mbed library.

	MQTT Message Queue Telemetry Transport (ISO/IEC PRF 20922) is supported.
A sample mqtt-publisher-sample client application for MQTT v3.1.1 is
implemented.

	CoAP Constrained Application Protocol (RFC 7252) is supported. Both
Both zoap-client-sample and zoap-server-sample sample
applications are implemented. A coap-client-sample and
coap-server-sample using DTLS (Datagram Transport Layer Security)
(RFC 6347) are also implemented.

	LWM2M OMA Lightweight Machine-to-Machine Protocol (V1.0 Feb 2017) is
supported via the “Register Device” API (Register, De-Register and Update)
and has template implementations for Securty, Server, Device Management and
Firmware objects. DTLS and Bootstrap support are currently not supported.
lwm2m-client-sample implements the library as an example.

	RPL IPv6 Routing Protocol for Low-Power and Lossy Networks (RFC 6550)
is supported. RPL is an IPv6 based mesh routing protocol.

	DNS Domain Name Service (RFC 1035) client functionality is supported.
Applications can use an API to query domain name information or IP addresses
from the DNS server. Both IPv4 (A) and IPv6 (AAAA) records can be queried.

	Network Management API. Applications can use network management API to
listen management events generated by core stack when for example IP address
is added to the device, or network interface is coming up etc.

	Multiple Network Technologies. The Zephyr OS can be configured to
support multiple network technologies at the same time simply by enabling
them in Kconfig: for example, Ethernet and 802.15.4 support. Note that no
automatic IP routing functionality is provided between these technologies.
Applications can send data according to their needs to desired network
interface.

	Minimal Copy Network Buffer Management. It is possible to have minimal
copy network data path. This means that the system tries to avoid copying
application data when it is sent to the network. For some technologies it
is even possible to have zero-copy data path from application to device
driver.

Additionally these network technologies (link layers) are supported in
Zephyr OS v1.7 and later:

	IEEE 802.15.4

	Bluetooth

	Ethernet

	SLIP (IP over serial line). Used for testing with QEMU. It provides
ethernet interface to host system (like Linux) and test applications
can be run in Linux host and send network data to Zephyr OS device.

Source Tree Layout

The IP stack source code tree is organized as follows:

	subsys/net/ip/

	This is where the IP stack code is located.

	subsys/net/lib/

	Application-level protocols (DNS, MQTT, etc.) and additional stack
components (BSD Sockets, etc.).

	include/net/

	Public API header files. These are the header files applications need
to include to use IP networking functionality.

	samples/net/

	Sample networking code. This is a good reference to get started with
network application development.

	tests/net/

	Test applications. These applications are used to verify the
functionality of the IP stack, but are not the best
source for sample code (see samples/net instead).

IP Stack Architecture

High level overview of the IP stack

[image: Overview of the IP stack architecture]Network stack overview

The IP stack is layered and it consists of the following parts:

	Networking Application. This application uses the connectivity API to
manipulate a network connection, and management API to set network
related parameters such as starting a scan (when applicable),
setting IP address to a network interface, etc.

	Core IP stack. This provides implementations for
various protocols such as IPv6, IPv4, UDP, TCP, ICMPv4 and ICMPv6.

	Network interface abstraction layer. This provides functionality
that is common in all the network interfaces, such as acquiring
an IP address, etc.

	Generic L2 layer. This provides common API for sending and receiving
data to and from an actual network device.

	L2 network technology component. These components include Ethernet,
IEEE 802.15.4, Bluetooth, etc. Some of these technologies support IPv6
header compression (6LoWPAN), which is done in its own layer. For
example ARP for IPv4 is done in the Ethernet component.

	Network device driver. The actual low-level device driver handles the
physical sending or receiving of a network packet.

Network data flow

[image: Network data flow]Network data flow

The application typically consists of one or more tasks or threads
that execute the application logic. When using the network
connectivity APIs, following things will happen.

Data receiving (RX):

	A network data packet is received by a device driver.

	The device driver allocates enough network buffers to store the received
data. The network buffers are then passed to the RX FIFO
for further processing. The RX FIFO is used as a way to separate
the data processing pipeline (bottom-half) as the device driver is
running in interrupt context and it must do its processing very fast.

	The RX thread reads the RX FIFO and passes the data to the correct
L2 driver. After the L2 driver has checked the packet, the packet is
passed to L3 processing. The L3 layer checks if the packet is a proper
IPv6 or IPv4 packet. If the packet contains UDP or TCP data, it
is then sent to correct application via a function callback.
This also means that the application data processing in that callback
is run in thread context even if the actual application is running
in task context. The data processing in the application callback should
be done fast in order not to block the system too long.
There is only one RX thread in the system. The stack size of the RX
thread can be tweaked via Kconfig option but it should be kept as
small as possible. This also means that stack utilization in the
data processing callback should be minimized in order to avoid stack
overflow.

	The application will then receive the data, which is stored inside a chain
of net_bufs. The application now owns the data. After it has finished working
with it, the application should release the net_bufs data by calling
net_pkt_unref().

Data sending (TX):

	The application should use the connectivity API when the application is
ready to send data. The sent data is checked by the correct L2 layer module
and if everything is ok, the data is placed into the network interface TX
queue. The network interface is typically selected to be the same interface
for reply data packets or the interface is selected according to the routing
algorithm. The application should not free the data packet if it was
correctly placed into TX queue; the network driver will release the packet
after it is sent. If the connectivity API sending function returns an error
to the application, that means the packet was not sent correctly and the
application needs to free the packet.

	Each network interface has a dedicated TX queue used to send data to that
interface. A TX thread in the system reads all the TX queues and passes
that data to the correct L2 driver, for sending via the device driver.

	If the device driver is able to inject the network packet into the
network, then it will release the packet. Typically there are no
retransmits at this lower level so usually the packet is released
even if not sent correctly. This depends on the technology being used.

Network Connectivity API

Applications can use the connectivity API defined in net_context.h
to create a connection, send or receive data, and close a connection.
The same API can be used when working with UDP or TCP data.

The net_context API is similar to the BSD socket API and mapping between these
two is possible. The main difference between net_context API and BSD socket
API is that the net_context API uses the fragmented network buffers (net_buf)
defined in include/net/buf.h and BSD socket API uses linear memory buffers.

This example creates a simple server that listens to incoming UDP connections
and sends the received data back. You can download the example application
source file here connectivity-example-app.c [https://raw.githubusercontent.com/zephyrproject-rtos/zephyr/master/doc/subsystems/networking/connectivity-example-app.c]

This example application begins with some initialization. (Use this as an
example; you may need to do things differently in your own application.)

	 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	#define SYS_LOG_DOMAIN "example-app"
#define SYS_LOG_LEVEL SYS_LOG_LEVEL_DEBUG
#define NET_DEBUG 1

#include <zephyr.h>

#include <net/net_pkt.h>
#include <net/net_core.h>
#include <net/net_context.h>

#define MY_IP6ADDR { { { 0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0, \
			 0, 0, 0, 0, 0, 0, 0, 0x1 } } }
#define MY_PORT 4242

struct in6_addr in6addr_my = MY_IP6ADDR;
struct sockaddr_in6 my_addr6 = { 0 };
struct net_context *context;
int ret;

struct nano_sem quit_lock;

static inline void quit(void)
{
	nano_sem_give(&quit_lock);
}

static inline void init_app(void)
{
	nano_sem_init(&quit_lock);

	/* Add our address to the network interface */
	net_if_ipv6_addr_add(net_if_get_default(), &in6addr_my,
			 NET_ADDR_MANUAL, 0);
}

void main(void)
{
	NET_INFO("Run sample application");

	init_app();

	create_context();

	bind_address();

	receive_data();

	nano_sem_take(&quit_lock, TICKS_UNLIMITED);

	close_context();

	NET_INFO("Stopping sample application");
}

After initialization, first thing application needs to create a context.
Context is similar to a socket.

	57
58
59
60
61
62
63
64
65
66

	static int create_context(void)
{
	ret = net_context_get(AF_INET6, SOCK_DGRAM, IPPROTO_UDP, &context);
	if (!ret) {
		NET_ERR("Cannot get context (%d)", ret);
		return ret;
	}

	return 0;
}

Then you need to define the local end point for a connection.

	69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

	static int bind_address(void)
{
	net_ipaddr_copy(&my_addr6.sin6_addr, &in6addr_my);
	my_addr6.sin6_family = AF_INET6;
	my_addr6.sin6_port = htons(MY_PORT);

	ret = net_context_bind(context, (struct sockaddr *)&my_addr6);
	if (ret < 0) {
		NET_ERR("Cannot bind IPv6 UDP port %d (%d)",
			ntohs(my_addr6.sin6_port), ret);
		return ret;
	}

	return 0;
}

Wait until the connection data is received.

	 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

	#define MAX_DBG_PRINT 64

static struct net_buf *udp_recv(const char *name,
				struct net_context *context,
				struct net_buf *buf)
{
	struct net_buf *reply_buf, *frag, *tmp;
	int header_len, recv_len, reply_len;

	NET_INFO("%s received %u bytes", name,
	 net_pkt_appdatalen(buf));

	reply_buf = net_pkt_get_tx(context, K_FOREVER);

	NET_ASSERT(reply_buf);

	recv_len = net_buf_frags_len(buf->frags);

	tmp = buf->frags;

	/* First fragment will contain IP header so move the data
	 * down in order to get rid of it.
	 */
	header_len = net_pkt_appdata(buf) - tmp->data;

	NET_ASSERT(header_len < CONFIG_NET_BUF_DATA_SIZE);

	net_buf_pull(tmp, header_len);

	while (tmp) {
		frag = net_pkt_get_data(context, K_FOREVER);

		memcpy(net_buf_add(frag, tmp->len), tmp->data, tmp->len);

		net_buf_frag_add(reply_buf, frag);

		net_buf_frag_del(buf, tmp);

		tmp = buf->frags;
	}

	reply_len = net_buf_frags_len(reply_buf->frags);

	NET_ASSERT_INFO(recv_len != reply_len,
			"Received %d bytes, sending %d bytes",
			recv_len, reply_len);

	return reply_buf;
}

static inline void udp_sent(struct net_context *context,
			 int status,
			 void *token,
			 void *user_data)
{
	if (!status) {
		NET_INFO("Sent %d bytes", POINTER_TO_UINT(token));
	}
}

static inline void set_dst_addr(sa_family_t family,
				struct net_buf *buf,
				struct sockaddr *dst_addr)
{
	if (family == AF_INET6) {
		net_ipaddr_copy(&net_sin6(dst_addr)->sin6_addr,
				&NET_IPV6_HDR(buf)->src);
		net_sin6(dst_addr)->sin6_family = AF_INET6;
		net_sin6(dst_addr)->sin6_port = NET_UDP_HDR(buf)->src_port;
	}
}

static void udp_received(struct net_context *context,
			 struct net_buf *buf,
			 int status,
			 void *user_data)
{
	struct net_buf *reply_buf;
	struct sockaddr dst_addr;
	sa_family_t family = net_pkt_family(buf);
	static char dbg[MAX_DBG_PRINT + 1];
	int ret;

	snprintf(dbg, MAX_DBG_PRINT, "UDP IPv%c",
		 family == AF_INET6 ? '6' : '4');

	set_dst_addr(family, buf, &dst_addr);

	reply_buf = udp_recv(dbg, context, buf);

	net_pkt_unref(buf);

	ret = net_context_sendto(reply_buf, &dst_addr, udp_sent, 0,
				 UINT_TO_POINTER(net_buf_frags_len(reply_buf)),
				 user_data);
	if (ret < 0) {
		NET_ERR("Cannot send data to peer (%d)", ret);

		net_pkt_unref(reply_buf);

		quit();
	}
}

static int receive_data(void)
{
	ret = net_context_recv(context, udp_received, 0, NULL);
	if (ret < 0) {
		NET_ERR("Cannot receive IPv6 UDP packets");

		quit();

		return ret;
	}

	return 0;
}

Close the context when finished.

	204
205
206
207
208
209
210
211
212
213
214

	/* Context close */
static int close_context(void)
{
	ret = net_context_put(context);
	if (ret < 0) {
		NET_ERR("Cannot close IPv6 UDP context");
		return ret;
	}

	return 0;
}

BSD Sockets compatible API

Zephyr offers an implementation of a subset of the BSD Sockets API (a part
of the POSIX standard). This API allows to reuse existing programming experience
and port existing simple networking applications to Zephyr.

Here are the key requirements and concepts which governed BSD Sockets
compatible API implementation for Zephyr:

	Should have minimal overhead, similar to the requirement for other
Zephyr subsystems.

	Should be implemented on top of
native networking API to keep modular
design.

	Should be namespaced by default, to avoid name conflicts with well-known
names like close(), which may be part of libc or other POSIX
compatibility libraries. If enabled, should also expose native POSIX
names.

BSD Sockets compatible API is enabled using CONFIG_NET_SOCKETS
config option and implements the following operations: socket(),
close(), recv(), send(), connect(), bind(),
listen(), fcntl() (to set non-blocking mode), poll().

Based on the namespacing requirements above, these operations are by
default exposed as functions with zsock_ prefix, e.g.
zsock_socket() and zsock_close(). If the config option
CONFIG_NET_SOCKETS_POSIX_NAMES is defined, all the functions
will be also exposed as aliases without the prefix. This includes the
functions like close() and fcntl() (which may conflict with
functions in libc or other libraries, for example, with the filesystem
libraries).

The native BSD Sockets API uses file descriptors to represent sockets. File descriptors
are small integers, consecutively assigned from zero. Internally, there is usually a table
mapping file descriptors to internal object pointers. For memory efficiency reasons, the
Zephyr BSD Sockets compatible API is devoid of such a table. Instead, net_context
pointers, cast to an int, are used to represent sockets. Thus, socket identifiers aren’t
really small integers, so the select() operation is not available, as it depends on the
“small int” property of file descriptors. Instead of using select() then, use the poll()
operation, which is generally more efficient.

The BSD Sockets API (and the POSIX API in general) also treat negative file
descriptors values in a special way (such values usually mean an
error). As the Zephyr API uses a pointer value cast to an int for file descriptors, it means
that the pointer should not have the highest bit set, in other words,
pointers should not refer to the second (highest) part of the address space.
For many CPU architectures and SoCs Zephyr supports, user RAM is
located in the lower half, so the above condition is satisfied. If
you face an issue with some SoC because of this, please report it to the Zephyr bug
tracker or mailing list. The decision to use pointers to represent
sockets might be reworked in the future.

The final entailment of the design requirements above is that the Zephyr
API aggressively employs the short-read/short-write property of the POSIX API
whenever possible (to minimize complexity and overheads). POSIX allows
for calls like recv() and send() to actually process (receive
or send) less data than requested by the user (on STREAM type sockets).
For example, a call recv(sock, 1000, 0) may return 100,
meaning that only 100 bytes were read (short read), and the application
needs to retry call(s) to read the remaining 900 bytes.

L2 Stack and Drivers

The L2 stack is designed to hide the whole networking link-layer part
and the related device drivers from the higher IP stack. This is made
through a unique object known as the “network interface object”:
struct net_if declared in include/net/net_if.h.

The IP layer is unaware of implementation details beyond the net_if
object and the generic API provided by the L2 layer in
include/net/net_l2.h as struct net_l2.

Only the L2 layer can talk to the device driver, linked to the net_if
object. The L2 layer dictates the API provided by the device driver,
specific for that device, and optimized for working together.

Currently, there are L2 layers for Ethernet, IEEE 802.15.4 Soft-MAC,
Bluetooth IPSP, and a dummy one, which is a generic layer example that
can be used as a template for writing a new one.

L2 layer API

In order to create an L2 layer, or even a driver for a specific L2
layer, one needs to understand how the IP layer interacts with it and
how the L2 layer is supposed to behave. The generic L2 API has 3
functions:

	recv: All device drivers, once they receive a packet which they put
into a struct net_pkt, will push this buffer to the IP
core stack via net_recv_data(). At this point, the IP core
stack does not know what to do with it. Instead, it passes the
buffer along to the L2 stack’s recv() function for handling. The L2
stack does what it needs to do with the packet, for example, parsing
the link layer header, or handling link-layer only packets. The
recv() function will return NET_DROP in case of an erroneous packet,
NET_OK if the packet was fully consumed by the L2, or NET_CONTINUE
if the IP stack should then handle it as an IP packet.

	reserve: Prior to creating any network buffer content, the Zephyr
core stack needs to know how much dedicated buffer space is needed
for the L2 layer (for example, space for the link layer header). This
reserve function returns the number of bytes needed.

	send: Similar to recv, the IP core stack will call this function to
actually send a packet. All relevant link-layer content will be
generated and added by this function. As for recv, send returns a
verdict and can decide to drop the packet via NET_DROP if something
wrong happened, or will return NET_OK.

Network Device drivers

Network device drivers fully follows Zephyr device driver model as a
basis. Please refer to Device Drivers and Device Model.

There are, however, two differences:

	the driver_api pointer must point to a valid struct
net_if_api pointer.

	The network device driver must use NET_DEVICE_INIT_INSTANCE(). This
macro will call the DEVICE_AND_API_INIT() macro, and also
instantiate a unique struct net_if related to the created
device driver instance.

Implementing a network device driver depends on the L2 stack it
belongs to: Ethernet, IEEE 802.15.4, etc. In the next section, we will
describe how a device driver should behave when receiving or sending a
packet. The rest is really hardware dependent and thus does not need
to be detailed here.

Ethernet device driver

On reception, it is up to the device driver to fill-in the buffer with
as many data fragments as required. The buffer itself is a
struct net_pkt and should be allocated through
net_pkt_get_reserve_rx(0)(). Then all fragments will be
allocated through net_pkt_get_reserve_data(0)(). Of course
the amount of required fragments depends on the size of the received
packet and on the size of a fragment, which is given by
CONFIG_NET_BUF_DATA_SIZE.

Note that it is not up to the device driver to decide on the
link-layer space to be reserved in the buffer. Hence the 0 given as
parameter here. The Ethernet L2 layer will update such information
once the packet’s Ethernet header has been successfully parsed.

In case net_recv_data() call fails, it will be up to the
device driver to unreference the buffer via
net_pkt_unref().

On sending, it is up to the device driver to send the buffer all at
once, with all the fragments.

In case of a fully successful packet transmission only, the device
driver must unreference the buffer via net_pkt_unref().

Each Ethernet device driver will need, in the end, to call
NET_DEVICE_INIT_INSTANCE() like this:

NET_DEVICE_INIT_INSTANCE(...,
 CONFIG_ETH_INIT_PRIORITY
 &the_valid_net_if_api_instance,
 ETHERNET_L2,
 NET_L2_GET_CTX_TYPE(ETHERNET_L2), 1500);

IEEE 802.15.4 device driver

Device drivers for IEEE 802.15.4 L2 work basically the same as for
Ethernet. What has been described above, especially for recv, applies
here as well. There are two specific differences however:

	It requires a dedicated device driver API: struct
ieee802154_radio_api, which overloads struct
net_if_api. This is because 802.15.4 L2 needs more from the device
driver than just send and recv functions. This dedicated API is
declared in include/net/ieee802154_radio.h. Each and every IEEE
802.15.4 device driver must provide a valid pointer on such
relevantly filled-in API structure.

	Sending a packet is slightly particular. IEEE 802.15.4 sends
relatively small frames, 127 bytes all inclusive: frame header,
payload and frame checksum. Buffer fragments are meant to fit such
frame size limitation. But a buffer containing an IPv6/UDP packet
might have more than one fragment. In the Ethernet device driver, it
is up to the driver to handle all fragments. IEEE 802.15.4 drivers
handle only one fragment at a time. This is why the struct
ieee802154_radio_api requires a tx function pointer which differs
from the struct net_if_api send function pointer.
Instead, the IEEE 802.15.4 L2, provides a generic
ieee802154_radio_send() meant to be given as
struct net_if send function. It turn, the implementation
of ieee802154_radio_send() will ensure the same behavior:
sending one fragment at a time through struct
ieee802154_radio_api tx function, and unreferencing the buffer
only when all the transmission were successful.

Each IEEE 802.15.4 device driver, in the end, will need to call
NET_DEVICE_INIT_INSTANCE() that way:

NET_DEVICE_INIT_INSTANCE(...,
 the_device_init_prio,
 &the_valid_ieee802154_radio_api_instance,
 IEEE802154_L2,
 NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);

Network Management API

The Network Management APIs allow applications, as well as network
layer code itself, to call defined network routines at any level in
the IP stack, or receive notifications on relevant network events. For
example, by using these APIs, code can request a scan be done on a
WiFi- or Bluetooth-based network interface, or request notification if
a network interface IP address changes.

The Network Management API implementation is designed to save memory
by eliminating code at build time for management routines that are not
used. Distinct and statically defined APIs for network management
procedures are not used. Instead, defined procedure handlers are
registered by using a NET_MGMT_REGISTER_REQUEST_HANDLER
macro. Procedure requests are done through a single net_mgmt() API
that invokes the registered handler for the corresponding request.

The current implementation is experimental and may change and improve
in future releases.

Requesting a defined procedure

All network management requests are of the form
net_mgmt(mgmt_request, ...). The mgmt_request parameter is a bit
mask that tells which stack layer is targeted, if a net_if object is
implied, and the specific management procedure being requested. The
available procedure requests depend on what has been implemented in
the stack.

To avoid extra cost, all net_mgmt() calls are direct. Though this
may change in a future release, it will not affect the users of this
function.

Listening to network event

You can receive notifications on network events by registering a
callback function and specifying an event mask used to match one or
more events that are relevant.

Two functions are available, net_mgmt_add_event_callback() for
registering the callback function, and
net_mgmt_del_event_callback()
for unregistering. A helper function, net_mgmt_init_event_cb(), can
be used to ease the initialization of the callback structure.

When an event is raised that matches a registered event mask, the
associated callback function is invoked with the actual event
code. This makes it possible for different events to be handled by the
same callback function, if desired.

See an example of registering callback functions and using the network
management API in test/net/mgmt/src/mgmt.c.

Defining a network management procedure

You can provide additional management procedures specific to your
stack implementation by defining a handler and registering it with an
associated mgmt_request code.

Management request code are defined in relevant places depending on
the targeted layer or eventually, if l2 is the layer, on the
technology as well. For instance, all IP layer management request code
will be found in the include/net/net_mgmt.h header file. But in case
of an L2 technology, let’s say Ethernet, these would be found in
include/net/ethernet.h

You define your handler modeled with this signature:

static int your_handler(u32_t mgmt_event, struct net_if *iface,
 void *data, size_t len);

and then register it with an associated mgmt_request code:

NET_MGMT_REGISTER_REQUEST_HANDLER(<mgmt_request code>, your_handler);

This new management procedure could then be called by using:

net_mgmt(<mgmt_request code>, ...);

Signaling a network event

You can signal a specific network event using the net_mgmt_notify()
function and provide the network event code. See
include/net/net_mgmt.h for details. As for the management request
code, event code can be also found on specific L2 technology headers,
for example include/net/ieee802154.h would be the right place if
802.15.4 L2 is the technology one wants to listen to events.

Network Application API

The Network Application (net-app) API allows applications to:

	Initialize

	The application for networking use. This means, for example,
that if the application needs to have an IPv4 address, and if DHCPv4 is
enabled, then the net-app API will make sure that the device will get an
IPv4 address before the application is started.

	Set

	Various options for the networking subsystem. This means that if the
user has set options like IP addresses, IEEE 802.15.4 channel etc. in the
project configuration file, then those settings are applied to the system
before the application starts.

	Create

	A simple TCP/UDP server or client application. The net-app API
has functions that make it easy to create a simple TCP or UDP based network
application. The net-app API also provides transparent TLS and DTLS support
for the application.

The net-app API functionality is enabled by CONFIG_NET_APP option.
The current net-app API implementation is still experimental and may change and
improve in future releases.

Initialization

The net-app API provides a net_app_init() function that can
configure the networking subsystem for the application. The following
configuration options control this configuration:

	CONFIG_NET_APP_AUTO_INIT

	automatically configures the system according to other configuration options.
The user does not need to call net_app_init() in this case as that
function will be automatically called when the system boots. This option is
enabled by default.

	CONFIG_NET_APP_INIT_TIMEOUT

	specifies how long to wait for the network configuration during the system
boot. For example, if DHCPv4 is enabled, and if the IPv4 address discovery
takes too long or the DHCPv4 server is not found, the system will resume
booting after this number of seconds.

	CONFIG_NET_APP_NEED_IPV6

	specifies that the application needs IPv6 connectivity. The
net_app_init() function will wait until it is able to setup an
IPv6 address for the system before continuing. This means that the IPv6
duplicate address detection (DAD) has finished and the system has properly
setup the IPv6 address.

	CONFIG_NET_APP_NEED_IPV6_ROUTER

	specifies that the application needs IPv6 router connectivity; i.e., it needs
access to external networks (such as the Internet). The
net_app_init() function will wait until it receives a router
advertisement (RA) message from the IPv6 router before continuing.

	CONFIG_NET_APP_NEED_IPV4

	specifies that the application needs IPv4 connectivity. The
net_app_init() function will wait, unless a static IP address is
configured, until it is able to setup an IPv4 address for the network
subsystem.

Setup

Various system level network configuration options can be added to the project
configuration file. These settings are enabled by the
CONFIG_NET_APP_SETTINGS configuration option. This option is disabled
by default, and other net-app options may also be disabled by default if
generic support for the networking feature is disabled. For example, the IPv6
net-app options are only available if generic IPv6 support is enabled.

	CONFIG_NET_APP_MY_IPV6_ADDR

	This option sets a static IPv6 address for the system. This is typically only
useful in device testing as normally the system should use SLAAC (IPv6
Stateless Address Auto Configuration), which is enabled by default in the
system. The system can be configured to use multiple IPv6 addresses; this is
controlled by the CONFIG_NET_IF_UNICAST_IPV6_ADDR_COUNT
configuration option.

	CONFIG_NET_APP_PEER_IPV6_ADDR

	This option specifies what is the peer device IPv6 address. This is only
useful when testing client/server type applications. This peer address is
typically used as a parameter when calling net_app_connect().

	CONFIG_NET_APP_MY_IPV4_ADDR

	This option sets a static IPv4 address for the system. This is typically
useful only in device testing as normally the system should use DHCPv4 to
discover the IPv4 address.

	CONFIG_NET_APP_PEER_IPV4_ADDR

	This option specifies what is the peer device IPv4 address. This is only
useful when testing client/server type applications. This peer address is
typically used as a parameter when connecting to other device.

The following options are only available if IEEE 802.15.4 wireless network
technology support is enabled.

	CONFIG_NET_APP_IEEE802154_DEV_NAME

	This option specifies the name of the IEEE 802.15.4 device.

	CONFIG_NET_APP_IEEE802154_PAN_ID

	This option specifies the used PAN identifier.
Note that the PAN id can be changed at runtime if needed.

	CONFIG_NET_APP_IEEE802154_CHANNEL

	This option specifies the used radio channel.
Note that the used channel can be changed at runtime if needed.

	CONFIG_NET_APP_IEEE802154_RADIO_TX_POWER

	This option specifies the initial radio TX power level. The TX power level can
be changed at runtime if needed.

	CONFIG_NET_APP_IEEE802154_SECURITY_KEY

	This option specifies the initially used security key. The security key can be
changed at runtime if needed.

	CONFIG_NET_APP_IEEE802154_SECURITY_KEY_MODE

	This option specifies the initially used security key mode. The security key
mode can be changed at runtime if needed.

	CONFIG_NET_APP_IEEE802154_SECURITY_LEVEL

	This option specifies the initially used security level. The used security
level can be changed at runtime if needed.

Client / Server Applications

The net-app API provides functions that enable the application to create
client / server applications easily. If needed, the applications can
have the communication secured by TLS (for TCP connections) or DTLS (for
UDP connections) automatically.

A simple TCP server application would make the following net-app API
function calls:

	net_app_init_tcp_server() to configure a local address and TCP
port.

	net_app_set_cb() to configure callback functions to invoke in
response to events, such as data reception.

	net_app_server_tls() will optionally setup the system for secured
connections. To enable the TLS server, also call the
net_app_server_tls_enable() function.

	net_app_listen() will start listening for new client connections.

Creating a UDP server is also very easy:

	net_app_init_udp_server() to configure a local address and UDP
port.

	net_app_set_cb() to configure callback functions to invoke in
response to events, such as data reception.

	net_app_server_tls() will optionally setup the system for secured
connections. To enable the DTLS server, also call the
net_app_server_tls_enable() function.

	net_app_listen() will start listening for new client connections.

If the server wants to stop listening for connections, it can call
net_app_release(). After this, if the application wants to start
listening for incoming connections again, it must call the server
initialization functions.

For TLS/DTLS connections, the server can be disabled by a call to
net_app_server_tls_disable(). There are separate enable/disable
functions for TLS support because we need a separate crypto thread for calling
mbedtls crypto API functions. The enable/disable TLS functions will
either create the TLS thread or kill it.

A simple TCP client application would make the following net-app API
function calls:

	net_app_init_tcp_client() to configure a local address, peer
address and TCP port. If the DNS resolver support is enabled in the
project configuration file, then the peer address can be given as a hostname,
and the API tries to resolve it to IP address before connecting.

	net_app_set_cb() to configure callback functions to invoke in
response to events, such as data reception.

	net_app_client_tls() will optionally setup the system for secured
connections. The TLS crypto thread will be automatically created when the
application calls net_app_connect() function.

	net_app_connect() will initiate a new connection to the peer host.

Creating a UDP client is also very easy:

	net_app_init_udp_client() to configure a local address, peer
address and UDP port. If peer name is a hostname, then it will be
automatically resolved to IP address if DNS resolver is enabled.

	net_app_set_cb() to configure callback functions to invoke in
response to events, such as data reception.

	net_app_client_tls() will optionally setup the system for secured
connections. The DTLS crypto thread will be automatically created when the
application calls net_app_connect() function.

	net_app_connect() will initiate a new connection to the peer host.
As the UDP is connectionless protocol, this function is very simple and it
will just call the connected callback if that is defined.

As both the echo_server and echo_client applications use net-app API
functions, please see those applications for more detailed usage examples.

The net-tools [https://github.com/zephyrproject-rtos/net-tools] project has information how to test the system if TLS and
DTLS support is enabled. See the README file in that project for more
information.

Network Buffers

Network buffers are a core concept of how the networking stack
(as well as the Bluetooth stack) pass data around. The API for them is
defined in include/net/buf.h.

Creating buffers

Network buffers are created by first defining a pool of them:

NET_BUF_POOL_DEFINE(pool_name, buf_count, buf_size, user_data_size, NULL);

The pool is a static variable, so if it’s needed to be exported to
another module a separate pointer is needed.

Once the pool has been defined, buffers can be allocated from it with:

buf = net_buf_alloc(&pool_name, timeout);

There is no explicit initialization function for the pool or its
buffers, rather this is done implicitly as net_buf_alloc() gets
called.

If there is a need to reserve space in the buffer for protocol headers
to be prepended later, it’s possible to reserve this headroom with:

net_buf_reserve(buf, headroom);

In addition to actual protocol data and generic parsing context, network
buffers may also contain protocol-specific context, known as user data.
Both the maximum data and user data capacity of the buffers is
compile-time defined when declaring the buffer pool.

The buffers have native support for being passed through k_fifo kernel
objects. This is a very practical feature when the buffers need to be
passed from one thread to another. However, since a net_buf may have a
fragment chain attached to it, instead of using the k_fifo_put()
and k_fifo_get() APIs, special net_buf_put() and
net_buf_get() APIs must be used when passing buffers through
FIFOs. These APIs ensure that the buffer chains stay intact.

Common Operations

The network buffer API provides some useful helpers for encoding and
decoding data in the buffers. To fully understand these helpers it’s
good to understand the basic names of operations used with them:

	Add

	Add data to the end of the buffer. Modifies the data length value
while leaving the actual data pointer intact. Requires that there is
enough tailroom in the buffer. Some examples of APIs for adding data:

void *net_buf_add(struct net_buf *buf, size_t len);
u8_t *net_buf_add_u8(struct net_buf *buf, u8_t value);
void net_buf_add_le16(struct net_buf *buf, u16_t value);
void net_buf_add_le32(struct net_buf *buf, u32_t value);

	Push

	Prepend data to the beginning of the buffer. Modifies both the data
length value as well as the data pointer. Requires that there is
enough headroom in the buffer. Some examples of APIs for pushing data:

void *net_buf_push(struct net_buf *buf, size_t len);
void net_buf_push_u8(struct net_buf *buf, u8_t value);
void net_buf_push_le16(struct net_buf *buf, u16_t value);

	Pull

	Remove data from the beginning of the buffer. Modifies both the data
length value as well as the data pointer. Some examples of APIs for
pulling data:

void *net_buf_pull(struct net_buf *buf, size_t len);
u8_t net_buf_pull_u8(struct net_buf *buf);
u16_t net_buf_pull_le16(struct net_buf *buf);
u32_t net_buf_pull_le32(struct net_buf *buf);

The Add and Push operations are used when encoding data into the buffer,
whereas Pull is used when decoding data from a buffer.

Reference Counting

Each network buffer is reference counted. The buffer is initially
acquired from a free buffers pool by calling net_buf_alloc(),
resulting in a buffer with reference count 1. The reference count can be
incremented with net_buf_ref() or decremented with
net_buf_unref(). When the count drops to zero the buffer is
automatically placed back to the free buffers pool.

Networking with QEMU

This page describes how to set up a “virtual” networking between a (Linux) host
and a Zephyr application running in a QEMU virtual machine (built for Zephyr
targets like qemu_x86, qemu_cortex_m3, etc.) In this example, the
echo_server sample application from Zephyr source distribution is run in
QEMU. The QEMU instance is connected to Linux host using serial port and SLIP is
used to transfer data between Zephyr and Linux (over a chain of virtual
connections).

Prerequisites

On the Linux Host you need to fetch Zephyr net-tools project, which is located
in a separate git repository:

$ git clone https://github.com/zephyrproject-rtos/net-tools
$ cd net-tools
$ make

注解

If you get error about AX_CHECK_COMPILE_FLAG, install package autoconf-archive
package on Debian/Ubuntu.

Basic Setup

For the steps below, you will need at least 4 terminal windows:

	Terminal #1 is your usual Zephyr development terminal, with Zephyr environment
initialized.

	Terminals #2, #3, #4 - fresh terminal windows with net-tools being the current
directory (“cd net-tools”)

Step 1 - Create helper socket

Before starting QEMU with network emulation, a Unix socket for the emulation
should be created.

In terminal #2, type:

$./loop-socat.sh

Step 2 - Start TAP device routing daemon

In terminal #3, type:

$ sudo ./loop-slip-tap.sh

Step 3 - Start app in QEMU

Build and start the echo_server sample application.

In terminal #1, type:

$ cd samples/net/echo_server
$ make pristine && make run

If you see error from QEMU about unix:/tmp/slip.sock, it means you missed Step 1
above.

Step 4 - Run apps on host

Now in terminal #4, you can run various tools to communicate with the
application running in QEMU.

You can start with pings:

$ ping 192.0.2.1
$ ping6 2001:db8::1

For example, using netcat (“nc”) utility, connecting using UDP:

$ echo foobar | nc -6 -u 2001:db8::1 4242
foobar

$ echo foobar | nc -u 192.0.2.1 4242
foobar

If echo_server is compiled with TCP support (now enabled by default for
echo_server sample, CONFIG_NET_TCP=y):

$ echo foobar | nc -6 -q2 2001:db8::1 4242
foobar

注解

You will need to Ctrl+C manually.

You can also use the telnet command to achieve the above.

Step 5 - Stop supporting daemons

When you are finished with network testing using QEMU, you should stop
any daemons or helpers started in the initial steps, to avoid possible
networking or routing problems such as address conflicts in local network
interfaces. For example, you definitely need to stop them if you switch
from testing networking with QEMU to using real hardware. For example,
there was a report of an airport WiFi connection not working during
travel due to an address conflict.

To stop the daemons, just press Ctrl+C in the corresponding terminal windows
(you need to stop both loop-slip-tap.sh and loop-socat.sh).

Setting up NAT/masquerading to access Internet

To access Internet from a custom application running in a QEMU, NAT
(masquerading) should be set up for QEMU’s source address. Assuming 192.0.2.1 is
used, the following command should be run as root:

$ iptables -t nat -A POSTROUTING -j MASQUERADE -s 192.0.2.1

Additionally, IPv4 forwarding should be enabled on host, and you may need to
check that other firewall (iptables) rules don’t interfere with masquerading.

Network connection between two QEMU VMs

Unlike VM-Host setup described above, VM-VM setup is automatic - for sample
applications which support such mode such as the echo_server and echo_client
samples, you will need 2 terminal windows, set up for Zephyr development.

Terminal #1:

$ cd samples/net/echo_server
$ make server

This will start QEMU, waiting for connection from a client QEMU.

Terminal #2:

$ cd samples/net/echo_client
$ make client

This will start 2nd QEMU instance, and you should see logging of data sent and
received in both.

Running multiple QEMU VMs of the same sample

If you find yourself needing to run multiple instances of the same Zephyr
sample application, which do not need to be able to talk to each other, the
QEMU_INSTANCE argument is what you need.

Start socat and tunslip6 manually (avoiding loop-x.sh scripts) for as many
instances as you want. Use the following as a guide, replacing MAIN or OTHER.

Terminal #1:

$ socat PTY,link=/tmp/slip.devMAIN UNIX-LISTEN:/tmp/slip.sockMAIN
$ $ZEPHYR_BASE/../net-tools/tunslip6 -t tapMAIN -T -s /tmp/slip.devMAIN \
 2001:db8::1/64
Now run Zephyr
$ make run QEMU_INSTANCE=MAIN

Terminal #2:

$ socat PTY,link=/tmp/slip.devOTHER UNIX-LISTEN:/tmp/slip.sockOTHER
$ $ZEPHYR_BASE/../net-tools/tunslip6 -t tapOTHER -T -s /tmp/slip.devOTHER \
 2001:db8::1/64
$ make run QEMU_INSTANCE=OTHER

Power Management

Zephyr RTOS power management subsystem provides several means for a system
integrator to implement power management support that can take full
advantage of the power saving features of SOCs.

Terminology

	SOC interface

	This is a general term for the components that have knowledge of the
SOC and provide interfaces to the hardware features. It will abstract
the SOC specific implementations to the applications and the OS.

	CPU LPS (Low Power State)

	Refers to any one of the low power states supported by the CPU. The CPU is
usually powered on while the clocks are power gated.

	Active State

	The CPU and clocks are powered on. This is the normal operating state when
the system is running.

	Deep Sleep State

	The CPU is power gated and loses context. Most peripherals would also be
power gated. RAM is selectively retained.

	SOC Power State

	SOC Power State describes processor and device power states implemented at
the SOC level. Deep Sleep State is an example of SOC Power State.

	Idle Thread

	A system thread that runs when there are no other threads ready to run.

	Power gating

	Power gating reduces power consumption by shutting off current to blocks of
the integrated circuit that are not in use.

Overview

The interfaces and APIs provided by the power management subsystem
are designed to be architecture and SOC independent. This enables power
management implementations to be easily adapted to different SOCs and
architectures. The kernel does not implement any power schemes of its own, giving
the system integrator the flexibility of implementing custom power schemes.

The architecture and SOC independence is achieved by separating the core
infrastructure and the SOC specific implementations. The SOC specific
implementations are abstracted to the application and the OS using hardware
abstraction layers.

The power management features are classified into the following categories.

	Tickless Idle

	System Power Management

	Device Power Management

Tickless Idle

This is the name used to identify the event-based idling mechanism of the
Zephyr RTOS kernel scheduler. The kernel scheduler can run in two modes. During
normal operation, when at least one thread is active, it sets up the system
timer in periodic mode and runs in an interval-based scheduling mode. The
interval-based mode allows it to time slice between tasks. Many times, the
threads would be waiting on semaphores, timeouts or for events. When there
are no threads running, it is inefficient for the kernel scheduler to run
in interval-based mode. This is because, in this mode the timer would trigger
an interrupt at fixed intervals causing the scheduler to be invoked at each
interval. The scheduler checks if any thread is ready to run. If no thread
is ready to run then it is a waste of power because of the unnecessary CPU
processing. This is avoided by the kernel switching to event-based idling
mode whenever there is no thread ready to run.

The kernel holds an ordered list of thread timeouts in the system. These are
the amount of time each thread has requested to wait. When the last active
thread goes to wait, the idle thread is scheduled. The idle thread programs
the timer to one-shot mode and programs the count to the earliest timeout
from the ordered thread timeout list. When the timer expires, a timer event
is generated. The ISR of this event will invoke the scheduler, which would
schedule the thread associated with the timeout. Before scheduling the
thread, the scheduler would switch the timer again to periodic mode. This
method saves power because the CPU is removed from the wait only when there
is a thread ready to run or if an external event occurred.

System Power Management

This consists of the hook functions that the power management subsystem calls
when the kernel enters and exits the idle state, in other words, when the kernel
has nothing to schedule. This section provides a general overview of the hook
functions. Refer to Power Management APIs for the detailed description of
the APIs.

Suspend Hook function

int _sys_soc_suspend(s32_t ticks);

When the kernel is about to go idle, the power management subsystem calls the
_sys_soc_suspend() function, notifying the SOC interface that the kernel
is ready to enter the idle state.

At this point, the kernel has disabled interrupts and computed the maximum
time the system can remain idle. The function passes the time that
the system can remain idle. The SOC interface performs power operations that
can be done in the available time. The power management operation must halt
execution on a CPU or SOC low power state. Before entering the low power state,
the SOC interface must setup a wake event.

The power management subsystem expects the _sys_soc_suspend() to
return one of the following values based on the power management operations
the SOC interface executed:

SYS_PM_NOT_HANDLED

Indicates that no power management operations were performed.

SYS_PM_LOW_POWER_STATE

Indicates that the CPU was put in a low power state.

SYS_PM_DEEP_SLEEP

Indicates that the SOC was put in a deep sleep state.

Resume Hook function

void _sys_soc_resume(void);

The power management subsystem optionally calls this hook function when exiting
kernel idling if power management operations were performed in
_sys_soc_suspend(). Any necessary recovery operations can be performed
in this function before the kernel scheduler schedules another thread. Some
power states may not need this notification. It can be disabled by calling
_sys_soc_pm_idle_exit_notification_disable() from
_sys_soc_suspend().

Resume From Deep Sleep Hook function

void _sys_soc_resume_from_deep_sleep(void);

This function is optionally called when exiting from deep sleep if the SOC
interface does not have bootloader support to handle resume from deep sleep.
This function should restore context to the point where system entered
the deep sleep state.

注解

Since the hook functions are called with the interrupts disabled, the SOC
interface should ensure that its operations are completed quickly. Thus, the
SOC interface ensures that the kernel’s scheduling performance is not
disrupted.

Power Schemes

When the power management subsystem notifies the SOC interface that the kernel
is about to enter a system idle state, it specifies the period of time the
system intends to stay idle. The SOC interface can perform various power
management operations during this time. For example, put the processor or the
SOC in a low power state, turn off some or all of the peripherals or power gate
device clocks.

Different levels of power savings and different wake latencies characterize
these power schemes. In general, operations that save more power have a
higher wake latency. When making decisions, the SOC interface chooses the
scheme that saves the most power. At the same time, the scheme’s total
execution time must fit within the idle time allotted by the power management
subsystem.

The power management subsystem classifies power management schemes
into two categories based on whether the CPU loses execution context during the
power state transition.

	SYS_PM_LOW_POWER_STATE

	SYS_PM_DEEP_SLEEP

SYS_PM_LOW_POWER_STATE

CPU does not lose execution context. Devices also do not lose power while
entering power states in this category. The wake latencies of power states
in this category are relatively low.

SYS_PM_DEEP_SLEEP

CPU is power gated and loses execution context. Execution will resume at
OS startup code or at a resume point determined by a bootloader that supports
deep sleep resume. Depending on the SOC’s implementation of the power saving
feature, it may turn off power to most devices. RAM may be retained by some
implementations, while others may remove power from RAM saving considerable
power. Power states in this category save more power than
SYS_PM_LOW_POWER_STATE and would have higher wake latencies.

Device Power Management Infrastructure

The device power management infrastructure consists of interfaces to the
Zephyr RTOS device model. These APIs send control commands to the device driver
to update its power state or to get its current power state.
Refer to Power Management APIs for detailed descriptions of the APIs.

Zephyr RTOS supports two methods of doing device power management.

	Distributed method

	Central method

Distributed method

In this method, the application or any component that deals with devices directly
and has the best knowledge of their use does the device power management. This
saves power if some devices that are not in use can be turned off or put
in power saving mode. This method allows saving power even when the CPU is
active. The components that use the devices need to be power aware and should
be able to make decisions related to managing device power. In this method, the
SOC interface can enter CPU or SOC low power states quickly when
_sys_soc_suspend() gets called. This is because it does not need to
spend time doing device power management if the devices are already put in
the appropriate low power state by the application or component managing the
devices.

Central method

In this method device power management is mostly done inside
_sys_soc_suspend() along with entering a CPU or SOC low power state.

If a decision to enter deep sleep is made, the implementation would enter it
only after checking if the devices are not in the middle of a hardware
transaction that cannot be interrupted. This method can be used in
implementations where the applications and components using devices are not
expected to be power aware and do not implement device power management.

This method can also be used to emulate a hardware feature supported by some
SOCs which cause automatic entry to deep sleep when all devices are idle.
Refer to Busy Status Indication to see how to indicate whether a device is busy
or idle.

Device Power Management States

The Zephyr RTOS power management subsystem defines four device states.
These states are classified based on the degree of device context that gets lost
in those states, kind of operations done to save power, and the impact on the
device behavior due to the state transition. Device context includes device
registers, clocks, memory etc.

The four device power states:

DEVICE_PM_ACTIVE_STATE

Normal operation of the device. All device context is retained.

DEVICE_PM_LOW_POWER_STATE

Device context is preserved by the HW and need not be restored by the driver.

DEVICE_PM_SUSPEND_STATE

Most device context is lost by the hardware. Device drivers must save and
restore or reinitialize any context lost by the hardware.

DEVICE_PM_OFF_STATE

Power has been fully removed from the device. The device context is lost
when this state is entered. Need to reinitialize the device when powering
it back on.

Device Power Management Operations

Zephyr RTOS power management subsystem provides a control function interface
to device drivers to indicate power management operations to perform.
The supported PM control commands are:

	DEVICE_PM_SET_POWER_STATE

	DEVICE_PM_GET_POWER_STATE

Each device driver defines:

	The device’s supported power states.

	The device’s supported transitions between power states.

	The device’s necessary operations to handle the transition between power states.

The following are some examples of operations that the device driver may perform
in transition between power states:

	Save/Restore device states.

	Gate/Un-gate clocks.

	Gate/Un-gate power.

	Mask/Un-mask interrupts.

Device Model with Power Management Support

Drivers initialize the devices using macros. See Device Drivers and Device Model for
details on how these macros are used. Use the DEVICE_DEFINE macro to initialize
drivers providing power management support via the PM control function.
One of the macro parameters is the pointer to the device_pm_control handler function.

Default Initializer Function

int device_pm_control_nop(struct device *unused_device, u32_t unused_ctrl_command, void *unused_context);

If the driver doesn’t implement any power control operations, the driver can
initialize the corresponding pointer with this default nop function. This
default nop function does nothing and should be used instead of
implementing a dummy function to avoid wasting code memory in the driver.

Device Power Management API

The SOC interface and application use these APIs to perform power management
operations on the devices.

Get Device List

void device_list_get(struct device **device_list, int *device_count);

The Zephyr RTOS kernel internally maintains a list of all devices in the system.
The SOC interface uses this API to get the device list. The SOC interface can use the list to
identify the devices on which to execute power management operations.

注解

Ensure that the SOC interface does not alter the original list. Since the kernel
uses the original list, it must remain unchanged.

Device Set Power State

int device_set_power_state(struct device *device, u32_t device_power_state);

Calls the device_pm_control() handler function implemented by the
device driver with DEVICE_PM_SET_POWER_STATE command.

Device Get Power State

int device_get_power_state(struct device *device, u32_t * device_power_state);

Calls the device_pm_control() handler function implemented by the
device driver with DEVICE_PM_GET_POWER_STATE command.

Busy Status Indication

The SOC interface executes some power policies that can turn off power to devices,
causing them to lose their state. If the devices are in the middle of some
hardware transaction, like writing to flash memory when the power is turned
off, then such transactions would be left in an inconsistent state. This
infrastructure guards such transactions by indicating to the SOC interface that
the device is in the middle of a hardware transaction.

When the _sys_soc_suspend() is called, the SOC interface checks if any device
is busy. The SOC interface can then decide to execute a power management scheme other than deep sleep or
to defer power management operations until the next call of
_sys_soc_suspend().

An alternative to using the busy status mechanism is to use the
distributed method of device power management. In such a method where the
device power management is handled in a distributed manner rather than centrally in
_sys_soc_suspend(), the decision to enter deep sleep can be made based
on whether all devices are already turned off.

This feature can be also used to emulate a hardware feature found in some SOCs
that causes the system to automatically enter deep sleep when all devices are idle.
In such an usage, the busy status can be set by default and cleared as each
device becomes idle. When _sys_soc_suspend() is called, deep sleep can
be entered if no device is found to be busy.

Here are the APIs used to set, clear, and check the busy status of devices.

Indicate Busy Status API

void device_busy_set(struct device *busy_dev);

Sets a bit corresponding to the device, in a data structure maintained by the
kernel, to indicate whether or not it is in the middle of a transaction.

Clear Busy Status API

void device_busy_clear(struct device *busy_dev);

Clears the bit corresponding to the device in a data structure
maintained by the kernel to indicate that the device is not in the middle of
a transaction.

Check Busy Status of Single Device API

int device_busy_check(struct device *chk_dev);

Checks whether a device is busy. The API returns 0 if the device
is not busy.

Check Busy Status of All Devices API

int device_any_busy_check(void);

Checks if any device is busy. The API returns 0 if no device in the system is busy.

Power Management Configuration Flags

The Power Management features can be individually enabled and disabled using
the following configuration flags.

CONFIG_SYS_POWER_MANAGEMENT

This flag enables the power management subsystem.

CONFIG_TICKLESS_IDLE

This flag enables the tickless idle power saving feature.

CONFIG_SYS_POWER_LOW_POWER_STATE

The SOC interface enables this flag to use the SYS_PM_LOW_POWER_STATE policy.

CONFIG_SYS_POWER_DEEP_SLEEP

This flag enables support for the SYS_PM_DEEP_SLEEP policy.

CONFIG_DEVICE_POWER_MANAGEMENT

This flag is enabled if the SOC interface and the devices support device power
management.

Sensor Drivers

The sensor subsystem exposes an API to uniformly access sensor devices.
Common operations are: reading data and executing code when specific
conditions are met.

Basic Operation

Channels

Fundamentally, a channel is a quantity that a sensor device can measure.

Sensors can have multiple channels, either to represent different axes of
the same physical property (e.g. acceleration); or because they can measure
different properties altogether (ambient temperature, pressure and
humidity). Complex sensors cover both cases, so a single device can expose
three acceleration channels and a temperature one.

It is imperative that all sensors that support a given channel express
results in the same unit of measurement. The following is a list of all
supported channels, along with their description and units of measurement:

警告

doxygenenum: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Values

Sensor devices return results as struct sensor_value. This
representation avoids use of floating point values as they may not be
supported on certain setups.

警告

doxygenstruct: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Fetching Values

Getting a reading from a sensor requires two operations. First, an
application instructs the driver to fetch a sample of all its channels.
Then, individual channels may be read. In the case of channels with
multiple axes, they can be read in a single operation by supplying
the corresponding _XYZ channel type and a buffer of 3
struct sensor_value objects. This approach ensures consistency
of channels between reads and efficiency of communication by issuing a
single transaction on the underlying bus.

Below is an example illustrating the usage of the BME280 sensor, which
measures ambient temperature and atmospheric pressure. Note that
sensor_sample_fetch() is only called once, as it reads and
compensates data for both channels.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	void main(void)
{
	struct device *dev = device_get_binding("BME280");

	printf("dev %p name %s\n", dev, dev->config->name);

	while (1) {
		struct sensor_value temp, press, humidity;

		sensor_sample_fetch(dev);
		sensor_channel_get(dev, SENSOR_CHAN_TEMP, &temp);
		sensor_channel_get(dev, SENSOR_CHAN_PRESS, &press);
		sensor_channel_get(dev, SENSOR_CHAN_HUMIDITY, &humidity);

		printf("temp: %d.%06d; press: %d.%06d; humidity: %d.%06d\n",
		 temp.val1, temp.val2, press.val1, press.val2,
		 humidity.val1, humidity.val2);

		k_sleep(1000);
	}
}

The example assumes that the returned values have type struct
sensor_value, which is the case for BME280. A real application
supporting multiple sensors should inspect the type field of
the temp and press values and use the other fields
of the structure accordingly.

Configuration and Attributes

Setting the communication bus and address is considered the most basic
configuration for sensor devices. This setting is done at compile time, via
the configuration menu. If the sensor supports interrupts, the interrupt
lines and triggering parameters described below are also configured at
compile time.

Alongside these communication parameters, sensor chips typically expose
multiple parameters that control the accuracy and frequency of measurement.
In compliance with Zephyr’s design goals, most of these values are
statically configured at compile time.

However, certain parameters could require runtime configuration, for
example, threshold values for interrupts. These values are configured via
attributes. The example in the following section showcases a sensor with an
interrupt line that is triggered when the temperature crosses a threshold.
The threshold is configured at runtime using an attribute.

Triggers

Triggers in Zephyr refer to the interrupt lines of the sensor chips.
Many sensor chips support one or more triggers. Some examples of triggers
include: new data is ready for reading, a channel value has crossed a
threshold, or the device has sensed motion.

To configure a trigger, an application needs to supply a struct
sensor_trigger and a handler function. The structure contains the trigger
type and the channel on which the trigger must be configured.

Because most sensors are connected via SPI or I2C busses, it is not possible
to communicate with them from the interrupt execution context. The
execution of the trigger handler is deferred to a fiber, so that data
fetching operations are possible. A driver can spawn its own fiber to fetch
data, thus ensuring minimum latency. Alternatively, multiple sensor drivers
can share a system-wide fiber. The shared fiber approach increases the
latency of handling interrupts but uses less memory. You can configure which
approach to follow for each driver. Most drivers can entirely disable
triggers resulting in a smaller footprint.

The following example contains a trigger fired whenever temperature crosses
the 26 degree Celsius threshold. It also samples the temperature every
second. A real application would ideally disable periodic sampling in the
interest of saving power. Since the application has direct access to the
kernel config symbols, no trigger is registered when triggering was disabled
by the driver’s configuration.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	#ifdef CONFIG_MCP9808_TRIGGER
static void trigger_handler(struct device *dev, struct sensor_trigger *trig)
{
	struct sensor_value temp;

	sensor_sample_fetch(dev);
	sensor_channel_get(dev, SENSOR_CHAN_TEMP, &temp);

	printf("trigger fired, temp %d.%06d\n", temp.val1, temp.val2);
}
#endif

void main(void)
{
	struct device *dev = device_get_binding("MCP9808");

	if (dev == NULL) {
		printf("device not found. aborting test.\n");
		return;
	}

#ifdef DEBUG
	printf("dev %p\n", dev);
	printf("dev %p name %s\n", dev, dev->config->name);
#endif

#ifdef CONFIG_MCP9808_TRIGGER
	struct sensor_value val;
	struct sensor_trigger trig;

	val.val1 = 26;
	val.val2 = 0;

	sensor_attr_set(dev, SENSOR_CHAN_TEMP,
			SENSOR_ATTR_UPPER_THRESH, &val);

	trig.type = SENSOR_TRIG_THRESHOLD;
	trig.chan = SENSOR_CHAN_TEMP;

	sensor_trigger_set(dev, &trig, trigger_handler);
#endif

	while (1) {
		struct sensor_value temp;
		int rc;

		rc = sensor_sample_fetch(dev);
		if (rc != 0) {
			printf("sensor_sample_fetch error: %d\n", rc);
			break;
		}

		rc = sensor_channel_get(dev, SENSOR_CHAN_TEMP, &temp);
		if (rc != 0) {
			printf("sensor_channel_get error: %d\n", rc);
			break;
		}

		printf("temp: %d.%06d\n", temp.val1, temp.val2);

		k_sleep(2000);
	}
}

Shell

Overview

The Shell enables multiple subsystem to use and expose their shell interface
simultaneously.

Each subsystem can support shell functionality dynamically by its Kconfig file,
which enables or disables the shell usage for the subsystem.

Using shell commands

Use one of the following formats:

Specific module’s commands

A shell interface exposing subsystem features is a shell module, multiple
modules can be available at the same time.

	MODULE_NAME COMMAND

	One of the available modules is “KERNEL”, for the Kernel module. More
information can be found in SHELL_REGISTER.

Help commands

	help

	Prints the list of available modules.

	help MODULE_NAME

	Prints the names of the available commands for the module.

	help MODULE_NAME COMMAND

	Prints help for the module’s command (the help should show function
goal and required parameters).

Select module commands

	select MODULE_NAME

	Use this command when using the shell only for one module. After entering this
command, you will not need to enter module name in further commands. If
the selected module has set a default shell prompt during its initialization,
the prompt will be changed to that one. Otherwise, the prompt will be
changed to the selected module’s name to reflect the current module in use.

	select

	Clears selected module. Restores prompt as well.

Shell configuration

There are two levels of configuration: Infrastructure level and Module level.

Infrastructure level

The option CONFIG_CONSOLE_SHELL enables the shell subsystem and enable the
default features of the shell subsystem.

Module/Subsystem level

Each subsystem using the shell service should add a unique flag in its Kconfig file.

Example:

CONFIG_NET_SHELL=y

In the subsystem’s code, the shell usage depends on this config parameter.
This subsystem specific flag should also depend on CONFIG_CONSOLE_SHELL flag.

Configuration steps to add shell functionality to a module

	Check that CONFIG_CONSOLE_SHELL is set to yes.

	Add the subsystem unique flag to its Kconfig file.

Writing a shell module

In order to support shell in your subsystem, the application must do the following:

	Module configuration flag: Declare a new flag in your subsystem Kconfig file.
It should depend on CONFIG_CONSOLE_SHELL flag.

	Module registration to shell: Add your shell identifier and register its
callback functions in the shell database using SHELL_REGISTER.

Optionally, you can use one of the following API functions to override default
behavior and settings:

	shell_register_default_module()

	shell_register_prompt_handler()

In case of a sample applications as well as test environment, user can choose to
set a default module in code level. In this case, the function
shell_register_default_module should be called after calling SHELL_REGISTER in
application level. If the function shell_register_prompt_handler was called as
well, the prompt will be changed to that one. Otherwise, the prompt will be
changed to the selected module’s name, in order to reflect the current module in
use.

注解

Even if a default module was set in code level, it can be overwritten by
“select” shell command.

You can use shell_register_default_module() in the following cases:

	Use this command in case of using the shell only for one module.
After entering this command, no need to enter module name in further
commands.

	Use this function for shell backward compatibility.

More details on those optional functions can be found in
Shell API Functions.

Shell API Functions

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Testing

	Test Framework

	Zephyr Sanity Tests

Test Framework

The Zephyr Test Framework (Ztest) provides a simple testing framework intended
to be used during development. It provides basic assertion macros and a generic
test structure.

The framework can be used in two ways, either as a generic framework for
integration testing, or for unit testing specific modules.

Quick start - Integration testing

A simple working base is located at samples/testing/integration. Just
copy the files to tests/ and edit them for your needs. The test will then
be automatically built and run by the sanitycheck script. If you are testing
the bar component of foo, you should copy the sample folder to
tests/foo/bar. It can then be tested with:

./scripts/sanitycheck -s tests/foo/bar/test

The sample contains the following files:

Makefile

	1
2
3
4

	BOARD ?= qemu_x86
CONF_FILE ?= prj.conf

include $(ZEPHYR_BASE)/Makefile.inc

sample.yaml

	1
2
3
4
5
6

	sample:
 description: TBD
 name: TBD
tests:
- test:
 tags: my_tags

prj.conf

	1

	CONFIG_ZTEST=y

src/Makefile

	1
2
3

	obj-y = main.o

include $(ZEPHYR_BASE)/tests/Makefile.test

src/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	/*
 * Copyright (c) 2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <ztest.h>

static void assert_tests(void)
{
	zassert_true(1, "1 was false");
	zassert_false(0, "0 was true");
	zassert_is_null(NULL, "NULL was not NULL");
	zassert_not_null("foo", "\"foo\" was NULL");
	zassert_equal(1, 1, "1 was not equal to 1");
	zassert_equal_ptr(NULL, NULL, "NULL was not equal to NULL");
}

void test_main(void)
{
	ztest_test_suite(framework_tests,
		ztest_unit_test(assert_tests)
);

	ztest_run_test_suite(framework_tests);
}

Quick start - Unit testing

Ztest can be used for unit testing. This means that rather than including the
entire Zephyr OS for testing a single function, you can focus the testing
efforts into the specific module in question. This will speed up testing since
only the module will have to be compiled in, and the tested functions will be
called directly.

Since you won’t be including basic kernel data structures that most code
depends on, you have to provide function stubs in the test. Ztest provides
some helpers for mocking functions, as demonstrated below.

In a unit test, mock objects can simulate the behavior of complex real objects
and are used to decide whether a test failed or passed by verifying whether an
interaction with an object occurred, and if required, to assert the order of
that interaction.

The samples/testing/unit folder contains an example for testing
the net-buf api of Zephyr.

Makefile

	1
2
3

	INCLUDE += subsys

include $(ZEPHYR_BASE)/tests/unit/Makefile.unittest

sample.yaml

	1
2
3
4
5
6
7

	sample:
 description: TBD
 name: TBD
tests:
- test:
 tags: buf
 type: unit

main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	/*
 * Copyright (c) 2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <ztest.h>
#include <net/buf.h>

struct net_buf_pool _net_buf_pool_list[1];

unsigned int irq_lock(void)
{
	return 0;
}

void irq_unlock(unsigned int key)
{
}

#include <net/buf.c>

void k_queue_init(struct k_queue *fifo) {}
void k_queue_append_list(struct k_queue *fifo, void *head, void *tail) {}

int k_is_in_isr(void)
{
	return 0;
}

void *k_queue_get(struct k_queue *fifo, s32_t timeout)
{
	return NULL;
}

void k_queue_append(struct k_queue *fifo, void *data)
{
}

void k_queue_prepend(struct k_queue *fifo, void *data)
{
}

#define TEST_BUF_COUNT 1
#define TEST_BUF_SIZE 74

NET_BUF_POOL_DEFINE(bufs_pool, TEST_BUF_COUNT, TEST_BUF_SIZE,
		 sizeof(int), NULL);

static void test_get_single_buffer(void)
{
	struct net_buf *buf;

	buf = net_buf_alloc(&bufs_pool, K_NO_WAIT);

	zassert_equal(buf->ref, 1, "Invalid refcount");
	zassert_equal(buf->len, 0, "Invalid length");
	zassert_equal(buf->flags, 0, "Invalid flags");
	zassert_equal_ptr(buf->frags, NULL, "Frags not NULL");
}

void test_main(void)
{
	ztest_test_suite(net_buf_test,
		ztest_unit_test(test_get_single_buffer)
);

	ztest_run_test_suite(net_buf_test);
}

API reference

Running tests

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Assertions

These macros will instantly fail the test if the related assertion fails.
When an assertion fails, it will print the current file, line and function,
alongside a reason for the failure and an optional message. If the config
option:CONFIG_ZTEST_ASSERT_VERBOSE is 0, the assertions will only print the
file and line numbers, reducing the binary size of the test.

Example output for a failed macro from
zassert_equal(buf->ref, 2, "Invalid refcount"):

Assertion failed at main.c:62: test_get_single_buffer: Invalid refcount (buf->ref not equal to 2)
Aborted at unit test function

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mocking

These functions allow abstracting callbacks and related functions and
controlling them from specific tests. You can enable the mocking framework by
setting CONFIG_ZTEST_MOCKING to “y” in the configuration file of the
test. The amount of concurrent return values and expected parameters is
limited by CONFIG_ZTEST_PARAMETER_COUNT.

Here is an example for configuring the function expect_two_parameters to
expect the values a=2 and b=3, and telling returns_int to return
5:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	#include <ztest.h>

static void expect_two_parameters(int a, int b)
{
	ztest_check_expected_value(a);
	ztest_check_expected_value(b);
}

static void parameter_tests(void)
{
	ztest_expect_value(expect_two_parameters, a, 2);
	ztest_expect_value(expect_two_parameters, b, 3);
	expect_two_parameters(2, 3);
}

static int returns_int(void)
{
	return ztest_get_return_value();
}

static void return_value_tests(void)
{
	ztest_returns_value(returns_int, 5);
	zassert_equal(returns_int(), 5, NULL);
}

void test_main(void)
{
	ztest_test_suite(mock_framework_tests,
		ztest_unit_test(parameter_test),
		ztest_unit_test(return_value_test)
);

	ztest_run_test_suite(mock_framework_tests);
}

警告

doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Zephyr Sanity Tests

This script scans for the set of unit test applications in the git repository
and attempts to execute them. By default, it tries to build each test case
boards set to be default in the board definition file.

The default options will build the majority of the tests on a defined set of
boards and will run in emulated environments (QEMU) if available for the
architecture or configuration being tested.

In general, the sanitycheck is used to verify that local changes did not break
anything in the tree and would run basic kernel tests inside QEMU. Sanitycheck
does guarantee that everything would work in the final environment and has
limited coverage (test execution), however, the script builds samples and tests
for different boards using different configurations and helps keeping the code
buildable at all times.

To run the script in the local tree, follow the steps below:

$ source zephyr-env.sh
$./scripts/sanitycheck

If you have a system with a large number of cores, you can try and build/run all
possible tests using the following options:

$./scripts/sanitycheck --all --enable-slow

This will build for all available boards and would run all possible tests in
a simulated environment if applicable.

The sanitycheck script accepts the following optional arguments:

	
-h, --help
	show this help message and exit

	
-p PLATFORM, --platform PLATFORM

	 	Platform filter for testing. This option may be used
multiple times. Testcases will only be built/run on
the platforms specified. If this option is not used,
then platforms marked as default in the platform
metadata file will be chosen to build and test.

	
-L N, --platform-limit N

	 	Controls what platforms are tested if –platform or
–all are not used. For each architecture specified by
–arch (defaults to all of them), choose the first N
platforms to test in the arch-specific .yaml file
‘platforms’ list. Defaults to 1.

	
-a ARCH, --arch ARCH

	 	Arch filter for testing. Takes precedence over
–platform. If unspecified, test all arches. Multiple
invocations are treated as a logical ‘or’ relationship

	
-t TAG, --tag TAG

	 	Specify tags to restrict which tests to run by tag
value. Default is to not do any tag filtering.
Multiple invocations are treated as a logical ‘or’
relationship

	
-e EXCLUDE_TAG, --exclude-tag EXCLUDE_TAG

	 	Specify tags of tests that should not run. Default is
to run all tests with all tags.

	
-f, --only-failed

	 	Run only those tests that failed the previous sanity
check invocation.

	
-c CONFIG, --config CONFIG

	 	Specify platform configuration values filtering. This
can be specified two ways: <config>=<value> or just
<config>. The defconfig for all platforms will be
checked. For the <config>=<value> case, only match
defconfig that have that value defined. For the
<config> case, match defconfig that have that value
assigned to any value. Prepend a ‘!’ to invert the
match.

	
-s TEST, --test TEST

	 	Run only the specified test cases. These are named by
<path to test project relative to –testcase-
root>/<testcase.yaml section name>

	
-l, --all
	Build/test on all platforms. Any –platform arguments
ignored.

	
-o TESTCASE_REPORT, --testcase-report TESTCASE_REPORT

	 	Output a CSV spreadsheet containing results of the
test run

	
-d DISCARD_REPORT, --discard-report DISCARD_REPORT

	 	Output a CSV spreadsheet showing tests that were
skipped and why

	
--compare-report COMPARE_REPORT

	 	Use this report file for size comparison

	
--ccache
	Enable the use of ccache when building

	
-B SUBSET, --subset SUBSET

	 	Only run a subset of the tests, 1/4 for running the
first 25%, 3/5 means run the 3rd fifth of the total.
This option is useful when running a large number of
tests on different hosts to speed up execution time.

	
-y, --dry-run
	Create the filtered list of test cases, but don’t
actually run them. Useful if you’re just interested in
–discard-report

	
-r, --release
	Update the benchmark database with the results of this
test run. Intended to be run by CI when tagging an
official release. This database is used as a basis for
comparison when looking for deltas in metrics such as
footprint

	
-w, --warnings-as-errors

	 	Treat warning conditions as errors

	
-v, --verbose
	Emit debugging information, call multiple times to
increase verbosity

	
-i, --inline-logs

	 	Upon test failure, print relevant log data to stdout
instead of just a path to it

	
--log-file FILENAME

	 	log also to file

	
-m, --last-metrics

	 	Instead of comparing metrics from the last –release,
compare with the results of the previous sanity check
invocation

	
-u, --no-update

	 	do not update the results of the last run of the
sanity checks

	
-b, --build-only

	 	Only build the code, do not execute any of it in QEMU

	
-j JOBS, --jobs JOBS

	 	Number of cores to use when building, defaults to
number of CPUs * 2

	
-H FOOTPRINT_THRESHOLD, --footprint-threshold FOOTPRINT_THRESHOLD

	 	When checking test case footprint sizes, warn the user
if the new app size is greater then the specified
percentage from the last release. Default is 5. 0 to
warn on any increase on app size

	
-D, --all-deltas

	 	Show all footprint deltas, positive or negative.
Implies –footprint-threshold=0

	
-O OUTDIR, --outdir OUTDIR

	 	Output directory for logs and binaries.

	
-n, --no-clean
	Do not delete the outdir before building. Will result
in faster compilation since builds will be incremental

	
-T TESTCASE_ROOT, --testcase-root TESTCASE_ROOT

	 	Base directory to recursively search for test cases.
All testcase.yaml files under here will be processed.
May be called multiple times. Defaults to the
‘samples’ and ‘tests’ directories in the Zephyr tree.

	
-A ARCH_ROOT, --arch-root ARCH_ROOT

	 	Directory to search for arch configuration files. All
.yaml files in the directory will be processed.

	
-z SIZE, --size SIZE

	 	Don’t run sanity checks. Instead, produce a report to
stdout detailing RAM/ROM sizes on the specified
filenames. All other command line arguments ignored.

	
-S, --enable-slow

	 	Execute time-consuming test cases that have been
marked as ‘slow’ in testcase.yaml. Normally these are
only built.

	
-R, --enable-asserts

	 	Build all test cases with assertions enabled.

	
-Q, --error-on-deprecations

	 	Error on deprecation warnings.

	
-x EXTRA_ARGS, --extra-args EXTRA_ARGS

	 	Extra arguments to pass to the build when compiling
test cases. May be called multiple times. These will
be passed in after any sanitycheck-supplied options.

	
-C, --coverage
	Scan for unit test coverage with gcov + lcov.

Board Configuration

To build tests for a specific board and to execute some of the tests on real
hardware or in an emulation environment such as QEMU a board configuration file
is required which is generic enough to be used for other tasks that require a
board inventory with details about the board and its configuration that is only
available during build time otherwise.

The board metadata file is located in the board directory and is structured
using the YAML markup language. The example below shows a board with a data
required for best test coverage for this specific board:

identifier: quark_d2000_crb
name: Quark D2000 Devboard
type: mcu
arch: x86
toolchain:
 - zephyr
 - issm
ram: 8
flash: 32
testing:
 default: true
 ignore_tags:
 - net
 - bluetooth

	identifier:

	A string that matches how the board is defined in the build system. This same
string is used when building, for example when calling ‘make’:

make BOARD=quark_d2000_crb

	name:

	The actual name of the board as it appears in marketing material.

	type:

	Type of the board or configuration, currently we support 2 types: mcu, qemu

	arch:

	Architecture of the board

	toolchain:

	The list of supported toolchains that can build this board. This should match
one of the values used for ‘ZEPHYR_GCC_VARIANT’ when building on the command line

	ram:

	Available RAM on the board (specified in KB). This is used to match testcase
requirements. If not specified we default to 128KB.

	flash:

	Available FLASH on the board (specified in KB). This is used to match testcase
requirements. If not specified we default to 512KB.

	supported:

	A list of features this board supports. This can be specified as a single word
feature or as a variant of a feature class. For example:

supported:
 - pci

This indicates the board does support PCI. You can make a testcase build or
run only on such boards, or:

supported:
 - netif:eth
 - sensor:bmi16

A testcase can both depend on ‘eth’ to only test ethernet or on ‘netif’ to run
on any board with a networking interface.

	testing:

	testing relating keywords to provide best coverage for the features of this
board.

	default: [True|False]:

	This is a default board, it will tested with the highest priority and is
covered when invoking the simplified sanitycheck without any additional
arguments.

	ignore_tags:

	Do not attempt to build (and therefore run) tests marked with this list of
tags.

Test Cases

Test cases are detected by the presence of a ‘testcase.yaml’ or a ‘sample.yaml’
files in the application’s project directory. This file may contain one or more
entries in the test section each identifying a test scenario. The name of
the test case only needs to be unique for the test cases specified in
that testcase meta-data.

Test cases are written suing the YAML syntax and share the same structure as
samples. The following is an example test with a few options that are
explained in this document.

tests:
- test:
 build_only: true
 platform_whitelist: qemu_cortex_m3 qemu_x86 arduino_101
 tags: bluetooth
- test_br:
 build_only: true
 extra_args: CONF_FILE="prj_br.conf"
 filter: not CONFIG_DEBUG
 platform_exclude: quark_d2000_crb
 platform_whitelist: qemu_cortex_m3 qemu_x86
 tags: bluetooth

A sample with tests will have the same structure with additional information
related to the sample and what is being demonstrated:

sample:
 name: hello world
 description: Hello World sample, the simplest Zephyr application
 platforms: all
tests:
 - test:
 build_only: true
 tags: samples tests
 min_ram: 16
 - singlethread:
 build_only: true
 extra_args: CONF_FILE=prj_single.conf
 filter: not CONFIG_BT and not CONFIG_GPIO_SCH
 tags: samples tests
 min_ram: 16

The full canonical name for each test case is:

<path to test case>/<test entry>

Each test block in the testcase meta data can define the following key/value
pairs:

	tags: <list of tags> (required)

	A set of string tags for the testcase. Usually pertains to
functional domains but can be anything. Command line invocations
of this script can filter the set of tests to run based on tag.

	skip: <True|False> (default False)

	skip testcase unconditionally. This can be used for broken tests.

	slow: <True|False> (default False)

	Don’t run this test case unless –enable-slow was passed in on the
command line. Intended for time-consuming test cases that are only
run under certain circumstances, like daily builds. These test cases
are still compiled.

	extra_args: <list of extra arguments>

	Extra arguments to pass to Make when building or running the
test case.

	build_only: <True|False> (default False)

	If true, don’t try to run the test under QEMU even if the
selected platform supports it.

	build_on_all: <True|False> (default False)

	If true, attempt to build test on all available platforms.

	depends_on: <list of features>

	A board or platform can announce what features it supports, this option
will enable the test only those platforms that provide this feature.

	min_ram: <integer>

	minimum amount of RAM needed for this test to build and run. This is
compared with information provided by the board metadata.

	min_flash: <integer>

	minimum amount of ROM needed for this test to build and run. This is
compared with information provided by the board metadata.

	timeout: <number of seconds>

	Length of time to run test in QEMU before automatically killing it.
Default to 60 seconds.

	arch_whitelist: <list of arches, such as x86, arm, arc>

	Set of architectures that this test case should only be run for.

	arch_exclude: <list of arches, such as x86, arm, arc>

	Set of architectures that this test case should not run on.

	platform_whitelist: <list of platforms>

	Set of platforms that this test case should only be run for.

	platform_exclude: <list of platforms>

	Set of platforms that this test case should not run on.

	extra_sections: <list of extra binary sections>

	When computing sizes, sanitycheck will report errors if it finds
extra, unexpected sections in the Zephyr binary unless they are named
here. They will not be included in the size calculation.

	filter: <expression>

	Filter whether the testcase should be run by evaluating an expression
against an environment containing the following values:

{ ARCH : <architecture>,
 PLATFORM : <platform>,
 <all CONFIG_* key/value pairs in the test's generated defconfig>,
 *<env>: any environment variable available
}

The grammar for the expression language is as follows:

	expression ::= expression “and” expression

	
expression “or” expression

“not” expression

“(” expression ”)”

symbol “==” constant

symbol ”!=” constant

symbol “<” number

symbol “>” number

symbol “>=” number

symbol “<=” number

symbol “in” list

symbol ”:” string

symbol

list ::= “[” list_contents “]”

	list_contents ::= constant

	
list_contents ”,” constant

	constant ::= number

	
string

For the case where expression ::= symbol, it evaluates to true
if the symbol is defined to a non-empty string.

Operator precedence, starting from lowest to highest:

or (left associative)
and (left associative)
not (right associative)
all comparison operators (non-associative)

arch_whitelist, arch_exclude, platform_whitelist, platform_exclude
are all syntactic sugar for these expressions. For instance

arch_exclude = x86 arc

Is the same as:

filter = not ARCH in [“x86”, “arc”]

The ‘:’ operator compiles the string argument as a regular expression,
and then returns a true value only if the symbol’s value in the environment
matches. For example, if CONFIG_SOC=”quark_se” then

filter = CONFIG_SOC : “quark.*”

Would match it.

The set of test cases that actually run depends on directives in the testcase
filed and options passed in on the command line. If there is any confusion,
running with -v or –discard-report can help show why particular test cases
were skipped.

Metrics (such as pass/fail state and binary size) for the last code
release are stored in scripts/sanity_chk/sanity_last_release.csv.
To update this, pass the –all –release options.

To load arguments from a file, write ‘+’ before the file name, e.g.,
+file_name. File content must be one or more valid arguments separated by
line break instead of white spaces.

Most everyday users will run with no arguments.

USB device stack

	The USB device stack is split into three layers:

	
	USB Device Controller drivers (hardware dependent)

	USB device core driver (hardware independent)

	USB device class drivers (hardware independent)

USB device controller drivers

The Device Controller Driver Layer implements the low level control routines
to deal directly with the hardware. All device controller drivers should
implement the APIs described in file usb_dc.h. This allows the integration of
new USB device controllers to be done without changing the upper layers.
For now only Quark SE USB device controller (Designware IP) is supported.

Structures

struct usb_dc_ep_cfg_data {
 u8_t ep_addr;
 u16_t ep_mps;
 enum usb_dc_ep_type ep_type;
};

	Structure containing the USB endpoint configuration.

	
	ep_addr: endpoint address, the number associated with the EP in the device
configuration structure.
IN EP = 0x80 | <endpoint number>. OUT EP = 0x00 | <endpoint number>

	ep_mps: Endpoint max packet size.

	ep_type: Endpoint type, may be Bulk, Interrupt or Control. Isochronous
endpoints are not supported for now.

enum usb_dc_status_code {
 USB_DC_ERROR,
 USB_DC_RESET,
 USB_DC_CONNECTED,
 USB_DC_CONFIGURED,
 USB_DC_DISCONNECTED,
 USB_DC_SUSPEND,
 USB_DC_RESUME,
 USB_DC_UNKNOWN
};

	Status codes reported by the registered device status callback.

	
	USB_DC_ERROR: USB error reported by the controller.

	USB_DC_RESET: USB reset.

	USB_DC_CONNECTED: USB connection established - hardware enumeration is completed.

	USB_DC_CONFIGURED: USB configuration done.

	USB_DC_DISCONNECTED: USB connection lost.

	USB_DC_SUSPEND: USB connection suspended by the HOST.

	USB_DC_RESUME: USB connection resumed by the HOST.

	USB_DC_UNKNOWN: Initial USB connection status.

enum usb_dc_ep_cb_status_code {
 USB_DC_EP_SETUP,
 USB_DC_EP_DATA_OUT,
 USB_DC_EP_DATA_IN,
};

	Status Codes reported by the registered endpoint callback.

	
	USB_DC_EP_SETUP: SETUP packet received.

	USB_DC_EP_DATA_OUT: Out transaction on this endpoint. Data is available
for read.

	USB_DC_EP_DATA_IN: In transaction done on this endpoint.

APIs

The following APIs are provided by the device controller driver:

	usb_dc_attach()

	This function attaches USB for device connection. Upon success, the USB PLL
is enabled, and the USB device is now capable of transmitting and receiving
on the USB bus and of generating interrupts.

	usb_dc_detach()

	This function detaches the USB device. Upon success the USB hardware PLL is
powered down and USB communication is disabled.

	usb_dc_reset()

	This function returns the USB device to it’s initial state.

	usb_dc_set_address()

	This function sets USB device address.

	usb_dc_set_status_callback()

	This function sets USB device controller status callback. The registered
callback is used to report changes in the status of the device controller.
The status code are described by the usb_dc_status_code enumeration.

	usb_dc_ep_configure()

	This function configures an endpoint. usb_dc_ep_cfg_data structure provides
the endpoint configuration parameters: endpoint address, endpoint maximum
packet size and endpoint type.

	usb_dc_ep_set_stall()

	This function sets stall condition for the selected endpoint.

	usb_dc_ep_clear_stall()

	This functions clears stall condition for the selected endpoint

	usb_dc_ep_is_stalled()

	This function check if selected endpoint is stalled.

	usb_dc_ep_halt()

	This function halts the selected endpoint

	usb_dc_ep_enable()

	This function enables the selected endpoint. Upon success interrupts are
enabled for the corresponding endpoint and the endpoint is ready for
transmitting/receiving data.

	usb_dc_ep_disable()

	This function disables the selected endpoint. Upon success interrupts are
disabled for the corresponding endpoint and the endpoint is no longer able
for transmitting/receiving data.

	usb_dc_ep_flush()

	This function flushes the FIFOs for the selected endpoint.

	usb_dc_ep_write()

	This function writes data to the specified endpoint. The supplied
usb_ep_callback function will be called when data is transmitted out.

	usb_dc_ep_read()

	This function is called by the Endpoint handler function, after an OUT
interrupt has been received for that EP. The application must only call this
function through the supplied usb_ep_callback function.

	usb_dc_ep_set_callback()

	This function sets callback function for notification of data received
and available to application or transmit done on the selected endpoint.
The callback status code is described by usb_dc_ep_cb_status_code.

USB device core layer

The USB Device core layer is a hardware independent interface between USB
device controller driver and USB device class drivers or customer applications.
It’s a port of the LPCUSB device stack. It provides the following
functionalities:

	Responds to standard device requests and returns standard descriptors,
essentially handling ‘Chapter 9’ processing, specifically the standard
device requests in table 9-3 from the universal serial bus specification
revision 2.0.

	Provides a programming interface to be used by USB device classes or
customer applications. The APIs are described in the usb_device.h file.

	Uses the APIs provided by the device controller drivers to interact with
the USB device controller.

Structures

typedef void (*usb_status_callback)(enum usb_dc_status_code status_code);

Callback function signature for the device status.

typedef void (*usb_ep_callback)(u8_t ep,
 enum usb_dc_ep_cb_status_code cb_status);

Callback function signature for the USB Endpoint.

typedef int (*usb_request_handler) (struct usb_setup_packet *setup,
 int *transfer_len, u8_t **payload_data);

Callback function signature for class specific requests. For host to device
direction the ‘len’ and ‘payload_data’ contain the length of the received data
and the pointer to the received data respectively. For device to host class
requests, ‘len’ and ‘payload_data’ should be set by the callback function
with the length and the address of the data to be transmitted buffer
respectively.

struct usb_ep_cfg_data {
 usb_ep_callback ep_cb;
 u8_t ep_addr;
};

	This structure contains configuration for a certain endpoint.

	
	ep_cb: callback function for notification of data received and available
to application or transmit done, NULL if callback not required by
application code.

	ep_addr: endpoint address. The number associated with the EP in the device
configuration structure.

struct usb_interface_cfg_data {
 usb_request_handler class_handler;
 usb_request_handler custom_handler;
 u8_t *payload_data;
};

	This structure contains USB interface configuration.

	
	class_handler: handler for USB Class specific Control (EP 0)
communications.

	custom_handler: the custom request handler gets a first
chance at handling the request before it is handed over to the
‘chapter 9’ request handler.

	payload_data: this data area, allocated by the application, is used to
store class specific command data and must be large enough to store the
largest payload associated with the largest supported Class’ command set.

struct usb_cfg_data {
 const u8_t *usb_device_description;
 usb_status_callback cb_usb_status;
 struct usb_interface_cfg_data interface;
 u8_t num_endpoints;
 struct usb_ep_cfg_data *endpoint;
};

	This structure contains USB device configuration.

	
	usb_device_description: USB device description, see
http://www.beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors

	cb_usb_status: callback to be notified on USB connection status change

	interface: USB class handlers and storage space.

	num_endpoints: number of individual endpoints in the device configuration

	endpoint: pointer to an array of endpoint configuration structures
(usb_cfg_data) of length equal to the number of EP associated with the
device description, not including control endpoints.

The class drivers instantiates this with given parameters using the
“usb_set_config” function.

APIs

	usb_set_config()

	This function configures USB device.

	usb_deconfig()

	This function returns the USB device back to it’s initial state

	usb_enable()

	This function enable USB for host/device connection. Upon success, the USB
module is no longer clock gated in hardware, it is now capable of
transmitting and receiving on the USB bus and of generating interrupts.

	usb_disable()

	This function disables the USB device. Upon success, the USB module clock
is gated in hardware and it is no longer capable of generating interrupts.

	usb_write()

	write data to the specified endpoint. The supplied usb_ep_callback will be
called when transmission is done.

	usb_read()

	This function is called by the endpoint handler function after an OUT
interrupt has been received for that EP. The application must only call
this function through the supplied usb_ep_callback function.

USB device class drivers

To initialize the device class driver instance the USB device class driver
should call usb_set_config() passing as parameter the instance’s configuration
structure.

For example, for CDC_ACM sample application:

static const u8_t cdc_acm_usb_description[] = {
 /* Device descriptor */
 USB_DEVICE_DESC_SIZE, /* Descriptor size */
 USB_DEVICE_DESC, /* Descriptor type */
 LOW_BYTE(USB_1_1),
 HIGH_BYTE(USB_1_1), /* USB version in BCD format */
 COMMUNICATION_DEVICE_CLASS, /* Class */
 0x00, /* SubClass - Interface specific */
 0x00, /* Protocol - Interface specific */
 MAX_PACKET_SIZE_EP0, /* Max Packet Size */
 LOW_BYTE(VENDOR_ID),
 HIGH_BYTE(VENDOR_ID), /* Vendor Id */
 LOW_BYTE(CDC_PRODUCT_ID),
 HIGH_BYTE(CDC_PRODUCT_ID), /* Product Id */
 LOW_BYTE(BCDDEVICE_RELNUM),
 HIGH_BYTE(BCDDEVICE_RELNUM), /* Device Release Number */
 0x01, /* Index of Manufacturer String Descriptor */
 0x02, /* Index of Product String Descriptor */
 0x03, /* Index of Serial Number String Descriptor */
 CDC_NUM_CONF, /* Number of Possible Configuration */

 /* Configuration descriptor */
 USB_CONFIGURATION_DESC_SIZE, /* Descriptor size */
 USB_CONFIGURATION_DESC, /* Descriptor type */
 LOW_BYTE(CDC_CONF_SIZE),
 HIGH_BYTE(CDC_CONF_SIZE), /* Total length in bytes of data returned */
 CDC_NUM_ITF, /* Number of interfaces */
 0x01, /* Configuration value */
 0x00, /* Index of the Configuration string */
 USB_CONFIGURATION_ATTRIBUTES, /* Attributes */
 MAX_LOW_POWER, /* Max power consumption */

 /* Interface descriptor */
 USB_INTERFACE_DESC_SIZE, /* Descriptor size */
 USB_INTERFACE_DESC, /* Descriptor type */
 0x00, /* Interface index */
 0x00, /* Alternate setting */
 CDC1_NUM_EP, /* Number of Endpoints */
 COMMUNICATION_DEVICE_CLASS, /* Class */
 ACM_SUBCLASS, /* SubClass */
 V25TER_PROTOCOL, /* Protocol */
 0x00, /* Index of the Interface String Descriptor */

 /* Header Functional Descriptor */
 USB_HFUNC_DESC_SIZE, /* Descriptor size */
 CS_INTERFACE, /* Descriptor type */
 USB_HFUNC_SUBDESC, /* Descriptor SubType */
 LOW_BYTE(USB_1_1),
 HIGH_BYTE(USB_1_1), /* CDC Device Release Number */

 /* Call Management Functional Descriptor */
 USB_CMFUNC_DESC_SIZE, /* Descriptor size */
 CS_INTERFACE, /* Descriptor type */
 USB_CMFUNC_SUBDESC, /* Descriptor SubType */
 0x00, /* Capabilities */
 0x01, /* Data Interface */

 /* ACM Functional Descriptor */
 USB_ACMFUNC_DESC_SIZE, /* Descriptor size */
 CS_INTERFACE, /* Descriptor type */
 USB_ACMFUNC_SUBDESC, /* Descriptor SubType */
 /* Capabilities - Device supports the request combination of:
 * Set_Line_Coding,
 * Set_Control_Line_State,
 * Get_Line_Coding
 * and the notification Serial_State
 */
 0x02,

 /* Union Functional Descriptor */
 USB_UFUNC_DESC_SIZE, /* Descriptor size */
 CS_INTERFACE, /* Descriptor type */
 USB_UFUNC_SUBDESC, /* Descriptor SubType */
 0x00, /* Master Interface */
 0x01, /* Slave Interface */

 /* Endpoint INT */
 USB_ENDPOINT_DESC_SIZE, /* Descriptor size */
 USB_ENDPOINT_DESC, /* Descriptor type */
 CDC_ENDP_INT, /* Endpoint address */
 USB_DC_EP_INTERRUPT, /* Attributes */
 LOW_BYTE(CDC_INTERRUPT_EP_MPS),
 HIGH_BYTE(CDC_INTERRUPT_EP_MPS),/* Max packet size */
 0x0A, /* Interval */

 /* Interface descriptor */
 USB_INTERFACE_DESC_SIZE, /* Descriptor size */
 USB_INTERFACE_DESC, /* Descriptor type */
 0x01, /* Interface index */
 0x00, /* Alternate setting */
 CDC2_NUM_EP, /* Number of Endpoints */
 COMMUNICATION_DEVICE_CLASS_DATA,/* Class */
 0x00, /* SubClass */
 0x00, /* Protocol */
 0x00, /* Index of the Interface String Descriptor */

 /* First Endpoint IN */
 USB_ENDPOINT_DESC_SIZE, /* Descriptor size */
 USB_ENDPOINT_DESC, /* Descriptor type */
 CDC_ENDP_IN, /* Endpoint address */
 USB_DC_EP_BULK, /* Attributes */
 LOW_BYTE(CDC_BULK_EP_MPS),
 HIGH_BYTE(CDC_BULK_EP_MPS), /* Max packet size */
 0x00, /* Interval */

 /* Second Endpoint OUT */
 USB_ENDPOINT_DESC_SIZE, /* Descriptor size */
 USB_ENDPOINT_DESC, /* Descriptor type */
 CDC_ENDP_OUT, /* Endpoint address */
 USB_DC_EP_BULK, /* Attributes */
 LOW_BYTE(CDC_BULK_EP_MPS),
 HIGH_BYTE(CDC_BULK_EP_MPS), /* Max packet size */
 0x00, /* Interval */

 /* String descriptor language, only one, so min size 4 bytes.
 * 0x0409 English(US) language code used
 */
 USB_STRING_DESC_SIZE, /* Descriptor size */
 USB_STRING_DESC, /* Descriptor type */
 0x09,
 0x04,
 /* Manufacturer String Descriptor "Intel" */
 0x0C,
 USB_STRING_DESC,
 'I', 0, 'n', 0, 't', 0, 'e', 0, 'l', 0,
 /* Product String Descriptor "CDC-ACM" */
 0x10,
 USB_STRING_DESC,
 'C', 0, 'D', 0, 'C', 0, '-', 0, 'A', 0, 'C', 0, 'M', 0,
 /* Serial Number String Descriptor "00.01" */
 0x0C,
 USB_STRING_DESC,
 '0', 0, '0', 0, '.', 0, '0', 0, '1', 0,
};

static struct usb_ep_cfg_data cdc_acm_ep_data[] = {
 {
 .ep_cb = cdc_acm_int_in,
 .ep_addr = CDC_ENDP_INT
 },
 {
 .ep_cb = cdc_acm_bulk_out,
 .ep_addr = CDC_ENDP_OUT
 },
 {
 .ep_cb = cdc_acm_bulk_in,
 .ep_addr = CDC_ENDP_IN
 }
};

static struct usb_cfg_data cdc_acm_config = {
 .usb_device_description = cdc_acm_usb_description,
 .cb_usb_status = cdc_acm_dev_status_cb,
 .interface = {
 .class_handler = cdc_acm_class_handle_req,
 .custom_handler = NULL,
 .payload_data = NULL,
 },
 .num_endpoints = CDC1_NUM_EP + CDC2_NUM_EP,
 .endpoint = cdc_acm_ep_data
};

ret = usb_set_config(&cdc_acm_config);
if (ret < 0) {
 DBG("Failed to config USB\n");
 return ret;
}

To enable the USB device for host/device connection:

ret = usb_enable(&cdc_acm_config);
if (ret < 0) {
 DBG("Failed to enable USB\n");
 return ret;
}

The class device requests are forwarded by the USB stack core driver to the
class driver through the registered class handler.
For the CDC ACM sample class driver, ‘cdc_acm_class_handle_req’ processes
the SET_LINE_CODING, CDC_SET_CONTROL_LINE_STATE and CDC_GET_LINE_CODING
class requests:

int cdc_acm_class_handle_req(struct usb_setup_packet *pSetup,
 s32_t *len, u8_t **data)
{
 struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(cdc_acm_dev);

 switch (pSetup->bRequest) {
 case CDC_SET_LINE_CODING:
 memcpy(&dev_data->line_coding, *data, sizeof(dev_data->line_coding));
 DBG("\nCDC_SET_LINE_CODING %d %d %d %d\n",
 sys_le32_to_cpu(dev_data->line_coding.dwDTERate),
 dev_data->line_coding.bCharFormat,
 dev_data->line_coding.bParityType,
 dev_data->line_coding.bDataBits);
 break;

 case CDC_SET_CONTROL_LINE_STATE:
 dev_data->line_state = (u8_t)sys_le16_to_cpu(pSetup->wValue);
 DBG("CDC_SET_CONTROL_LINE_STATE 0x%x\n", dev_data->line_state);
 break;

 case CDC_GET_LINE_CODING:
 *data = (u8_t *)(&dev_data->line_coding);
 *len = sizeof(dev_data->line_coding);
 DBG("\nCDC_GET_LINE_CODING %d %d %d %d\n",
 sys_le32_to_cpu(dev_data->line_coding.dwDTERate),
 dev_data->line_coding.bCharFormat,
 dev_data->line_coding.bParityType,
 dev_data->line_coding.bDataBits);
 break;

 default:
 DBG("CDC ACM request 0x%x, value 0x%x\n",
 pSetup->bRequest, pSetup->wValue);
 return -EINVAL;
 }

 return 0;
}

The class driver should wait for the USB_DC_CONFIGURED device status code
before transmitting any data.

To transmit data to the host, the class driver should call usb_write().
Upon completion the registered endpoint callback will be called. Before
sending another packet the class driver should wait for the completion of
the previous transfer.

When data is received, the registered endpoint callback is called.
usb_read() should be used for retrieving the received data. It must
always be called through the registered endpoint callback. For CDC ACM
sample driver this happens via the OUT bulk endpoint handler (cdc_acm_bulk_out)
mentioned in the endpoint array (cdc_acm_ep_data).

Only CDC ACM and DFU class driver examples are provided for now.

 索引

 按照字母的索引页:

 A
 | B
 | I
 | K
 | X

 一页的全部索引
 (可能会很多)

Welcome to Zephyr Kernel

Welcome to the Zephyr Project.

Thank you for your interest in the Zephyr Project. These instructions are
designed to walk you through generating the Zephyr Project’s documentation.

Documentation Notes

Zephyr Project content is written using the reStructuredText markup language
(.rst file extension) with Sphinx extensions, and processed using sphinx to
create a formatted stand-alone website. Developers can view this content either
in its raw form as .rst markup files, or you can generate the HTML content and view it
with a web browser directly on your workstations drive. This same .rst
content is also fed into the Zephyr Project’s public website documentation area
(with a different theme applied).

You can read details about reStructuredText and about Sphinx extensions from
their respective websites.

The project’s documentation currently comprises the following items:

	ReStructuredText source files used to generate documentation found at
https://zephyrproject.org/doc website. Most of the reStructuredText sources
are found in the /doc directory, but there are others stored within the
code source tree near their specific component (such as /samples and
/boards)

	Doxygen-generated material used to create all API-specific documents
also found at https://zephyrproject.org/doc

	Script-generated material for kernel configuration options based on kconfig
files found in the source code tree

The reStructuredText files are processed by the Sphinx documentation system,
and make use of the breathe extension for including the doxygen-generated API
material. Additional tools are required to generate the
documentation locally, as described in the following sections.

Installing the documentation processors

Our documentation processing has been tested to run with:

	Doxygen version 1.8.10 (and 1.8.11)

	Sphinx version 1.4.4 (but not with 1.5.1)

	Breathe version 4.4.0

	docutils version 0.12 (0.13 has issues with Sphinx 1.4.4)

Begin by cloning a copy of the git repository for the zephyr project and
setting up your development environment as described in Getting Started Guide
or specifically for Ubuntu in Development Environment Setup on Linux. (Be sure to
export the environment variables ZEPHYR_GCC_VARIANT and
ZEPHYR_SDK_INSTALL_DIR as documented there.)

Here are a set of commands to install the documentation generations tools on
Ubuntu:

$ sudo -E apt-get install doxygen
$ curl -O 'https://bootstrap.pypa.io/get-pip.py'
$./get-pip.py
$ rm get-pip.py
$ pip install -r scripts/requirements.txt

Running the Documentation Generators

The /doc directory in your cloned copy of zephyr project git repo has all the
.rst source files, extra tools, and Makefile for generating a local copy of
the Zephyr project’s technical documentation. Assuming the local Zephyr
project copy is ~/zephyr, here are the commands to generate the html
content locally:

$ cd ~/zephyr
$ source zephyr-env.sh
$ make htmldocs

The html output will be in ~/zephyr/doc/_build/html/index.html

Zephyr Kernel 1.6.0

We are pleased to announce the release of Zephyr kernel version 1.6.0. This
release introduces the unified Kernel replacing the separate nano- and
micro-kernels and simplifying the overall Zephyr architecture and programming
interfaces.
Support for the ARM Cortex-M0/M0+ family was added and board support for
Cortex-M was expanded.
Additionally, this release adds many improvements for documentation, build
infrastructure, and testing.

Major enhancements included with the release:

	Introduced the Unified Kernel; the nano and micro kernel were removed.

	The legacy API is still supported but deprecated.

	Legacy tests and samples were moved to tests/legacy and samples/legacy.

	Unified kernel documentation was added and legacy nanokernel/microkernel
documentation was removed.

	Added support for several ARM Cortex-M boards

	Added support for USB mass storage and access to the filesystem.

	Added native Bluetooth Controller support. Currently nRF51 & nRF52 are supported.

A detailed list of changes since v1.5.0 by component follows:

Kernel

	Introduced the unified kernel.

	Removed deprecated Tasks IRQs.

	Removed deprecated dynamic interrupt API.

	Added DLIST to operate in all elements of a doubly-linked list.

	SLIST: Added sys_slist_get() to fetch and remove the head, also Added
append_list and merge_slist.

	Added nano_work_pending to check if it is pending execution.

	Unified: Added support for k_malloc and k_free.

	Renamed kernel objects event to alert and memory map to memory slab.

	Changed memory pool, memory maps, message queues and event handling APIs.

Architectures

	ARC: Removed CONFIG_TIMER0_CLOCK_FREQ.

	ARC: Unified linker scripts.

	ARC: Removed dynamic interrupts.

	ARM: Added choice to use floating point ABI.

	ARM: Added NXP Kinetis kconfig options to configure clocks.

	ARM: Removed dynamic interrupts and exceptions.

	ARM: Atmel: Added constants and structures for watchdog registers.

	ARM: Added support for ARM Cortex-M0/M0+.

	x86: Removed dynamic interrupts and exceptions.

	x86: Declared internal API for interrupt controllers.

	x86: Changed IRQ controller to return -1 if cannot determine source vector.

	x86: Grouped Quark SoC’s under intel_quark family.

	x86: Optimized and simplified IRQ and exception stubs.

Boards

	Renamed board Quark SE devboard to Quark SE C1000 devboard.

	Renamed board Quark SE SSS devboard to Quark SE C1000 SS devboard.

	Quark SE C1000: Disabled IPM and enabled UART0 on the Sensor Subsystem.

	Removed basic_cortex_m3 and basic_minuteia boards.

	Arduino 101: Removed backup/restore scripts. To restore original bootloader
use flashpack utility instead.

	Renamed nRF52 Nitrogen to 96Boards Nitrogen.

	Added ARM LTD Beetle SoC and V2M Beetle board.

	Added Texas Instruments CC3200 LaunchXL support.

	Added support for Nordic Semiconductor nRF51822.

	Added support for NXP Hexiwear board.

Drivers and Sensors

	SPI: Fixed typos in SPI port numbers.

	Pinmux: Removed Quark dev unused file.

	I2C: Added KSDK shim driver.

	Ethernet: Added KSDK shim driver.

	Flash: Added KSDK shim driver

	I2C: Changed config parameters to SoC specific.

	QMSI: Implemented suspend and resume functions QMSI shim drivers

	Added HP206C sensor.

	Changed config_info pointers to const.

	Added support for SoCWatch driver.

	Added FXOS8700 accelerometer / magnetometer sensor driver.

Networking

	Minor fixes to uIP networking stack (This will be deprecated in 1.7)

Bluetooth

	Added native Bluetooth Controller support. Currently nRF51 & nRF52 are supported.

	New location for Controller & Host implementations: subsys/bluetooth/

	Added raw HCI API to enable physical HCI transport for a Controller-only build.

	Added sample raw HCI apps for USB and UART.

	Added cross-transport pairing support for the Security Manager Protocol.

	Added RFCOMM support (for Bluetooth Classic)

	Added basic persistent storage support (filesystem-backed)

	Renamed bt_driver API to bt_hci_driver, in anticipation of Bluetooth radio drivers.

Build Infrastructure

	Makefile: Changed outdir into board-specific directory to avoid build collisions.

	Makefile: Changed to use HOST_OS environment variable.

	Makefile: Added support for third party build systems.

	Sanity: Added support to filter using environment variables.

	Sanity: Added support for multiple toolchains.

	Sanity: Added ISSM and ARM GCC embedded toolchains to the supported toolchains.

	Sanity: Added extra arguments to be passed to the build.

	Sanity: Removed linker VMA/LMA offset check.

	Sysgen: Added –kernel_type argument.

	Modified build infrastructure to support unified kernel.

	SDK: Zephyr: Added check for minimum required version.

	Imported get_maintainer.pl from Linux kernel.

Libraries

	libc: Added subset of standard types in inttypes.h.

	libc: Added support for ‘z’ length specifier.

	libc: Removed stddef.h which is provided by the compiler.

	libc: printf: Improved code for printing.

	printk: Added support for modifiers.

	Added CoAP implementation for Zephyr.

	File system: Added API to grow or shrink a file.

	File system: Added API to get volume statistics.

	File system: Added API to flush cache of an opened file.

HALs

	QMSI: Updated to version 1.3.1.

	HAL: Imported CC3200 SDK.

	Imported Nordic MDK nRF51 files.

	Imported Kinetis SDK Ethernet phy driver.

	Imported SDK RNGA driver.

Documentation

	Drivers: Improved Zephyr Driver model.

	Updated device power management API.

	Unified Kernel primer.

	Moved supported board information to the wiki.zephyrproject.org site.

	Revised documentation for Kernel Event logger and Timing.

Test and Samples

	Fixed incorrect printk usage.

	Removed test for dynamic exceptions.

	Added USB sample.

	Added tests and samples for CoAP client and server.

	Added philosophers unified sample.

	Removed printf/printk wrappers.

	Added Unified kernel API samples.

	Imported TinyCrypt test cases for CTR, ECC DSA and ECC DH algorithm.

Deprecations

	Deprecated microkernel and nanokernel APIs.

	Removed dynamic IRQs and exceptions.

	Removed Tasks IRQs.

JIRA Related Items

	ZEP-308 [https://jira.zephyrproject.org/browse/ZEP-308] - Build System cleanup and Kernel / Application build separation

	ZEP-334 [https://jira.zephyrproject.org/browse/ZEP-334] - Unified Kernel

	ZEP-766 [https://jira.zephyrproject.org/browse/ZEP-766] - USB Mass Storage access to internal filesystem

	ZEP-1090 [https://jira.zephyrproject.org/browse/ZEP-1090] - CPU x86 save/restore using new QMSI bootloader flow

	ZEP-1173 [https://jira.zephyrproject.org/browse/ZEP-1173] - Add support for bonding remove

	ZEP-48 [https://jira.zephyrproject.org/browse/ZEP-48] - define API for interrupt controllers

	ZEP-181 [https://jira.zephyrproject.org/browse/ZEP-181] - Persistent storage APIs

	ZEP-233 [https://jira.zephyrproject.org/browse/ZEP-233] - Support USB mass storage device class

	ZEP-237 [https://jira.zephyrproject.org/browse/ZEP-237] - Support pre-built host tools

	ZEP-240 [https://jira.zephyrproject.org/browse/ZEP-240] - printk/printf usage in samples

	ZEP-248 [https://jira.zephyrproject.org/browse/ZEP-248] - Add a BOARD/SOC porting guide

	ZEP-342 [https://jira.zephyrproject.org/browse/ZEP-342] - USB DFU

	ZEP-451 [https://jira.zephyrproject.org/browse/ZEP-451] - Quark SE output by default redirected to IPM

	ZEP-521 [https://jira.zephyrproject.org/browse/ZEP-521] - ARM - add choice to floating point ABI selection

	ZEP-546 [https://jira.zephyrproject.org/browse/ZEP-546] - UART interrupts not triggered on ARC

	ZEP-584 [https://jira.zephyrproject.org/browse/ZEP-584] - warn user if SDK is out of date

	ZEP-592 [https://jira.zephyrproject.org/browse/ZEP-592] - Sanitycheck support for multiple toolchains

	ZEP-605 [https://jira.zephyrproject.org/browse/ZEP-605] - SMP over BR/EDR

	ZEP-614 [https://jira.zephyrproject.org/browse/ZEP-614] - Port TinyCrypt 2.0 test cases to Zephyr

	ZEP-622 [https://jira.zephyrproject.org/browse/ZEP-622] - Add FS API to truncate/shrink a file

	ZEP-627 [https://jira.zephyrproject.org/browse/ZEP-627] - Port Trickle support from Contiki into current stack

	ZEP-635 [https://jira.zephyrproject.org/browse/ZEP-635] - Add FS API to grow a file

	ZEP-636 [https://jira.zephyrproject.org/browse/ZEP-636] - Add FS API to get volume total and free space

	ZEP-640 [https://jira.zephyrproject.org/browse/ZEP-640] - Remove dynamic IRQs/exceptions from Zephyr

	ZEP-653 [https://jira.zephyrproject.org/browse/ZEP-653] - QMSI shim driver: Watchdog: Implement suspend and resume callbacks

	ZEP-654 [https://jira.zephyrproject.org/browse/ZEP-654] - QMSI shim driver: I2C: Implement suspend and resume callbacks

	ZEP-657 [https://jira.zephyrproject.org/browse/ZEP-657] - QMSI shim driver: AONPT: Implement suspend and resume callbacks

	ZEP-661 [https://jira.zephyrproject.org/browse/ZEP-661] - QMSI shim driver: SPI: Implement suspend and resume callbacks

	ZEP-688 [https://jira.zephyrproject.org/browse/ZEP-688] - unify duplicated sections of arch linker scripts

	ZEP-715 [https://jira.zephyrproject.org/browse/ZEP-715] - Add K64F clock configurations

	ZEP-716 [https://jira.zephyrproject.org/browse/ZEP-716] - Add Hexiwear board support

	ZEP-717 [https://jira.zephyrproject.org/browse/ZEP-717] - Add ksdk I2C shim driver

	ZEP-718 [https://jira.zephyrproject.org/browse/ZEP-718] - Add ksdk ethernet shim driver

	ZEP-721 [https://jira.zephyrproject.org/browse/ZEP-721] - Add FXOS8700 accelerometer/magnetometer sensor driver

	ZEP-737 [https://jira.zephyrproject.org/browse/ZEP-737] - Update host tools from upstream: fixdep.c

	ZEP-740 [https://jira.zephyrproject.org/browse/ZEP-740] - PWM API: Check if ‘flags’ argument is really required

	ZEP-745 [https://jira.zephyrproject.org/browse/ZEP-745] - Revisit design of PWM Driver API

	ZEP-750 [https://jira.zephyrproject.org/browse/ZEP-750] - Arduino 101 board should support one configuration using original bootloader

	ZEP-758 [https://jira.zephyrproject.org/browse/ZEP-758] - Rename Quark SE Devboard to its official name: Quark SE C1000

	ZEP-767 [https://jira.zephyrproject.org/browse/ZEP-767] - Add FS API to flush cache of an open file

	ZEP-775 [https://jira.zephyrproject.org/browse/ZEP-775] - Enable USB CDC by default on Arduino 101 and redirect serial to USB

	ZEP-783 [https://jira.zephyrproject.org/browse/ZEP-783] - ARM Cortex-M0/M0+ support

	ZEP-784 [https://jira.zephyrproject.org/browse/ZEP-784] - Add support for Nordic Semiconductor nRF51822 SoC

	ZEP-850 [https://jira.zephyrproject.org/browse/ZEP-850] - remove obsolete boards basic_minuteia and basic_cortex_m3

	ZEP-906 [https://jira.zephyrproject.org/browse/ZEP-906] - [unified] Add scheduler time slicing support

	ZEP-907 [https://jira.zephyrproject.org/browse/ZEP-907] - Test memory pool support (with mailboxes)

	ZEP-908 [https://jira.zephyrproject.org/browse/ZEP-908] - Add task offload to fiber support

	ZEP-909 [https://jira.zephyrproject.org/browse/ZEP-909] - Adapt tickless idle + power management for ARM

	ZEP-910 [https://jira.zephyrproject.org/browse/ZEP-910] - Adapt tickless idle for x86

	ZEP-912 [https://jira.zephyrproject.org/browse/ZEP-912] - Finish renaming kernel object types

	ZEP-916 [https://jira.zephyrproject.org/browse/ZEP-916] - Eliminate kernel object API anomalies

	ZEP-920 [https://jira.zephyrproject.org/browse/ZEP-920] - Investigate malloc/free support

	ZEP-921 [https://jira.zephyrproject.org/browse/ZEP-921] - Miscellaneous documentation work

	ZEP-922 [https://jira.zephyrproject.org/browse/ZEP-922] - Revise documentation for Kernel Event Logger

	ZEP-923 [https://jira.zephyrproject.org/browse/ZEP-923] - Revise documentation for Timing

	ZEP-924 [https://jira.zephyrproject.org/browse/ZEP-924] - Revise documentation for Interrupts

	ZEP-925 [https://jira.zephyrproject.org/browse/ZEP-925] - API changes to message queues

	ZEP-926 [https://jira.zephyrproject.org/browse/ZEP-926] - API changes to memory pools

	ZEP-927 [https://jira.zephyrproject.org/browse/ZEP-927] - API changes to memory maps

	ZEP-928 [https://jira.zephyrproject.org/browse/ZEP-928] - API changes to event handling

	ZEP-930 [https://jira.zephyrproject.org/browse/ZEP-930] - Cut over to unified kernel

	ZEP-933 [https://jira.zephyrproject.org/browse/ZEP-933] - Unified kernel ARC port

	ZEP-934 [https://jira.zephyrproject.org/browse/ZEP-934] - NIOS_II port

	ZEP-935 [https://jira.zephyrproject.org/browse/ZEP-935] - Kernel logger support (validation)

	ZEP-954 [https://jira.zephyrproject.org/browse/ZEP-954] - Update device PM API to allow setting additional power states

	ZEP-957 [https://jira.zephyrproject.org/browse/ZEP-957] - Create example sample for new unified kernel API usage

	ZEP-959 [https://jira.zephyrproject.org/browse/ZEP-959] - sync checkpatch.pl with upstream Linux

	ZEP-966 [https://jira.zephyrproject.org/browse/ZEP-966] - need support for EM7D SOC on em_starterkit

	ZEP-975 [https://jira.zephyrproject.org/browse/ZEP-975] - DNS client port to new IP stack

	ZEP-981 [https://jira.zephyrproject.org/browse/ZEP-981] - Add doxygen documentation to both include/kernel.h and include/legacy.h

	ZEP-989 [https://jira.zephyrproject.org/browse/ZEP-989] - Cache next ready thread instead of finding out the long way

	ZEP-993 [https://jira.zephyrproject.org/browse/ZEP-993] - Quark SE (x86): Refactor save/restore execution context feature

	ZEP-994 [https://jira.zephyrproject.org/browse/ZEP-994] - Quark SE (ARC): Add PMA sample

	ZEP-996 [https://jira.zephyrproject.org/browse/ZEP-996] - Refactor save/restore feature from i2c_qmsi driver

	ZEP-997 [https://jira.zephyrproject.org/browse/ZEP-997] - Refactor save/restore feature from spi_qmsi driver

	ZEP-998 [https://jira.zephyrproject.org/browse/ZEP-998] - Refactor save/restore feature from uart_qmsi driver

	ZEP-999 [https://jira.zephyrproject.org/browse/ZEP-999] - Refactor save/restore feature from gpio_qmsi driver

	ZEP-1000 [https://jira.zephyrproject.org/browse/ZEP-1000] - Refactor save/restore feature from rtc_qmsi driver

	ZEP-1001 [https://jira.zephyrproject.org/browse/ZEP-1001] - Refactor save/restore feature from wdt_qmsi driver

	ZEP-1002 [https://jira.zephyrproject.org/browse/ZEP-1002] - Refactor save/restore feature from counter_qmsi_aonpt driver

	ZEP-1004 [https://jira.zephyrproject.org/browse/ZEP-1004] - Extend counter_qmsi_aon driver to support save/restore peripheral context

	ZEP-1005 [https://jira.zephyrproject.org/browse/ZEP-1005] - Extend dma_qmsi driver to support save/restore peripheral context

	ZEP-1006 [https://jira.zephyrproject.org/browse/ZEP-1006] - Extend soc_flash_qmsi driver to support save/restore peripheral context

	ZEP-1008 [https://jira.zephyrproject.org/browse/ZEP-1008] - Extend pwm_qmsi driver to support save/restore peripheral context

	ZEP-1023 [https://jira.zephyrproject.org/browse/ZEP-1023] - workq in Kernel primer for unified kernel

	ZEP-1030 [https://jira.zephyrproject.org/browse/ZEP-1030] - Enable QMSI shim drivers of SoC peripherals on the sensor subsystem

	ZEP-1043 [https://jira.zephyrproject.org/browse/ZEP-1043] - Update QMSI to 1.2

	ZEP-1045 [https://jira.zephyrproject.org/browse/ZEP-1045] - Add/Enhance shim layer to wrap SOC specific PM implementations

	ZEP-1046 [https://jira.zephyrproject.org/browse/ZEP-1046] - Implement RAM sharing between bootloader and Zephyr

	ZEP-1047 [https://jira.zephyrproject.org/browse/ZEP-1047] - Adapt to new PM related boot flow changes in QMSI boot loader

	ZEP-1106 [https://jira.zephyrproject.org/browse/ZEP-1106] - Fix all test failures from TCF

	ZEP-1107 [https://jira.zephyrproject.org/browse/ZEP-1107] - Update QMSI to 1.3

	ZEP-1109 [https://jira.zephyrproject.org/browse/ZEP-1109] - Texas Instruments CC3200 LaunchXL Support

	ZEP-1119 [https://jira.zephyrproject.org/browse/ZEP-1119] - move top level usb/ to sys/usb

	ZEP-1120 [https://jira.zephyrproject.org/browse/ZEP-1120] - move top level fs/ to sys/fs

	ZEP-1121 [https://jira.zephyrproject.org/browse/ZEP-1121] - Add config support for enabling SoCWatch in Zephyr

	ZEP-1140 [https://jira.zephyrproject.org/browse/ZEP-1140] - Add a unified kernel version of power_mgr sample app for testing PM code with the new kernel

	ZEP-1188 [https://jira.zephyrproject.org/browse/ZEP-1188] - Add an API to retrieve pending interrupts for wake events

	ZEP-1191 [https://jira.zephyrproject.org/browse/ZEP-1191] - Create wiki page for Hexiwear board

	ZEP-1235 [https://jira.zephyrproject.org/browse/ZEP-1235] - Basic shell support for file system browsing

	ZEP-1245 [https://jira.zephyrproject.org/browse/ZEP-1245] - ARM LTD V2M Beetle Support

	ZEP-1313 [https://jira.zephyrproject.org/browse/ZEP-1313] - porting and user guides must include a security section

	ZEP-1386 [https://jira.zephyrproject.org/browse/ZEP-1386] - Revise power management document to reflect latest changes

	ZEP-199 [https://jira.zephyrproject.org/browse/ZEP-199] - Zephyr driver model is undocumented

	ZEP-436 [https://jira.zephyrproject.org/browse/ZEP-436] - Test case tests/kernel/test_mem_safe fails on ARM hardware

	ZEP-471 [https://jira.zephyrproject.org/browse/ZEP-471] - Ethernet packet with multicast address is not working

	ZEP-472 [https://jira.zephyrproject.org/browse/ZEP-472] - Ethernet packets are getting missed if sent in quick succession.

	ZEP-517 [https://jira.zephyrproject.org/browse/ZEP-517] - build on windows failed “zephyr/Makefile:869: *** multiple target patterns”

	ZEP-528 [https://jira.zephyrproject.org/browse/ZEP-528] - ARC has 2 almost identical copies of the linker script

	ZEP-577 [https://jira.zephyrproject.org/browse/ZEP-577] - Sample application source does not compile on Windows

	ZEP-601 [https://jira.zephyrproject.org/browse/ZEP-601] - enable CONFIG_DEBUG_INFO

	ZEP-602 [https://jira.zephyrproject.org/browse/ZEP-602] - unhandled CPU exceptions/interrupts report wrong faulting vector if triggered by CPU

	ZEP-615 [https://jira.zephyrproject.org/browse/ZEP-615] - Un-supported flash erase size listed in SPI flash w25qxxdv driver header file

	ZEP-639 [https://jira.zephyrproject.org/browse/ZEP-639] - device_pm_ops structure should be defined as static

	ZEP-686 [https://jira.zephyrproject.org/browse/ZEP-686] - docs: Info in “Application Development Primer” and “Developing an Application and the Build System” is largely duplicated

	ZEP-698 [https://jira.zephyrproject.org/browse/ZEP-698] - samples/task_profiler issues

	ZEP-707 [https://jira.zephyrproject.org/browse/ZEP-707] - mem_safe test stomps on top of .data and bottom of .noinit

	ZEP-724 [https://jira.zephyrproject.org/browse/ZEP-724] - build on windows failed: ‘make: execvp: uname: File or path name too long’

	ZEP-733 [https://jira.zephyrproject.org/browse/ZEP-733] - Minimal libc shouldn’t be providing stddef.h

	ZEP-762 [https://jira.zephyrproject.org/browse/ZEP-762] - unexpected “abspath” and “notdir” from mingw make system

	ZEP-777 [https://jira.zephyrproject.org/browse/ZEP-777] - samples/driver/i2c_stts751: kconfig build warning from “select DMA_QMSI”

	ZEP-778 [https://jira.zephyrproject.org/browse/ZEP-778] - Samples/drivers/i2c_lsm9ds0: kconfig build warning from “select DMA_QMSI”

	ZEP-779 [https://jira.zephyrproject.org/browse/ZEP-779] - Using current MinGW gcc version 5.3.0 breaks Zephyr build on Windows

	ZEP-845 [https://jira.zephyrproject.org/browse/ZEP-845] - UART for ARC on Arduino 101 behaves unexpectedly

	ZEP-905 [https://jira.zephyrproject.org/browse/ZEP-905] - hello_world compilation for arduino_due target fails when using CROSS_COMPILE

	ZEP-940 [https://jira.zephyrproject.org/browse/ZEP-940] - Fail to get ATT response

	ZEP-950 [https://jira.zephyrproject.org/browse/ZEP-950] - USB: Device is not listed by USB20CV test suite

	ZEP-961 [https://jira.zephyrproject.org/browse/ZEP-961] - samples: other cases cannot execute after run aon_counter case

	ZEP-967 [https://jira.zephyrproject.org/browse/ZEP-967] - Sanity doesn’t build ‘samples/usb/dfu’ with assertions (-R)

	ZEP-970 [https://jira.zephyrproject.org/browse/ZEP-970] - Sanity doesn’t build ‘tests/kernel/test_build’ with assertions (-R)

	ZEP-982 [https://jira.zephyrproject.org/browse/ZEP-982] - Minimal libc has EWOULDBLOCK != EAGAIN

	ZEP-1014 [https://jira.zephyrproject.org/browse/ZEP-1014] - [TCF] tests/bluetooth/init build fail

	ZEP-1025 [https://jira.zephyrproject.org/browse/ZEP-1025] - Unified kernel build sometimes breaks on a missing .d dependency file.

	ZEP-1027 [https://jira.zephyrproject.org/browse/ZEP-1027] - Documentation for GCC ARM is not accurate

	ZEP-1031 [https://jira.zephyrproject.org/browse/ZEP-1031] - qmsi: dma: driver test fails with LLVM

	ZEP-1048 [https://jira.zephyrproject.org/browse/ZEP-1048] - grove_lcd sample: sample does not work if you disable serial

	ZEP-1051 [https://jira.zephyrproject.org/browse/ZEP-1051] - mpool allocation failed after defrag twice...

	ZEP-1062 [https://jira.zephyrproject.org/browse/ZEP-1062] - Unified kernel isn’t compatible with CONFIG_NEWLIB_LIBC

	ZEP-1074 [https://jira.zephyrproject.org/browse/ZEP-1074] - ATT retrying misbehaves when ATT insufficient Authentication is received

	ZEP-1076 [https://jira.zephyrproject.org/browse/ZEP-1076] - “samples/philosophers/unified” build failed with dynamic stack

	ZEP-1077 [https://jira.zephyrproject.org/browse/ZEP-1077] - “samples/philosophers/unified” build warnings with NUM_PHIL<6

	ZEP-1079 [https://jira.zephyrproject.org/browse/ZEP-1079] - Licensing not clear for imported components

	ZEP-1097 [https://jira.zephyrproject.org/browse/ZEP-1097] - ENC28J60 driver fails on concurrent tx and rx

	ZEP-1098 [https://jira.zephyrproject.org/browse/ZEP-1098] - ENC28J60 fails to receive big data frames

	ZEP-1100 [https://jira.zephyrproject.org/browse/ZEP-1100] - Current master still identifies itself as 1.5.0

	ZEP-1101 [https://jira.zephyrproject.org/browse/ZEP-1101] - SYS_KERNEL_VER_PATCHLEVEL() and friends artificially limit version numbers to 4 bits

	ZEP-1124 [https://jira.zephyrproject.org/browse/ZEP-1124] - tests/kernel/test_sprintf/microkernel/testcase.ini#test failure on frdm_k64f

	ZEP-1130 [https://jira.zephyrproject.org/browse/ZEP-1130] - region ‘RAM’ overflowed occurs while building test_hmac_prng

	ZEP-1138 [https://jira.zephyrproject.org/browse/ZEP-1138] - Received packets not being passed to upper layer from IP stack when using ENC28J60 driver

	ZEP-1139 [https://jira.zephyrproject.org/browse/ZEP-1139] - Fix build error when power management is built with unified kernel

	ZEP-1141 [https://jira.zephyrproject.org/browse/ZEP-1141] - TinyCrypt SHA256 test fails with system crash using unified kernel type

	ZEP-1144 [https://jira.zephyrproject.org/browse/ZEP-1144] - TinyCrypt AES128 fixed-key with variable-text test fails using unified kernel type

	ZEP-1145 [https://jira.zephyrproject.org/browse/ZEP-1145] - system hang after TinyCrypt HMAC test

	ZEP-1146 [https://jira.zephyrproject.org/browse/ZEP-1146] - zephyrproject.org home page needs technical scrub for 1.6 release

	ZEP-1149 [https://jira.zephyrproject.org/browse/ZEP-1149] - port ztest framework to unified kernel

	ZEP-1154 [https://jira.zephyrproject.org/browse/ZEP-1154] - tests/samples failing with unified kernel

	ZEP-1155 [https://jira.zephyrproject.org/browse/ZEP-1155] - Fix filesystem API namespace

	ZEP-1163 [https://jira.zephyrproject.org/browse/ZEP-1163] - LIB_INCLUDE_DIR is clobbered in Makefile second pass

	ZEP-1164 [https://jira.zephyrproject.org/browse/ZEP-1164] - ztest skip waiting the test case to finish its execution

	ZEP-1179 [https://jira.zephyrproject.org/browse/ZEP-1179] - Build issues when compiling with LLVM from ISSM (icx)

	ZEP-1182 [https://jira.zephyrproject.org/browse/ZEP-1182] - kernel.h doxygen show unexpected “asm” blocks

	ZEP-1183 [https://jira.zephyrproject.org/browse/ZEP-1183] - btshell return “panic: errcode -1” when init bt

	ZEP-1195 [https://jira.zephyrproject.org/browse/ZEP-1195] - Wrong ATT error code passed to the application

	ZEP-1199 [https://jira.zephyrproject.org/browse/ZEP-1199] - [L2CAP] No credits to receive packet

	ZEP-1219 [https://jira.zephyrproject.org/browse/ZEP-1219] - [L2CAP] Data sent exceeds maximum PDU size

	ZEP-1221 [https://jira.zephyrproject.org/browse/ZEP-1221] - Connection Timeout during pairing

	ZEP-1226 [https://jira.zephyrproject.org/browse/ZEP-1226] - cortex M7 port assembler error

	ZEP-1227 [https://jira.zephyrproject.org/browse/ZEP-1227] - ztest native testing not working in unified kernel

	ZEP-1232 [https://jira.zephyrproject.org/browse/ZEP-1232] - Daily build is failing asserts

	ZEP-1234 [https://jira.zephyrproject.org/browse/ZEP-1234] - Removal of fiber* APIs due to unified migration breaks USB mass storage patchset

	ZEP-1247 [https://jira.zephyrproject.org/browse/ZEP-1247] - Test tests/legacy/benchmark/latency_measure is broken for daily sanitycheck

	ZEP-1252 [https://jira.zephyrproject.org/browse/ZEP-1252] - Test test_chan_blen_transfer does not build for quark_d2000_crb

	ZEP-1277 [https://jira.zephyrproject.org/browse/ZEP-1277] - Flash driver (w25qxxdv) erase function is not checking for offset alignment

	ZEP-1278 [https://jira.zephyrproject.org/browse/ZEP-1278] - Incorrect boundary check in flash driver (w25qxxdv) for erase offset

	ZEP-1287 [https://jira.zephyrproject.org/browse/ZEP-1287] - ARC SPI 1 Port is not working

	ZEP-1289 [https://jira.zephyrproject.org/browse/ZEP-1289] - Race condition with k_sem_take

	ZEP-1291 [https://jira.zephyrproject.org/browse/ZEP-1291] - libzephyr.a dependency on phony “gcc” target

	ZEP-1293 [https://jira.zephyrproject.org/browse/ZEP-1293] - ENC28J60 driver doesn’t work on Arduino 101

	ZEP-1295 [https://jira.zephyrproject.org/browse/ZEP-1295] - incorrect doxygen comment in kernel.h:k_work_pending()

	ZEP-1297 [https://jira.zephyrproject.org/browse/ZEP-1297] - test/legacy/kernel/test_mail: failure on ARC platforms

	ZEP-1299 [https://jira.zephyrproject.org/browse/ZEP-1299] - System can’t resume completely with DMA suspend and resume operation

	ZEP-1302 [https://jira.zephyrproject.org/browse/ZEP-1302] - ENC28J60 fails with rx/tx of long frames

	ZEP-1303 [https://jira.zephyrproject.org/browse/ZEP-1303] - Configuration talks about >32 thread prios, but the kernel does not support it

	ZEP-1309 [https://jira.zephyrproject.org/browse/ZEP-1309] - ARM uses the end of memory for its init stack

	ZEP-1310 [https://jira.zephyrproject.org/browse/ZEP-1310] - ARC uses the end of memory for its init stack

	ZEP-1312 [https://jira.zephyrproject.org/browse/ZEP-1312] - ARC: software crashed at k_mbox_get() with async sending a message

	ZEP-1319 [https://jira.zephyrproject.org/browse/ZEP-1319] - Zephyr is unable to compile when CONFIG_RUNTIME_NMI is enabled on ARM platforms

	ZEP-1341 [https://jira.zephyrproject.org/browse/ZEP-1341] - power_states test app passes wrong value as power state to post_ops functions

	ZEP-1343 [https://jira.zephyrproject.org/browse/ZEP-1343] - tests/drivers/pci_enum: failing on QEMU ARM and X86 due to missing commit

	ZEP-1345 [https://jira.zephyrproject.org/browse/ZEP-1345] - cpu context save and restore could corrupt stack

	ZEP-1349 [https://jira.zephyrproject.org/browse/ZEP-1349] - ARC sleep needs to pass interrupt priority threshold when interrupts are enabled

	ZEP-1353 [https://jira.zephyrproject.org/browse/ZEP-1353] - FDRM k64f Console output broken on normal flash mode

Known Issues

	ZEP-1405 [https://jira.zephyrproject.org/browse/ZEP-1405] - function l2cap_br_conn_req in /subsys/bluetooth/host/l2cap_br.c
references uninitialized pointer

Glossary of Terms

	API

	(Application Program Interface) A defined set of routines and protocols for
building application software.

	application

	The set of user-supplied files that the Zephyr build system uses
to build an application image for a specified board configuration.
It can contain application-specific code, kernel configuration settings,
and at least one Makefile.
The application’s kernel configuration settings direct the build system
to create a custom kernel that makes efficient use of the board’s
resources.
An application can sometimes be built for more than one type of board
configuration (including boards with different CPU architectures),
if it does not require any board-specific capabilities.

	application image

	A binary file that is loaded and executed by the board for which
it was built.
Each application image contains both the application’s code and the
Zephyr kernel code needed to support it. They are compiled as a single,
fully-linked binary.
Once an application image is loaded onto a board, the image takes control
of the system, initializes it, and runs as the system’s sole application.
Both application code and kernel code execute as privileged code
within a single shared address space.

	board

	A target system with a defined set of devices and capabilities,
which can load and execute an application image. It may be an actual
hardware system or a simulated system running under QEMU.
The Zephyr kernel supports a variety of boards.

	board configuration

	A set of kernel configuration options that specify how the devices
present on a board are used by the kernel.
The Zephyr build system defines one or more board configurations
for each board it supports. The kernel configuration settings that are
specified by the build system can be over-ridden by the application,
if desired.

	IDT

	(Interrupt Descriptor Table) a data structure used by the x86
architecture to implement an interrupt vector table. The IDT is used
to determine the correct response to interrupts and exceptions.

	ISR

	(Interrupt Service Routine) Also known as an interrupt handler, an ISR
is a callback function whose execution is triggered by a hardware
interrupt (or software interrupt instructions) and is used to handle
high-priority conditions that require interrupting the current code
executing on the processor.

	kernel

	The set of Zephyr-supplied files that implement the Zephyr kernel,
including its core services, device drivers, network stack, and so on.

	XIP

	(eXecute In Place) a method of executing programs directly from long
term storage rather than copying it into RAM, saving writable memory for
dynamic data and not the static program code.

Zephyr Kernel 1.9.0 (WIP)

We are pleased to announce the release of Zephyr kernel version 1.9.0
(planned for release in August 2017).

Major enhancements planned with this release include:

	Pthreads compatible API

	BSD Sockets compatible API

	Expand Device Tree support to more architectures

	BLE Mesh

	Bluetooth 5.0 Support (all features except Advertising Extensions)

	Expand LLVM Support to more architectures

	Revamp Testsuite, Increase Coverage

	Zephyr SDK NG

	Eco System: Tracing, debugging support through 3rd party tools

	Lightweight Machine to Machine (LwM2M) support

These enhancements are planned, but may move out to a future release:

	Thread Protocol (initial drop)

	MMU/MPU (Cont.): Thread Isolation, Paging

	Build and Configuration System (CMake)

The following sections provide detailed lists of changes by component.

Kernel

	change description

Architectures

	change description

Boards

	change description

Drivers and Sensors

	KW40Z IEEE 802.15.4 radio driver support added

	APDS9960 sensor driver added

Networking

	LWM2M support added

	net-app API support added. This is higher level API that can be used
by applications to create client/server applications with transparent
TLS (for TCP) or DTLS (for UDP) support.

	MQTT TLS support added

	Add support to automatically setup IEEE 802.15.4 and Bluetooth IPSP networks

	TCP receive window support added

	Network sample application configuration file unification, where most of the
similar configuration files were merged together

	Added Bluetooth support to HTTP(S) server sample application

	BSD Socket compatible API layer, allowing to write and/or port simple
networking applications using a well-known, cross-platform API

	Networking API documentation fixes

	Network shell enhancements

	Trickle algorithm fixes

	Improvements to HTTP server and client libraries

	CoAP API fixes

	IPv6 fixes

	RPL fixes

Bluetooth

	Bluetooth Mesh support (all mandatory features and most optional ones)

	GATT Service Changed Characteristic support

	IPSP net-app support: a simplified networking API reducing duplication
of common tasks an application writer has to go through to connect
to the network.

	BLE controller qualification-ready, with all required tests passing

	Controller-based privacy (including all optional features)

	Extended Scanner Filter Policies support in the controller

	Controller roles (Advertiser, Scanner, Master and Slave) separation in
source code, conditionally includable

	Flash access cooperation with BLE radio activity

Build and Infrastructure

	change description

Libraries

	change description

HALs

	change description

Documentation

	CONTRIBUTING.rst and Contribution Guide material added

	Configuration options doc reorganized for easier access

	Navigation sidebar issues fixed for supported boards section

	Completed migration of wiki.zephyrproject.org content into docs and
GitHub wiki. All links to old wiki updated.

	Broken link and spelling check scans through .rst, Kconfig (used for
auto-generated configuration docs), and source code doxygen comments
(used for API documentation).

	API documentation added for new interfaces and improved for existing
ones.

	Documentation added for new boards supported with this release.

	Python packages needed for document generation added to new python
pip requirements.txt

Tests and Samples

	change description

JIRA Related Items

	ZEP-000 [https://jira.zephyrproject.org/browse/ZEP-000] - Title

索引

 A
 | B
 | I
 | K
 | X

A

 	
 	API

 	
 	application

 	application image

B

 	
 	board

 	
 	board configuration

I

 	
 	IDT

 	
 	ISR

K

 	
 	kernel

X

 	
 	XIP

Zephyr Kernel 1.8.0

We are pleased to announce the release of Zephyr kernel version 1.8.0.

Major enhancements with this release include:

	Tickless kernel

	IP Stack improvements

	Bluetooth 5.0 features

	Ecosystem: Tracing, debugging support through third-party tools (openocd,
Segger Systemview)

	Improved build support on Mac and Windows development environments

	Xtensa GCC support

	Initial implementation of MMU/MPU support

	Expanded device support

The following sections provide detailed lists of changes by component.

Kernel

	Use k_cycle_get_32 instead of sys_cycle_get_32 for Kernel

	Added k_panic() and k_oops() APIs for Kernel

	Added k_thread_create() API for Kernel

	Added k_queue API for Kernel

	Add tickless kernel support

Architectures

	arm: Update core to use struct k_thread

	arm: Added ARM MPU support

	dts: Added ARM CMSDK support

	arm: Added Initial support for NXP MPU

	arm: Added Device Tree Support for nRF52832 SoC based boards

	arm: Fixed nRF52840-QIAA SoC support for device tree

	arm: Added Device Tree Support for nRF52840 SoC & boards

	arm: Added Device Tree Support for nRF51822 SoC & boards

	dts: Introduced st/mem.h for FLASH & SRAM sizes

	dts: Put IRQ priority into the interrupt property

	arm: Support for MKL25Z soc

	arm: Added FPU support

	x86: defined MMU data structures

	Support for ARC EM Starter Kit version 2.3 added

Boards

	Added qemu_xtensa board definition

	Added a more informative page fault handler x86 board

	xtensa: build similar to other Zephyr arches

	Define MMU data structures for x86 board

	Added support for board disco_l475_iot1

	Added STM32F413 Nucleo board

	Added support for the CC3220SF_LAUNCHXL board

	Support for new ARM board FRDM-KL25Z

	arduino_101 board enable GPIO by default

	boards: convert to using newly introduced integer sized types

	arm: Added support for Nucleo L432KC board

	arm: Added support for STM32L496G Discovery board

	arm: Added support for STM32F469I-DISCO board

	BBC micro:bit: Added driver & API for the 5x5 LED display

Drivers and Sensors

	UART interrupt-driver API is better defined

	Support for pull-style console API

	nRF5 IEEE 802.15.4 radio driver added

	KW41Z IEEE 802.15.4 radio driver added

	Added MCUX TRNG driver

	Added support for the SiFive Freedom E310 pinmux driver

	drivers/sensor: Convert formatter strings to use PRI defines

	Added lps22hb sensor driver

	Added lsm6dsl sensor driver

	Added heart rate sensor driver

	Added support for max30101 heart rate sensor

	Added support for lis2dh accelerometer

Networking

	HTTPS server support added

	HTTP Basic-Auth support added

	IPv6 fragmentation support added

	Add block wise support to CoAP for well-known response

	Big refactoring of network buffer handling

	Start to collect TCP statistics if enabled in config

	IEEE 802.15.4 security support added

	DNS resolver sample application added

	IPv6 multicast listener (MLDv2) support added

	NATS protocol sample application added

	HTTP client and server connectivity fixes

	Network samples Coverity fixes

	Network samples llvm compiler warning fixes

	MQTT publisher connectivity fixes

	6lo IPv6 header compression fixes

	CoAP connectivity fixes

	DHCPv4 connectivity fixes

	TCP connectivity fixes

	DNS documentation and connectivity fixes

	IPv6 connectivity fixes

	IPv4 ARP fixes

	IEEE 802.15.4 configuration tweaking fixes

	Remove ORFD (Overly Reduced Function Device) 802.15.4 support

	Network offloading driver fixes

	Fix various memory leaks

	Properly check TCP and UDP checksum before accepting packet

	Start RX and TX network threads in proper order

	Network samples documentation fixes and clarifications

	RPL mesh routing fixes

	Network link (MAC) address fixes

Bluetooth

	Host: Added ATT and SMP packet tracking for flow control enforcement

	Host: GATT database changed to a linked list in preparation for dynamic allocation

	Bluetooth 5.0: The Controller reports itself as 5.0-capable

	Bluetooth 5.0: Introduced Channel Selection Algorithm #2 support

	Bluetooth 5.0: Added Multiple PHY support, both 2Mbit/s and long-range coded

	Bluetooth 5.0: Integrated Scan Request notifications

	Controller: Added Low Duty Cycle Directed Advertising support

	Controller: Added Scan duplicate filtering support

	Controller: Enforced complete role separation in the controller for smaller builds

	Controller: Introduced Advanced Controller configuration with several new Kconfig options

	Controller: Changed the radio interrupts to direct ISRs to reduce interrupt latency

	Added HCI Controller to Host flow control support in both Host and Controller

	BR/EDR: Added HFP (e)SCO audio channel establishment support

	BR/EDR: Added support for a functional SDP server

Build and Infrastructure

	Support building host tools

	Added separate DTS target

	Added support for MSYS2

	Use -O2 instead of -Os for ARC with SDK 0.9

Libraries

	Added library for software driven I2C

	Created a HTTP library

	Added HTTP server library support

	Added minimal JSON library

	Update TinyCrypt to version 0.2.6

	Added minimal JSON library

HALs

	Added Atmel SAM family I2C (TWIHS) driver

	Added Atmel SAM serial (UART) driver

	Added WDT driver for Atmel SAM SoCs

	Added Atmel SAM4S SoC support

	Imported Nordic 802.15.4 radio driver

	Added Initial support for NXP MPU

	Updated QMSI to 1.4 RC4

	Added FPU support

	Added basic support for STM32F413

	Introduced STM32F4x DMA driver

	pinmux: stm32: Added support for Nucleo L432KC

	Added support for STM32L496G Discovery board

	Added dts for STM32F407

	Added support for STM32F4DISCOVERY Board

	Added support for STM32F469XI

	Added support for STM32F469I-DISCO

Documentation

	Board documentation added for new board ports

	Added a board porting guide

	Added security sections to porting and user guides

	Continued migration of wiki.zephyrproject.org material to website and github wiki

	Improved CSS formatting and appearance of generated documents

	Added breadcrumb navigation header with kernel version number

	Updated getting started setup guides for Linux, Windows, and macOS

	Updates and additions to follow new and updated kernel features

	Broken link and spelling check scans

	Removed deprecated kernel documentation (pre 1.6 release) from website (still available in git repo if needed)

Tests and Samples

	Added test to verify same tick timeout expiry order

	Added clock_test for kernel

	Added tickless tests

	Added a simple CC2520 crypto dev test

	Added combined observer & broadcaster app for Bluetooth samples

	Added support to wait both IPv4 and IPv6

	Enabled tickless kernel option in some apps

JIRA Related Items

	ZEP-248 [https://jira.zephyrproject.org/browse/ZEP-248] - Add a BOARD/SOC porting guide

	ZEP-339 [https://jira.zephyrproject.org/browse/ZEP-339] - Tickless Kernel

	ZEP-540 [https://jira.zephyrproject.org/browse/ZEP-540] - add APIs for asynchronous transfer callbacks

	ZEP-628 [https://jira.zephyrproject.org/browse/ZEP-628] - Validate RPL Routing node support

	ZEP-638 [https://jira.zephyrproject.org/browse/ZEP-638] - feature to consider: flag missing functionality at build time when possible

	ZEP-720 [https://jira.zephyrproject.org/browse/ZEP-720] - Add MAX30101 heart rate sensor driver

	ZEP-828 [https://jira.zephyrproject.org/browse/ZEP-828] - IPv6 - Multicast Join/Leave Support

	ZEP-843 [https://jira.zephyrproject.org/browse/ZEP-843] - Unified assert/unrecoverable error infrastructure

	ZEP-888 [https://jira.zephyrproject.org/browse/ZEP-888] - 802.15.4 - Security support

	ZEP-932 [https://jira.zephyrproject.org/browse/ZEP-932] - Adapt kernel sample & test projects

	ZEP-948 [https://jira.zephyrproject.org/browse/ZEP-948] - Revisit the timeslicing algorithm

	ZEP-973 [https://jira.zephyrproject.org/browse/ZEP-973] - Remove deprecated API related to device PM functions and DEVICE_ and SYS_* macros

	ZEP-1028 [https://jira.zephyrproject.org/browse/ZEP-1028] - shrink k_block struct size

	ZEP-1032 [https://jira.zephyrproject.org/browse/ZEP-1032] - IPSP router role support

	ZEP-1169 [https://jira.zephyrproject.org/browse/ZEP-1169] - Sample mbedDTLS DTLS client stability on ethernet driver

	ZEP-1171 [https://jira.zephyrproject.org/browse/ZEP-1171] - Event group kernel APIs

	ZEP-1280 [https://jira.zephyrproject.org/browse/ZEP-1280] - Provide Event Queues Object

	ZEP-1313 [https://jira.zephyrproject.org/browse/ZEP-1313] - porting and user guides must include a security section

	ZEP-1326 [https://jira.zephyrproject.org/browse/ZEP-1326] - Clean up _THREAD_xxx APIs

	ZEP-1388 [https://jira.zephyrproject.org/browse/ZEP-1388] - Add support for KW40 SoC

	ZEP-1391 [https://jira.zephyrproject.org/browse/ZEP-1391] - Add support for Hexiwear KW40

	ZEP-1392 [https://jira.zephyrproject.org/browse/ZEP-1392] - Add FXAS21002 gyroscope sensor driver

	ZEP-1435 [https://jira.zephyrproject.org/browse/ZEP-1435] - Improve Quark SE C1000 ARC Floating Point Performance

	ZEP-1438 [https://jira.zephyrproject.org/browse/ZEP-1438] - AIO: AIO Comparator is not stable on D2000 and Arduino101

	ZEP-1463 [https://jira.zephyrproject.org/browse/ZEP-1463] - Add Zephyr Support in segger SystemView

	ZEP-1500 [https://jira.zephyrproject.org/browse/ZEP-1500] - net/mqtt: Test case for the MQTT high-level API

	ZEP-1528 [https://jira.zephyrproject.org/browse/ZEP-1528] - Provide template for multi-core applications

	ZEP-1529 [https://jira.zephyrproject.org/browse/ZEP-1529] - Unable to exit menuconfig

	ZEP-1530 [https://jira.zephyrproject.org/browse/ZEP-1530] - Hotkeys for the menu at the bottom of menuconfig sometimes doesn’t work

	ZEP-1568 [https://jira.zephyrproject.org/browse/ZEP-1568] - Replace arm cortex_m scs and scb functionality with direct CMSIS-core calls

	ZEP-1586 [https://jira.zephyrproject.org/browse/ZEP-1586] - menuconfig: Backspace is broken

	ZEP-1599 [https://jira.zephyrproject.org/browse/ZEP-1599] - printk() support for the ‘-‘ indicator in format string (left justifier)

	ZEP-1607 [https://jira.zephyrproject.org/browse/ZEP-1607] - JSON encoding/decoding library

	ZEP-1621 [https://jira.zephyrproject.org/browse/ZEP-1621] - Stack Monitoring

	ZEP-1631 [https://jira.zephyrproject.org/browse/ZEP-1631] - Ability to use k_mem_pool_alloc (or similar API) from ISR

	ZEP-1684 [https://jira.zephyrproject.org/browse/ZEP-1684] - Add Atmel SAM family watchdog (WDT) driver

	ZEP-1695 [https://jira.zephyrproject.org/browse/ZEP-1695] - Support ADXL362 sensor

	ZEP-1698 [https://jira.zephyrproject.org/browse/ZEP-1698] - BME280 support for SPI communication

	ZEP-1711 [https://jira.zephyrproject.org/browse/ZEP-1711] - xtensa build defines Kconfigs with lowercase names

	ZEP-1718 [https://jira.zephyrproject.org/browse/ZEP-1718] - support for IPv6 fragmentation

	ZEP-1719 [https://jira.zephyrproject.org/browse/ZEP-1719] - TCP does not work with 6lo

	ZEP-1721 [https://jira.zephyrproject.org/browse/ZEP-1721] - many TinyCrypt test cases only run on ARM and x86

	ZEP-1722 [https://jira.zephyrproject.org/browse/ZEP-1722] - xtensa: TinyCrypt does not build

	ZEP-1735 [https://jira.zephyrproject.org/browse/ZEP-1735] - Controller to Host flow control

	ZEP-1759 [https://jira.zephyrproject.org/browse/ZEP-1759] - All python scripts needed for build should be moved to python 3 to minimize dependencies

	ZEP-1761 [https://jira.zephyrproject.org/browse/ZEP-1761] - K_MEM_POOL_DEFINE build error “invalid register name” when built with llvm/icx from ISSM toolchain

	ZEP-1769 [https://jira.zephyrproject.org/browse/ZEP-1769] - Implement Set Event Mask and LE Set Event Mask commands

	ZEP-1772 [https://jira.zephyrproject.org/browse/ZEP-1772] - re-introduce controller to host flow control

	ZEP-1776 [https://jira.zephyrproject.org/browse/ZEP-1776] - sending LE COC data from RX thread can lead to deadlock

	ZEP-1785 [https://jira.zephyrproject.org/browse/ZEP-1785] - Tinytile: Flashing not supported with this board

	ZEP-1788 [https://jira.zephyrproject.org/browse/ZEP-1788] - [REG] bt_enable: No HCI driver registered

	ZEP-1800 [https://jira.zephyrproject.org/browse/ZEP-1800] - Update external mbed TLS library to latest version (2.4.2)

	ZEP-1812 [https://jira.zephyrproject.org/browse/ZEP-1812] - Add tickless kernel support in HPET timer

	ZEP-1816 [https://jira.zephyrproject.org/browse/ZEP-1816] - Add tickless kernel support in LOAPIC timer

	ZEP-1817 [https://jira.zephyrproject.org/browse/ZEP-1817] - Add tickless kernel support in ARCV2 timer

	ZEP-1818 [https://jira.zephyrproject.org/browse/ZEP-1818] - Add tickless kernel support in cortex_m_systick timer

	ZEP-1821 [https://jira.zephyrproject.org/browse/ZEP-1821] - Update PM apps to use mili/micro seconds instead of ticks

	ZEP-1823 [https://jira.zephyrproject.org/browse/ZEP-1823] - Improved Benchmarks

	ZEP-1825 [https://jira.zephyrproject.org/browse/ZEP-1825] - Context Switching KPI

	ZEP-1836 [https://jira.zephyrproject.org/browse/ZEP-1836] - Expose current ecb_encrypt() as bt_encrypt() so host can directly access it

	ZEP-1856 [https://jira.zephyrproject.org/browse/ZEP-1856] - remove legacy micro/nano kernel APIs

	ZEP-1857 [https://jira.zephyrproject.org/browse/ZEP-1857] - Build warnings [-Wpointer-sign] with LLVM/icx (bluetooth_handsfree)

	ZEP-1866 [https://jira.zephyrproject.org/browse/ZEP-1866] - Add Atmel SAM family I2C (TWIHS) driver

	ZEP-1880 [https://jira.zephyrproject.org/browse/ZEP-1880] - “samples/grove/temperature”: warning raised when generating configure file

	ZEP-1886 [https://jira.zephyrproject.org/browse/ZEP-1886] - Build warnings [-Wpointer-sign] with LLVM/icx (tests/net/nbuf)

	ZEP-1887 [https://jira.zephyrproject.org/browse/ZEP-1887] - Build warnings [-Wpointer-sign] with LLVM/icx (tests/drivers/spi/spi_basic_api)

	ZEP-1893 [https://jira.zephyrproject.org/browse/ZEP-1893] - openocd: ‘make flash’ works with Zephyr SDK only and fails for all other toolchains

	ZEP-1896 [https://jira.zephyrproject.org/browse/ZEP-1896] - [PTS] L2CAP/LE/CFC/BV-06-C

	ZEP-1899 [https://jira.zephyrproject.org/browse/ZEP-1899] - Missing board documentation for xtensa/xt-sim

	ZEP-1908 [https://jira.zephyrproject.org/browse/ZEP-1908] - Missing board documentation for arm/nucleo_96b_nitrogen

	ZEP-1910 [https://jira.zephyrproject.org/browse/ZEP-1910] - Missing board documentation for arm/96b_carbon

	ZEP-1927 [https://jira.zephyrproject.org/browse/ZEP-1927] - AIO: AIO_CMP_POL_FALL is triggered immediately after aio_cmp_configure

	ZEP-1935 [https://jira.zephyrproject.org/browse/ZEP-1935] - Packet loss make RPL mesh more vulnerable

	ZEP-1936 [https://jira.zephyrproject.org/browse/ZEP-1936] - tests/drivers/spi/spi_basic_api/testcase.ini#test_spi - Assertion Fail

	ZEP-1946 [https://jira.zephyrproject.org/browse/ZEP-1946] - Time to Next Event

	ZEP-1955 [https://jira.zephyrproject.org/browse/ZEP-1955] - Nested interrupts crash on Xtensa architecture

	ZEP-1959 [https://jira.zephyrproject.org/browse/ZEP-1959] - Add Atmel SAM family serial (UART) driver

	ZEP-1965 [https://jira.zephyrproject.org/browse/ZEP-1965] - net-tools HEAD is broken for QEMU/TAP

	ZEP-1966 [https://jira.zephyrproject.org/browse/ZEP-1966] - Doesn’t seem to be able to both send and receive locally via local address

	ZEP-1968 [https://jira.zephyrproject.org/browse/ZEP-1968] - “make mrproper” removes top-level dts/ dir, makes ARM builds fail afterwards

	ZEP-1980 [https://jira.zephyrproject.org/browse/ZEP-1980] - Move app_kernel benchmark to unified kernel

	ZEP-1984 [https://jira.zephyrproject.org/browse/ZEP-1984] - net_nbuf_append(), net_nbuf_append_bytes() have data integrity problems

	ZEP-1990 [https://jira.zephyrproject.org/browse/ZEP-1990] - Basic support for the BBC micro:bit LED display

	ZEP-1993 [https://jira.zephyrproject.org/browse/ZEP-1993] - Flowcontrol Required for CDC_ACM

	ZEP-1995 [https://jira.zephyrproject.org/browse/ZEP-1995] - samples/subsys/console breaks xtensa build

	ZEP-1997 [https://jira.zephyrproject.org/browse/ZEP-1997] - Crash during startup if co-processors are present

	ZEP-2008 [https://jira.zephyrproject.org/browse/ZEP-2008] - Port tickless idle test to unified kernel and cleanup

	ZEP-2009 [https://jira.zephyrproject.org/browse/ZEP-2009] - Port test_sleep test to unified kernel and cleanup

	ZEP-2011 [https://jira.zephyrproject.org/browse/ZEP-2011] - Retrieve RPL node information through CoAP requests

	ZEP-2012 [https://jira.zephyrproject.org/browse/ZEP-2012] - Fault in networking stack for cores that can’t access unaligned memory

	ZEP-2013 [https://jira.zephyrproject.org/browse/ZEP-2013] - dead object monitor code

	ZEP-2014 [https://jira.zephyrproject.org/browse/ZEP-2014] - Default samples/subsys/shell/shell fails to build on QEMU RISCv32 / NIOS2

	ZEP-2019 [https://jira.zephyrproject.org/browse/ZEP-2019] - Xtensa port does not compile if CONFIG_TICKLESS_IDLE is enabled

	ZEP-2027 [https://jira.zephyrproject.org/browse/ZEP-2027] - Bluetooth Peripheral Sample won’t pair with certain Android devices

	ZEP-2029 [https://jira.zephyrproject.org/browse/ZEP-2029] - xtensa: irq_offload() doesn’t work on XRC_D2PM

	ZEP-2033 [https://jira.zephyrproject.org/browse/ZEP-2033] - Channel Selection Algorithm #2

	ZEP-2034 [https://jira.zephyrproject.org/browse/ZEP-2034] - High Duty Cycle Non-Connectable Advertising

	ZEP-2037 [https://jira.zephyrproject.org/browse/ZEP-2037] - Malformed echo response

	ZEP-2048 [https://jira.zephyrproject.org/browse/ZEP-2048] - Change UART “baud-rate” property to “current-speed”

	ZEP-2051 [https://jira.zephyrproject.org/browse/ZEP-2051] - Move away from C99 types to zephyr defined types

	ZEP-2052 [https://jira.zephyrproject.org/browse/ZEP-2052] - arm: unhandled exceptions in thread take down entire system

	ZEP-2055 [https://jira.zephyrproject.org/browse/ZEP-2055] - Add README.rst in the root of the project for github

	ZEP-2057 [https://jira.zephyrproject.org/browse/ZEP-2057] - crash in tests/net/rpl on qemu_x86 causing intermittent sanitycheck failure

	ZEP-2061 [https://jira.zephyrproject.org/browse/ZEP-2061] - samples/net/dns_resolve networking setup/README is confusing

	ZEP-2064 [https://jira.zephyrproject.org/browse/ZEP-2064] - RFC: Making net_shell command handlers reusable

	ZEP-2065 [https://jira.zephyrproject.org/browse/ZEP-2065] - struct dns_addrinfo has unused fields

	ZEP-2066 [https://jira.zephyrproject.org/browse/ZEP-2066] - nitpick: SOCK_STREAM/SOCK_DGRAM values swapped compared to most OSes

	ZEP-2069 [https://jira.zephyrproject.org/browse/ZEP-2069] - samples: net: dhcpv4_client: runs failed on frdm k64f board

	ZEP-2070 [https://jira.zephyrproject.org/browse/ZEP-2070] - net pkt doesn’t full unref after send a data form bluetooth’s ipsp

	ZEP-2076 [https://jira.zephyrproject.org/browse/ZEP-2076] - samples: net: coaps_server: build failed

	ZEP-2077 [https://jira.zephyrproject.org/browse/ZEP-2077] - Fix IID when using CONFIG_NET_L2_BLUETOOTH_ZEP1656

	ZEP-2080 [https://jira.zephyrproject.org/browse/ZEP-2080] - No reply from RPL node after 20-30 minutes.

	ZEP-2092 [https://jira.zephyrproject.org/browse/ZEP-2092] - [NRF][BT] Makefile:946: recipe for target ‘include/generated/generated_dts_board.h’ failed

	ZEP-2114 [https://jira.zephyrproject.org/browse/ZEP-2114] - tests/kernel/fatal : Fail for QC1000/arc

	ZEP-2125 [https://jira.zephyrproject.org/browse/ZEP-2125] - Compilation error when UART1 port is enabled via menuconfig

	ZEP-2132 [https://jira.zephyrproject.org/browse/ZEP-2132] - Build samples/bluetooth/hci_uart fail

	ZEP-2138 [https://jira.zephyrproject.org/browse/ZEP-2138] - Static code scan (coverity) issues seen

	ZEP-2143 [https://jira.zephyrproject.org/browse/ZEP-2143] - Compilation Error on Windows 10 with MSYS2

	ZEP-2152 [https://jira.zephyrproject.org/browse/ZEP-2152] - Xtensa crashes on startup for cores with coprocessors

	ZEP-2178 [https://jira.zephyrproject.org/browse/ZEP-2178] - Static code scan (coverity) issues seen

Zephyr Kernel 1.7.0

We are pleased to announce the release of Zephyr kernel version 1.7.0. This
release continues refinement of the unified kernel introduced with the 1.6.0
kernel release, simplifying the overall Zephyr architecture and programming
interfaces. This is the last release that will support the deprecated legacy
nano- and micro-kernel APIs found in the 1.5.0 release and earlier.

This release introduces a new native IP stack, replacing the legacy uIP stack,
maintaining the legacy functionality, adding additional capabilities, and allowing
future improvements.

We have introduced support for the RISC V and Xtensa architectures and now
support 6 architectures in total.

Device tree support for ARM based boards added. The initial
device tree support includes flash/sram base address and UART devices. Board
support includes NXP Kinetis based SoCs, ARM Beetle, TI CC3200 LaunchXL, and
STML32L476 based SoCs. Plan is to add support for other architectures and
expand device support in upcoming Zephyr releases.

The following sections provide a detailed list of changes, by component, since
kernel version 1.6.0.

Kernel

	Introduction of k_poll API: k_poll() is similar to the POSIX poll() API in
spirit in that it allows a single thread to monitor multiple events without
actively polling them, but rather pending for one or more to become ready.

	Optimized memory use of some thread fields

	Remove usage of micro/nano kernel terminology from kernel code and introduced
a legacy option to enable/disable legacy APIs. (using legacy.h)

Architectures

	ARM: Added support for device tree

	ARM: Fixed exception priority access on Cortex M0(+)

	ARM: Refactored to use CMSIS

Boards

	Added ARM MPS2_AN385 board

	Added Atmel SAM E70 Xplained board

	Added Nordic pca10056 PDK board

	Added NXP FRDM-KW41Z board

	Added ST Nucleo-F334R8, Nucleo-L476G, STM3210C-EVAL, and STM32373C-EVAL boards

	Added Panther and tinyTILE boards, based on Quark SE C1000 and Intel Curie

	Added support for Zedboard Pulpino, a RISC V based board

	Added Qemu target for RISC V and a simulator target for the Xtensa architecture.

Drivers and Sensors

	Added Atmel SAM pmc, gpio, uart, and ethernet drivers

	Added STM32F3x clock, flash, gpio, pinmux drivers

	Added stm32cube pwm and clock drivers

	Added cc3200 gpio driver

	Added mcr20a ieee802154 driver

	Added mcux pinmux, gpio, uart, and spi drivers

	Added Beetle clock control and watchdog drivers

Networking

This version removes the legacy uIP stack and introduces a new native IP stack.
Because of this there is lot of changes in the code base. The native IP stack
will support the same functionality as the legacy IP stack found in 1.6, and
add new networking features which are described below.

	IP stack code is moved to subsys/net/ip directory.

	IP stack supports both IPv6 and IPv4, and they can be enabled simultaneously.

	Multiple network technologies like Bluetooth IPSP and IEEE 802.15.4 can be
enabled simultaneously. No routing functionality is provided by IP stack
between enabled network technologies, applications need to decide where to
send the network packets.

	Network technologies are abstracted in IP layer 2 (L2) and presented to
rest of the system as network interfaces. There exists L2 driver for
Ethernet, Bluetooth and IEEE 802.15.4.

	Created Bluetooth Internet Protocol Support Profile (IPSP) support. It will
provide IPv6 connection over Bluetooth connection oriented channel (L2CAP).

	Created DHCPv4 support.

	Created CoAP implementation called ZoAP which replaces uIP based one.

	Updated 6Lo implementation to support both Bluetooth and IEEE 802.15.4

	Created application API (net_context) for creating connections and
transferring data to external systems.

	Added sample application (wpanusb) for exporting IEEE 802.15.4 radio over
USB to external operating systems like Linux.

	Added DNS client library.

	Updated TCP implementation.

	Created MQTT publisher support.

	Created network test generator (zperf).

	Created telnet console support.

	Created IRC client sample application.

	Created HTTP server and client sample applications.

	Created net-shell module for interacting with network sub-system.

	Created ieee15_4 shell module for dedicated interaction with
IEEE 802.15.4 Soft MAC.

	Created network management API for generic network settings request as well
as a network event notification system (sender/listener).

	Redesigned buffer & pool allocation API.

Bluetooth

	Redesigned buffer pools for smaller memory consumption

	Redesigned thread model for smaller memory consumption

	Utilized new k_poll API to consolidate all TX threads into a single one

	Added more SDP functionality

	Improved RFCOMM support

	Reduced latencies in the Controller

	Added SPI HCI driver

Libraries

	Updated mbedTLS library

	Updated TinyCrypt to version 0.2.5

HALs

	Updated FAT FS to rev 0.12b

	Updated Nordic MDK header files

	Updated QMSI to 1.4 RC3

	Imported Atmel SDK (ASF) for SAM E70 and SAM3X

	Imported Nordic SDK HAL and 802.15.4 radio driver

	Renamed NXP KSDK to MCUX

	Imported NXP MCUX for KW41Z

	Imported Segger J-Link RTT library

	Imported stm32cube for F4 and L4

Documentation

	General improvements and additions to kernel component docs

	Moved supported board information back to the website site.

	New website documentation theme to go with the new zephyrproject.org site.

	New local-content generation theme (read-the-docs)

	General spelling checks and organizational improvements.

	Site-wide glossary added.

	Porting guides added.

	Sample README files converted to documents included in the website.

	Improved consistency of boards and samples-and-demos.

JIRA Related Items

	ZEP-19 [https://jira.zephyrproject.org/browse/ZEP-19] - IPSP node support

	ZEP-145 [https://jira.zephyrproject.org/browse/ZEP-145] - no ‘make flash’ for Arduino Due

	ZEP-328 [https://jira.zephyrproject.org/browse/ZEP-328] - HW Encryption Abstraction

	ZEP-359 [https://jira.zephyrproject.org/browse/ZEP-359] - Move QEMU handling to a central location

	ZEP-365 [https://jira.zephyrproject.org/browse/ZEP-365] - Zephyr’s MQTT library

	ZEP-437 [https://jira.zephyrproject.org/browse/ZEP-437] - TCP/IP API

	ZEP-513 [https://jira.zephyrproject.org/browse/ZEP-513] - extern declarations of small microkernel objects in designated sections require __attribute__((section)) in gp-enabled systems

	ZEP-591 [https://jira.zephyrproject.org/browse/ZEP-591] - MQTT Port to New IP Stack

	ZEP-604 [https://jira.zephyrproject.org/browse/ZEP-604] - In coap_server sample app, CoAP resource separate is not able to send separate response

	ZEP-613 [https://jira.zephyrproject.org/browse/ZEP-613] - TCP/UDP client and server mode functionality

	ZEP-641 [https://jira.zephyrproject.org/browse/ZEP-641] - Bluetooth Eddystone sample does not correctly implement Eddystone beacon

	ZEP-648 [https://jira.zephyrproject.org/browse/ZEP-648] - New CoAP Implementation

	ZEP-664 [https://jira.zephyrproject.org/browse/ZEP-664] - Extend spi_qmsi_ss driver to support save/restore peripheral context

	ZEP-665 [https://jira.zephyrproject.org/browse/ZEP-665] - Extend gpio_qmsi_ss driver to support save/restore peripheral context

	ZEP-666 [https://jira.zephyrproject.org/browse/ZEP-666] - Extend i2c_qmsi_ss driver to support save/restore peripheral context

	ZEP-667 [https://jira.zephyrproject.org/browse/ZEP-667] - Extend adc_qmsi_ss driver to support save/restore peripheral context

	ZEP-686 [https://jira.zephyrproject.org/browse/ZEP-686] - docs: Info in Application Development Primer and Developing an Application and the Build System is largely duplicated

	ZEP-706 [https://jira.zephyrproject.org/browse/ZEP-706] - cannot set debug breakpoints on ARC side of Arduino 101

	ZEP-719 [https://jira.zephyrproject.org/browse/ZEP-719] - Add ksdk uart shim driver

	ZEP-734 [https://jira.zephyrproject.org/browse/ZEP-734] - Port AES-CMAC-PRF-128 [RFC 4615] encryption library for Thread support

	ZEP-742 [https://jira.zephyrproject.org/browse/ZEP-742] - nRF5x Series: System Clock driver using NRF_RTC

	ZEP-744 [https://jira.zephyrproject.org/browse/ZEP-744] - USB WebUSB

	ZEP-748 [https://jira.zephyrproject.org/browse/ZEP-748] - Enable mbedtls_sslclient sample to run on quark se board

	ZEP-759 [https://jira.zephyrproject.org/browse/ZEP-759] - Add preliminary support for Atmel SAM E70 (Cortex-M7) chipset family and SAM E70 Xplained board

	ZEP-788 [https://jira.zephyrproject.org/browse/ZEP-788] - UDP

	ZEP-789 [https://jira.zephyrproject.org/browse/ZEP-789] - IPv4

	ZEP-790 [https://jira.zephyrproject.org/browse/ZEP-790] - ICMPv4

	ZEP-791 [https://jira.zephyrproject.org/browse/ZEP-791] - TCP

	ZEP-792 [https://jira.zephyrproject.org/browse/ZEP-792] - ARP

	ZEP-793 [https://jira.zephyrproject.org/browse/ZEP-793] - DNS Resolver

	ZEP-794 [https://jira.zephyrproject.org/browse/ZEP-794] - Requirements for Internet Hosts - Communication Layers

	ZEP-796 [https://jira.zephyrproject.org/browse/ZEP-796] - DHCPv4

	ZEP-798 [https://jira.zephyrproject.org/browse/ZEP-798] - IPv6

	ZEP-799 [https://jira.zephyrproject.org/browse/ZEP-799] - HTTP over TLS

	ZEP-801 [https://jira.zephyrproject.org/browse/ZEP-801] - DNS Extensions to support IPv6

	ZEP-804 [https://jira.zephyrproject.org/browse/ZEP-804] - IPv6 Addressing Architecture

	ZEP-805 [https://jira.zephyrproject.org/browse/ZEP-805] - Internet Control Message Protocol (ICMP) v6

	ZEP-807 [https://jira.zephyrproject.org/browse/ZEP-807] - Neighbor Discovery for IPv6

	ZEP-808 [https://jira.zephyrproject.org/browse/ZEP-808] - IPv6 Stateless Autoconfiguration (SLAAC)

	ZEP-809 [https://jira.zephyrproject.org/browse/ZEP-809] - IPv6 over 802.15.4

	ZEP-811 [https://jira.zephyrproject.org/browse/ZEP-811] - The Trickle Algorithm

	ZEP-812 [https://jira.zephyrproject.org/browse/ZEP-812] - Compression Format for IPv6 over 802.15.4

	ZEP-813 [https://jira.zephyrproject.org/browse/ZEP-813] - RPL: IPv6 Routing Protocol

	ZEP-814 [https://jira.zephyrproject.org/browse/ZEP-814] - Routing Metrics used in Path Selection

	ZEP-815 [https://jira.zephyrproject.org/browse/ZEP-815] - Objective Function Zero for RPL

	ZEP-816 [https://jira.zephyrproject.org/browse/ZEP-816] - Minimum Rank with Hysteresis (RPL)

	ZEP-818 [https://jira.zephyrproject.org/browse/ZEP-818] - CoAP working over the new IP stack

	ZEP-820 [https://jira.zephyrproject.org/browse/ZEP-820] - HTTP v1.1 Server Sample

	ZEP-823 [https://jira.zephyrproject.org/browse/ZEP-823] - New IP Stack - Documentation

	ZEP-824 [https://jira.zephyrproject.org/browse/ZEP-824] - Network Device Driver Porting Guide

	ZEP-825 [https://jira.zephyrproject.org/browse/ZEP-825] - Porting guide for old-to-new IP Stack APIs

	ZEP-827 [https://jira.zephyrproject.org/browse/ZEP-827] - HTTP Client sample application

	ZEP-830 [https://jira.zephyrproject.org/browse/ZEP-830] - ICMPv6 Parameter Problem Support

	ZEP-832 [https://jira.zephyrproject.org/browse/ZEP-832] - Hop-by-Hop option handling

	ZEP-847 [https://jira.zephyrproject.org/browse/ZEP-847] - Network protocols must be moved to subsys/net/lib

	ZEP-854 [https://jira.zephyrproject.org/browse/ZEP-854] - CoAP with DTLS sample

	ZEP-859 [https://jira.zephyrproject.org/browse/ZEP-859] - Migrate ENC28J60 driver to YAIP IP stack

	ZEP-865 [https://jira.zephyrproject.org/browse/ZEP-865] - convert filesystem sample to a runnable test

	ZEP-872 [https://jira.zephyrproject.org/browse/ZEP-872] - Unable to flash Zephyr on Arduino 101 using Ubuntu and following wiki instructions

	ZEP-873 [https://jira.zephyrproject.org/browse/ZEP-873] - DMA API Update

	ZEP-875 [https://jira.zephyrproject.org/browse/ZEP-875] - 6LoWPAN - Context based compression support

	ZEP-876 [https://jira.zephyrproject.org/browse/ZEP-876] - 6LoWPAN - Offset based Reassembly of 802.15.4 packets

	ZEP-879 [https://jira.zephyrproject.org/browse/ZEP-879] - 6LoWPAN - Stateless Address Autoconfiguration

	ZEP-882 [https://jira.zephyrproject.org/browse/ZEP-882] - 6LoWPAN - IPv6 Next Header Compression

	ZEP-883 [https://jira.zephyrproject.org/browse/ZEP-883] - IP Stack L2 Interface Management API

	ZEP-884 [https://jira.zephyrproject.org/browse/ZEP-884] - 802.15.4 - CSMA-CA Radio protocol support

	ZEP-885 [https://jira.zephyrproject.org/browse/ZEP-885] - 802.15.4 - Beacon frame support

	ZEP-886 [https://jira.zephyrproject.org/browse/ZEP-886] - 802.15.4 - MAC command frame support

	ZEP-887 [https://jira.zephyrproject.org/browse/ZEP-887] - 802.15.4 - Management service: RFD level support

	ZEP-911 [https://jira.zephyrproject.org/browse/ZEP-911] - Refine thread priorities & locking

	ZEP-919 [https://jira.zephyrproject.org/browse/ZEP-919] - Purge obsolete microkernel & nanokernel code

	ZEP-929 [https://jira.zephyrproject.org/browse/ZEP-929] - Verify the preempt-thread-only and coop-thread-only configurations

	ZEP-931 [https://jira.zephyrproject.org/browse/ZEP-931] - Finalize kernel file naming & locations

	ZEP-936 [https://jira.zephyrproject.org/browse/ZEP-936] - Adapt drivers to unified kernel

	ZEP-937 [https://jira.zephyrproject.org/browse/ZEP-937] - Adapt networking to unified kernel

	ZEP-946 [https://jira.zephyrproject.org/browse/ZEP-946] - Galileo Gen1 board support dropped?

	ZEP-951 [https://jira.zephyrproject.org/browse/ZEP-951] - CONFIG_GDB_INFO build not working on ARM

	ZEP-953 [https://jira.zephyrproject.org/browse/ZEP-953] - CONFIG_HPET_TIMER_DEBUG build warning

	ZEP-958 [https://jira.zephyrproject.org/browse/ZEP-958] - simplify pinmux interface and merge the pinmux_dev into one single API

	ZEP-964 [https://jira.zephyrproject.org/browse/ZEP-964] - Add a (hidden?) Kconfig option for disabling legacy API

	ZEP-975 [https://jira.zephyrproject.org/browse/ZEP-975] - DNS client port to new IP stack

	ZEP-1012 [https://jira.zephyrproject.org/browse/ZEP-1012] - NATS client port to new IP stack

	ZEP-1038 [https://jira.zephyrproject.org/browse/ZEP-1038] - Hard real-time interrupt support

	ZEP-1060 [https://jira.zephyrproject.org/browse/ZEP-1060] - Contributor guide for documentation missing

	ZEP-1103 [https://jira.zephyrproject.org/browse/ZEP-1103] - Propose and implement synchronization flow for multicore power management

	ZEP-1165 [https://jira.zephyrproject.org/browse/ZEP-1165] - support enums as IRQ line argument in IRQ_CONNECT()

	ZEP-1172 [https://jira.zephyrproject.org/browse/ZEP-1172] - Update logger Api to allow using a hook for SYS_LOG_BACKEND_FN function

	ZEP-1177 [https://jira.zephyrproject.org/browse/ZEP-1177] - Reduce Zephyr’s Dependency on Host Tools

	ZEP-1179 [https://jira.zephyrproject.org/browse/ZEP-1179] - Build issues when compiling with LLVM from ISSM (icx)

	ZEP-1189 [https://jira.zephyrproject.org/browse/ZEP-1189] - SoC I2C peripheral of the Quark SE cannot be used from the ARC core

	ZEP-1190 [https://jira.zephyrproject.org/browse/ZEP-1190] - SoC SPI peripheral of the Quark SE cannot be used from the ARC core

	ZEP-1222 [https://jira.zephyrproject.org/browse/ZEP-1222] - Add save/restore support to ARC core

	ZEP-1223 [https://jira.zephyrproject.org/browse/ZEP-1223] - Add save/restore support to arcv2_irq_unit

	ZEP-1224 [https://jira.zephyrproject.org/browse/ZEP-1224] - Add save/restore support to arcv2_timer_0/sys_clock

	ZEP-1230 [https://jira.zephyrproject.org/browse/ZEP-1230] - Optimize interrupt return code on ARC.

	ZEP-1233 [https://jira.zephyrproject.org/browse/ZEP-1233] - mbedDTLS DTLS client stability does not work on top of the tree for the net branch

	ZEP-1251 [https://jira.zephyrproject.org/browse/ZEP-1251] - Abstract driver re-entrancy code

	ZEP-1267 [https://jira.zephyrproject.org/browse/ZEP-1267] - Echo server crashes upon reception of router advertisement

	ZEP-1276 [https://jira.zephyrproject.org/browse/ZEP-1276] - Move disk_access_* out of file system subsystem

	ZEP-1283 [https://jira.zephyrproject.org/browse/ZEP-1283] - compile option to skip gpio toggle in samples/power/power_mgr

	ZEP-1284 [https://jira.zephyrproject.org/browse/ZEP-1284] - Remove arch/arm/core/gdb_stub.S and all the abstractions it introduced

	ZEP-1288 [https://jira.zephyrproject.org/browse/ZEP-1288] - Define _arc_v2_irq_unit device

	ZEP-1292 [https://jira.zephyrproject.org/browse/ZEP-1292] - Update external mbed TLS library to latest version (2.4.0)

	ZEP-1300 [https://jira.zephyrproject.org/browse/ZEP-1300] - ARM LTD V2M Beetle Support [Phase 2]

	ZEP-1304 [https://jira.zephyrproject.org/browse/ZEP-1304] - Define device tree bindings for NXP Kinetis K64F

	ZEP-1305 [https://jira.zephyrproject.org/browse/ZEP-1305] - Add DTS/DTB targets to build infrastructure

	ZEP-1306 [https://jira.zephyrproject.org/browse/ZEP-1306] - Create DTS/DTB parser

	ZEP-1307 [https://jira.zephyrproject.org/browse/ZEP-1307] - Plumbing the DTS configuration

	ZEP-1308 [https://jira.zephyrproject.org/browse/ZEP-1308] - zephyr thread function k_sleep doesn’t work with nrf51822

	ZEP-1320 [https://jira.zephyrproject.org/browse/ZEP-1320] - Update Architecture Porting Guide

	ZEP-1321 [https://jira.zephyrproject.org/browse/ZEP-1321] - Glossary of Terms needs updating

	ZEP-1323 [https://jira.zephyrproject.org/browse/ZEP-1323] - Eliminate references to fiber, task, and nanokernel under ./include

	ZEP-1324 [https://jira.zephyrproject.org/browse/ZEP-1324] - Get rid of references to CONFIG_NANOKERNEL

	ZEP-1325 [https://jira.zephyrproject.org/browse/ZEP-1325] - Eliminate TICKLESS_IDLE_SUPPORTED option

	ZEP-1327 [https://jira.zephyrproject.org/browse/ZEP-1327] - Eliminate obsolete kernel directories

	ZEP-1329 [https://jira.zephyrproject.org/browse/ZEP-1329] - Rename kernel APIs that have nano_ prefixes

	ZEP-1334 [https://jira.zephyrproject.org/browse/ZEP-1334] - Add make debug support for QEMU-based boards

	ZEP-1337 [https://jira.zephyrproject.org/browse/ZEP-1337] - Relocate event logger files

	ZEP-1338 [https://jira.zephyrproject.org/browse/ZEP-1338] - Update external fs with new FATFS revision 0.12b

	ZEP-1342 [https://jira.zephyrproject.org/browse/ZEP-1342] - legacy/kernel/test_early_sleep/ fails on EMSK

	ZEP-1347 [https://jira.zephyrproject.org/browse/ZEP-1347] - sys_bitfield_*() take unsigned long* vs memaddr_t

	ZEP-1351 [https://jira.zephyrproject.org/browse/ZEP-1351] - FDRM k64f SPI does not work

	ZEP-1355 [https://jira.zephyrproject.org/browse/ZEP-1355] - Connection Failed to be Established

	ZEP-1357 [https://jira.zephyrproject.org/browse/ZEP-1357] - iot/dns: Client is broken

	ZEP-1358 [https://jira.zephyrproject.org/browse/ZEP-1358] - BMI160 accelerometer gives 0 on all axes

	ZEP-1361 [https://jira.zephyrproject.org/browse/ZEP-1361] - IP stack is broken

	ZEP-1363 [https://jira.zephyrproject.org/browse/ZEP-1363] - Missing wiki board support page for arm/arduino_101_ble

	ZEP-1365 [https://jira.zephyrproject.org/browse/ZEP-1365] - Missing wiki board support page for arm/c3200_launchxl

	ZEP-1370 [https://jira.zephyrproject.org/browse/ZEP-1370] - There’s a wiki page for arduino_due but no zephyr/boards support folder

	ZEP-1374 [https://jira.zephyrproject.org/browse/ZEP-1374] - Add ksdk spi shim driver

	ZEP-1387 [https://jira.zephyrproject.org/browse/ZEP-1387] - Add a driver for Atmel ataes132a HW Crypto module

	ZEP-1389 [https://jira.zephyrproject.org/browse/ZEP-1389] - Add support for KW41 SoC

	ZEP-1390 [https://jira.zephyrproject.org/browse/ZEP-1390] - Add support for FRDM-KW41Z

	ZEP-1393 [https://jira.zephyrproject.org/browse/ZEP-1393] - Add ksdk pinmux driver

	ZEP-1394 [https://jira.zephyrproject.org/browse/ZEP-1394] - Add ksdk gpio driver

	ZEP-1395 [https://jira.zephyrproject.org/browse/ZEP-1395] - Add data ready trigger to FXOS8700 driver

	ZEP-1401 [https://jira.zephyrproject.org/browse/ZEP-1401] - Enhance ready queue cache and interrupt exit code to reduce interrupt latency.

	ZEP-1403 [https://jira.zephyrproject.org/browse/ZEP-1403] - remove CONFIG_OMIT_FRAME_POINTER from ARC boards

	ZEP-1405 [https://jira.zephyrproject.org/browse/ZEP-1405] - function l2cap_br_conn_req in /subsys/bluetooth/host/l2cap_br.c references uninitialized pointer

	ZEP-1406 [https://jira.zephyrproject.org/browse/ZEP-1406] - Update sensor driver paths in wiki

	ZEP-1408 [https://jira.zephyrproject.org/browse/ZEP-1408] - quark_se_c1000_ss enter_arc_state() might need cc and memory clobber

	ZEP-1411 [https://jira.zephyrproject.org/browse/ZEP-1411] - Deprecate device_sync_call API and use semaphore directly

	ZEP-1413 [https://jira.zephyrproject.org/browse/ZEP-1413] - [ARC] test/legacy/kernel/test_tickless/microkernel fails to build

	ZEP-1415 [https://jira.zephyrproject.org/browse/ZEP-1415] - drivers/timer/* code comments still refer to micro/nano kernel

	ZEP-1418 [https://jira.zephyrproject.org/browse/ZEP-1418] - Add support for Nordic nRF52840 and its DK

	ZEP-1419 [https://jira.zephyrproject.org/browse/ZEP-1419] - SYS_LOG macros cause potentially bad behavior due to printk/printf selection

	ZEP-1420 [https://jira.zephyrproject.org/browse/ZEP-1420] - Make the time spent with interrupts disabled deterministic

	ZEP-1421 [https://jira.zephyrproject.org/browse/ZEP-1421] - BMI160 gyroscope driver stops reporting after 1-5 minutes

	ZEP-1422 [https://jira.zephyrproject.org/browse/ZEP-1422] - Arduino_101 doesn’t response ipv6 ping request after enable echo_client ipv6

	ZEP-1427 [https://jira.zephyrproject.org/browse/ZEP-1427] - wpanusb dongle / 15.4 communication instability

	ZEP-1429 [https://jira.zephyrproject.org/browse/ZEP-1429] - NXP MCR20A Driver

	ZEP-1432 [https://jira.zephyrproject.org/browse/ZEP-1432] - ksdk pinmux driver should expose the public pinmux API

	ZEP-1434 [https://jira.zephyrproject.org/browse/ZEP-1434] - menuconfig screen shots show nanokernel options

	ZEP-1437 [https://jira.zephyrproject.org/browse/ZEP-1437] - AIO: Fail to retrieve pending interrupt in ISR

	ZEP-1440 [https://jira.zephyrproject.org/browse/ZEP-1440] - Kconfig choice for MINIMAL_LIBC vs NEWLIB_LIBC is not selectable

	ZEP-1442 [https://jira.zephyrproject.org/browse/ZEP-1442] - Samples/net/dhcpv4_client: Build fail as No rule to make target prj_.conf

	ZEP-1443 [https://jira.zephyrproject.org/browse/ZEP-1443] - Samples/net/zperf: Build fail as net_private.h can not be found

	ZEP-1448 [https://jira.zephyrproject.org/browse/ZEP-1448] - Samples/net/mbedtls_sslclient:Build fail as net/ip_buf.h can not be found

	ZEP-1449 [https://jira.zephyrproject.org/browse/ZEP-1449] - samples: logger_hook

	ZEP-1456 [https://jira.zephyrproject.org/browse/ZEP-1456] - Asserts on nrf51 running Bluetooth hci_uart sample

	ZEP-1457 [https://jira.zephyrproject.org/browse/ZEP-1457] - Add SPDX Tags to Zephyr license boilerplate

	ZEP-1460 [https://jira.zephyrproject.org/browse/ZEP-1460] - Sanity check reports some qemu step failures as ‘build_error’

	ZEP-1461 [https://jira.zephyrproject.org/browse/ZEP-1461] - Add zephyr support to openocd upstream

	ZEP-1467 [https://jira.zephyrproject.org/browse/ZEP-1467] - Cleanup misc/ and move features to subsystems in subsys/

	ZEP-1473 [https://jira.zephyrproject.org/browse/ZEP-1473] - ARP cache confused by use of gateway.

	ZEP-1474 [https://jira.zephyrproject.org/browse/ZEP-1474] - BLE Connection Parameter Request/Response Processing

	ZEP-1475 [https://jira.zephyrproject.org/browse/ZEP-1475] - k_free documentation should specify that NULL is valid

	ZEP-1476 [https://jira.zephyrproject.org/browse/ZEP-1476] - echo_client display port unreachable

	ZEP-1480 [https://jira.zephyrproject.org/browse/ZEP-1480] - Update supported distros in getting started guide

	ZEP-1481 [https://jira.zephyrproject.org/browse/ZEP-1481] - Bluetooth fails to init

	ZEP-1483 [https://jira.zephyrproject.org/browse/ZEP-1483] - H:4 HCI driver (h4.c) should rely on UART flow control to avoid dropping packets

	ZEP-1487 [https://jira.zephyrproject.org/browse/ZEP-1487] - I2C_SS: I2C doesn’t set device busy before starting data transfer

	ZEP-1488 [https://jira.zephyrproject.org/browse/ZEP-1488] - SPI_SS: SPI doesn’t set device busy before starting data transfer

	ZEP-1489 [https://jira.zephyrproject.org/browse/ZEP-1489] - [GATT] Nested Long Characteristic Value Reliable Writes

	ZEP-1490 [https://jira.zephyrproject.org/browse/ZEP-1490] - [PTS] TC_CONN_CPUP_BV_04_C test case is failing

	ZEP-1492 [https://jira.zephyrproject.org/browse/ZEP-1492] - Add Atmel SAM family GMAC Ethernet driver

	ZEP-1493 [https://jira.zephyrproject.org/browse/ZEP-1493] - Zephyr project documentation copyright

	ZEP-1495 [https://jira.zephyrproject.org/browse/ZEP-1495] - Networking API details documentation is missing

	ZEP-1496 [https://jira.zephyrproject.org/browse/ZEP-1496] - gpio_pin_enable_callback error

	ZEP-1497 [https://jira.zephyrproject.org/browse/ZEP-1497] - Cortex-M0 port exception and interrupt priority setting and getting is broken

	ZEP-1507 [https://jira.zephyrproject.org/browse/ZEP-1507] - fxos8700 broken gpio_callback implementation

	ZEP-1512 [https://jira.zephyrproject.org/browse/ZEP-1512] - doc-theme has its own conf.py

	ZEP-1514 [https://jira.zephyrproject.org/browse/ZEP-1514] - samples/bluetooth/ipsp build fail: net/ip_buf.h No such file or directory

	ZEP-1525 [https://jira.zephyrproject.org/browse/ZEP-1525] - driver: gpio: GPIO driver still uses nano_timer

	ZEP-1532 [https://jira.zephyrproject.org/browse/ZEP-1532] - Wrong accelerometer readings

	ZEP-1536 [https://jira.zephyrproject.org/browse/ZEP-1536] - Convert documentation of PWM samples to RST

	ZEP-1537 [https://jira.zephyrproject.org/browse/ZEP-1537] - Convert documentation of power management samples to RST

	ZEP-1538 [https://jira.zephyrproject.org/browse/ZEP-1538] - Convert documentation of zoap samples to RST

	ZEP-1539 [https://jira.zephyrproject.org/browse/ZEP-1539] - Create documentation in RST for all networking samples

	ZEP-1540 [https://jira.zephyrproject.org/browse/ZEP-1540] - Convert Bluetooth samples to RST

	ZEP-1542 [https://jira.zephyrproject.org/browse/ZEP-1542] - Multi Sessions HTTP Server sample

	ZEP-1543 [https://jira.zephyrproject.org/browse/ZEP-1543] - HTTP Server sample with basic authentication

	ZEP-1544 [https://jira.zephyrproject.org/browse/ZEP-1544] - Arduino_101 doesn’t respond to ipv6 ping request after enable echo_server ipv6

	ZEP-1545 [https://jira.zephyrproject.org/browse/ZEP-1545] - AON Counter : ISR triggered twice on ARC

	ZEP-1546 [https://jira.zephyrproject.org/browse/ZEP-1546] - Bug in Zephyr OS high-precision timings sub-system (function sys_cycle_get_32())

	ZEP-1547 [https://jira.zephyrproject.org/browse/ZEP-1547] - Add support for H7 crypto function and CT2 SMP auth flag

	ZEP-1548 [https://jira.zephyrproject.org/browse/ZEP-1548] - Python script invocation is inconsistent

	ZEP-1549 [https://jira.zephyrproject.org/browse/ZEP-1549] - k_cpu_sleep_mode unaligned byte address

	ZEP-1554 [https://jira.zephyrproject.org/browse/ZEP-1554] - Xtensa integration

	ZEP-1557 [https://jira.zephyrproject.org/browse/ZEP-1557] - RISC V Port

	ZEP-1558 [https://jira.zephyrproject.org/browse/ZEP-1558] - Support of user private data pointer in Timer expiry function

	ZEP-1559 [https://jira.zephyrproject.org/browse/ZEP-1559] - Implement _tsc_read for ARC architecture

	ZEP-1562 [https://jira.zephyrproject.org/browse/ZEP-1562] - echo_server/echo_client examples hang randomly after some time of operation

	ZEP-1563 [https://jira.zephyrproject.org/browse/ZEP-1563] - move board documentation for NRF51/NRF52 back to git tree

	ZEP-1564 [https://jira.zephyrproject.org/browse/ZEP-1564] - 6lo uncompress_IPHC_header overwrites IPHC fields

	ZEP-1566 [https://jira.zephyrproject.org/browse/ZEP-1566] - WDT: Interrupt is triggered multiple times

	ZEP-1569 [https://jira.zephyrproject.org/browse/ZEP-1569] - net/tcp: TCP in server mode doesn’t support multiple concurrent connections

	ZEP-1570 [https://jira.zephyrproject.org/browse/ZEP-1570] - net/tcp: TCP in server mode is unable to close client connections

	ZEP-1571 [https://jira.zephyrproject.org/browse/ZEP-1571] - Update “Changes from Version 1 Kernel” to include a “How-To Port Apps” section

	ZEP-1572 [https://jira.zephyrproject.org/browse/ZEP-1572] - Update QMSI to 1.4

	ZEP-1573 [https://jira.zephyrproject.org/browse/ZEP-1573] - net/tcp: User provided data in net_context_recv is not passed to callback

	ZEP-1574 [https://jira.zephyrproject.org/browse/ZEP-1574] - Samples/net/dhcpv4_client: Build fail as undefined reference to net_mgmt_add_event_callback

	ZEP-1579 [https://jira.zephyrproject.org/browse/ZEP-1579] - external links to zephyr technical docs are broken

	ZEP-1581 [https://jira.zephyrproject.org/browse/ZEP-1581] - [nRF52832] Blinky hangs after some minutes

	ZEP-1583 [https://jira.zephyrproject.org/browse/ZEP-1583] - ARC: warning: unmet direct dependencies (SOC_RISCV32_PULPINO || SOC_RISCV32_QEMU)

	ZEP-1585 [https://jira.zephyrproject.org/browse/ZEP-1585] - legacy.h should be disabled in kernel.h with CONFIG_LEGACY_KERNEL=n

	ZEP-1587 [https://jira.zephyrproject.org/browse/ZEP-1587] - sensor.h still uses legacy APIs and structs

	ZEP-1588 [https://jira.zephyrproject.org/browse/ZEP-1588] - I2C doesn’t work on Arduino 101

	ZEP-1589 [https://jira.zephyrproject.org/browse/ZEP-1589] - Define yaml descriptions for UART devices

	ZEP-1590 [https://jira.zephyrproject.org/browse/ZEP-1590] - echo_server run on FRDM-K64F displays BUS FAULT

	ZEP-1591 [https://jira.zephyrproject.org/browse/ZEP-1591] - wiki: add Networking section and point https://wiki.zephyrproject.org/view/Network_Interfaces

	ZEP-1592 [https://jira.zephyrproject.org/browse/ZEP-1592] - echo-server does not build with newlib

	ZEP-1593 [https://jira.zephyrproject.org/browse/ZEP-1593] - /scripts/sysgen should create output using SPDX licensing tag

	ZEP-1598 [https://jira.zephyrproject.org/browse/ZEP-1598] - samples/philosophers build failed unexpectedly @quark_d2000 section noinit will not fit in region RAM

	ZEP-1601 [https://jira.zephyrproject.org/browse/ZEP-1601] - Console over Telnet

	ZEP-1602 [https://jira.zephyrproject.org/browse/ZEP-1602] - IPv6 ping fails using sample application echo_server on FRDM-K64F

	ZEP-1611 [https://jira.zephyrproject.org/browse/ZEP-1611] - Hardfault after a few echo requests (IPv6 over BLE)

	ZEP-1614 [https://jira.zephyrproject.org/browse/ZEP-1614] - Use correct i2c device driver name

	ZEP-1616 [https://jira.zephyrproject.org/browse/ZEP-1616] - Mix up between “network address” and “socket address” concepts in declaration of net_addr_pton()

	ZEP-1617 [https://jira.zephyrproject.org/browse/ZEP-1617] - mbedTLS server/client failing to run on qemu

	ZEP-1619 [https://jira.zephyrproject.org/browse/ZEP-1619] - Default value of NET_NBUF_RX_COUNT is too low, causes lock up on startup

	ZEP-1623 [https://jira.zephyrproject.org/browse/ZEP-1623] - (Parts) of Networking docs still refer to 1.5 world model (with fibers and tasks) and otherwise not up to date

	ZEP-1626 [https://jira.zephyrproject.org/browse/ZEP-1626] - SPI: spi cannot work in CPHA mode @ ARC

	ZEP-1632 [https://jira.zephyrproject.org/browse/ZEP-1632] - TCP ACK packet should not be forwarded to application recv cb.

	ZEP-1635 [https://jira.zephyrproject.org/browse/ZEP-1635] - MCR20A driver unstable

	ZEP-1638 [https://jira.zephyrproject.org/browse/ZEP-1638] - No (public) analog of inet_ntop()

	ZEP-1644 [https://jira.zephyrproject.org/browse/ZEP-1644] - Incoming connection handling for UDP is not exactly correct

	ZEP-1645 [https://jira.zephyrproject.org/browse/ZEP-1645] - API to wait on multiple kernel objects

	ZEP-1648 [https://jira.zephyrproject.org/browse/ZEP-1648] - Update links to wiki pages for board info back into the web docs

	ZEP-1650 [https://jira.zephyrproject.org/browse/ZEP-1650] - make clean (or pristine) is not removing all artifacts of document generation

	ZEP-1651 [https://jira.zephyrproject.org/browse/ZEP-1651] - i2c_dw malfunctioning due to various changes.

	ZEP-1653 [https://jira.zephyrproject.org/browse/ZEP-1653] - build issue when compiling with LLVM in ISSM (altmacro)

	ZEP-1654 [https://jira.zephyrproject.org/browse/ZEP-1654] - Build issues when compiling with LLVM(unknown attribute ‘_alloc_align_)

	ZEP-1655 [https://jira.zephyrproject.org/browse/ZEP-1655] - Build issues when compiling with LLVM(memory pool)

	ZEP-1656 [https://jira.zephyrproject.org/browse/ZEP-1656] - IPv6 over BLE no longer works after commit 2e9fd88

	ZEP-1657 [https://jira.zephyrproject.org/browse/ZEP-1657] - Zoap doxygen documentation needs to be perfected

	ZEP-1658 [https://jira.zephyrproject.org/browse/ZEP-1658] - IPv6 TCP low on buffers, stops responding after about 5 requests

	ZEP-1662 [https://jira.zephyrproject.org/browse/ZEP-1662] - zoap_packet_get_payload() should return the payload length

	ZEP-1663 [https://jira.zephyrproject.org/browse/ZEP-1663] - sanitycheck overrides user’s environment for CCACHE

	ZEP-1665 [https://jira.zephyrproject.org/browse/ZEP-1665] - pinmux: missing default pinmux driver config for quark_se_ss

	ZEP-1669 [https://jira.zephyrproject.org/browse/ZEP-1669] - API documentation does not follow in-code documentation style

	ZEP-1672 [https://jira.zephyrproject.org/browse/ZEP-1672] - flash: Flash device binding failed on Arduino_101_sss

	ZEP-1674 [https://jira.zephyrproject.org/browse/ZEP-1674] - frdm_k64f: With Ethernet driver enabled, application can’t start up without connected network cable

	ZEP-1677 [https://jira.zephyrproject.org/browse/ZEP-1677] - SDK: BLE cannot be initialized/advertised with CONFIG_ARC_INIT=y on Arduino 101

	ZEP-1681 [https://jira.zephyrproject.org/browse/ZEP-1681] - Save/restore debug registers during soc_sleep/soc_deep_sleep in c1000

	ZEP-1692 [https://jira.zephyrproject.org/browse/ZEP-1692] - [PTS] GATT/SR/GPA/BV-11-C fails

	ZEP-1701 [https://jira.zephyrproject.org/browse/ZEP-1701] - Provide an HTTP API

	ZEP-1704 [https://jira.zephyrproject.org/browse/ZEP-1704] - BMI160 samples fails to run

	ZEP-1706 [https://jira.zephyrproject.org/browse/ZEP-1706] - Barebone Panther board support

	ZEP-1707 [https://jira.zephyrproject.org/browse/ZEP-1707] - [PTS] 7 SM/MAS cases fail

	ZEP-1708 [https://jira.zephyrproject.org/browse/ZEP-1708] - [PTS] SM/MAS/PKE/BI-01-C fails

	ZEP-1709 [https://jira.zephyrproject.org/browse/ZEP-1709] - [PTS] SM/MAS/PKE/BI-02-C fails

	ZEP-1710 [https://jira.zephyrproject.org/browse/ZEP-1710] - Add TinyTILE board support

	ZEP-1713 [https://jira.zephyrproject.org/browse/ZEP-1713] - xtensa: correct all checkpatch issues

	ZEP-1716 [https://jira.zephyrproject.org/browse/ZEP-1716] - HTTP server sample that does not support up to 10 concurrent sessions.

	ZEP-1717 [https://jira.zephyrproject.org/browse/ZEP-1717] - GPIO: GPIO LEVEL interrupt cannot work well in deep sleep mode

	ZEP-1723 [https://jira.zephyrproject.org/browse/ZEP-1723] - Warnings in Network code/ MACROS, when built with ISSM’s llvm/icx compiler

	ZEP-1732 [https://jira.zephyrproject.org/browse/ZEP-1732] - sample of zoap_server runs error.

	ZEP-1733 [https://jira.zephyrproject.org/browse/ZEP-1733] - Work on ZEP-686 led to regressions in docs on integration with 3rd-party code

	ZEP-1745 [https://jira.zephyrproject.org/browse/ZEP-1745] - Bluetooth samples build failure

	ZEP-1753 [https://jira.zephyrproject.org/browse/ZEP-1753] - sample of dhcpv4_client runs error on Arduino 101

	ZEP-1754 [https://jira.zephyrproject.org/browse/ZEP-1754] - sample of coaps_server was tested failed on qemu

	ZEP-1756 [https://jira.zephyrproject.org/browse/ZEP-1756] - net apps: [-Wpointer-sign] build warning raised when built with ISSM’s llvm/icx compiler

	ZEP-1758 [https://jira.zephyrproject.org/browse/ZEP-1758] - PLL2 is not correctly enabled in STM32F10x connectivity line SoC

	ZEP-1763 [https://jira.zephyrproject.org/browse/ZEP-1763] - Nordic RTC timer driver not correct with tickless idle

	ZEP-1764 [https://jira.zephyrproject.org/browse/ZEP-1764] - samples: sample cases use hard code device name, such as “GPIOB” “I2C_0”

	ZEP-1768 [https://jira.zephyrproject.org/browse/ZEP-1768] - samples: cases miss testcase.ini

	ZEP-1774 [https://jira.zephyrproject.org/browse/ZEP-1774] - Malformed packet included with IPv6 over 802.15.4

	ZEP-1778 [https://jira.zephyrproject.org/browse/ZEP-1778] - tests/power: multicore case won’t work as expected

	ZEP-1786 [https://jira.zephyrproject.org/browse/ZEP-1786] - TCP does not work on Arduino 101 board.

	ZEP-1787 [https://jira.zephyrproject.org/browse/ZEP-1787] - kernel event logger build failed with “CONFIG_LEGACY_KERNEL=n”

	ZEP-1789 [https://jira.zephyrproject.org/browse/ZEP-1789] - ARC: “samples/logger-hook” crashed __memory_error from sys_ring_buf_get

	ZEP-1799 [https://jira.zephyrproject.org/browse/ZEP-1799] - timeout_order_test _ASSERT_VALID_PRIO failed

	ZEP-1803 [https://jira.zephyrproject.org/browse/ZEP-1803] - Error occurs when exercising dma_transfer_stop

	ZEP-1806 [https://jira.zephyrproject.org/browse/ZEP-1806] - Build warnings with LLVM/icx (gdb_server)

	ZEP-1809 [https://jira.zephyrproject.org/browse/ZEP-1809] - Build error in net/ip with LLVM/icx

	ZEP-1810 [https://jira.zephyrproject.org/browse/ZEP-1810] - Build failure in net/lib/zoap with LLVM/icx

	ZEP-1811 [https://jira.zephyrproject.org/browse/ZEP-1811] - Build error in net/ip/net_mgmt.c with LLVM/icx

	ZEP-1839 [https://jira.zephyrproject.org/browse/ZEP-1839] - LL_ASSERT in event_common_prepareA

	ZEP-1851 [https://jira.zephyrproject.org/browse/ZEP-1851] - Build warnings with obj_tracing

	ZEP-1852 [https://jira.zephyrproject.org/browse/ZEP-1852] - LL_ASSERT in isr_radio_state_close()

	ZEP-1855 [https://jira.zephyrproject.org/browse/ZEP-1855] - IP stack buffer allocation fails over time

	ZEP-1858 [https://jira.zephyrproject.org/browse/ZEP-1858] - Zephyr NATS client fails to respond to server MSG

	ZEP-1864 [https://jira.zephyrproject.org/browse/ZEP-1864] - llvm icx build warning in tests/drivers/uart/*

	ZEP-1872 [https://jira.zephyrproject.org/browse/ZEP-1872] - samples/net: the HTTP client sample app must run on QEMU x86

	ZEP-1877 [https://jira.zephyrproject.org/browse/ZEP-1877] - samples/net: the coaps_server sample app runs failed on Arduino 101

	ZEP-1883 [https://jira.zephyrproject.org/browse/ZEP-1883] - Enabling Console on ARC Genuino 101

	ZEP-1890 [https://jira.zephyrproject.org/browse/ZEP-1890] - Bluetooth IPSP sample: Too small user data size

索引

 索引

索引

 Licensing of Zephyr Project components

Licensing of Zephyr Project components

The Zephyr kernel tree imports or reuses packages, scripts and other files that
are not covered by the Apache 2.0 License [https://github.com/zephyrproject-rtos/zephyr/blob/master/LICENSE]. In some places
there is no LICENSE file or way to put a LICENSE file there, so we describe the
licensing in this document.

	kconfig and kbuild

	Origin: Linux Kernel

Licensing: GPLv2 License [https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/COPYING]

	scripts/{checkpatch.pl,checkstack.pl,get_maintainers.pl,spelling.txt}

	Origin: Linux Kernel

Licensing: GPLv2 License [https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/COPYING]

	ext/fs/fat/

	Origin: FatFs is a file system based on the FAT file system specification. This is
provided by ELM Chan http://elm-chan.org/fsw/ff/00index_e.html

Licensing:

Copyright (C) 2016, ChaN, all right reserved.

FatFs module is an open source software. Redistribution and use of FatFs in
source and binary forms, with or without modification, are permitted provided
that the following condition is met:

	Redistributions of source code must retain the above copyright notice,
this condition and the following disclaimer.

This software is provided by the copyright holder and contributors “AS IS”
and any warranties related to this software are DISCLAIMED.
The copyright owner or contributors be NOT LIABLE for any damages caused
by use of this software.

	ext/hal/cmsis/

	Origin: https://github.com/ARM-software/CMSIS.git

Licensing: CMSIS END USER LICENCE AGREEMENT [https://github.com/zephyrproject-rtos/zephyr/blob/master/ext/hal/cmsis/CMSIS_END_USER_LICENCE_AGREEMENT.pdf]

	ext/hal/nordic/

	Origin:

Licensing: 3-clause BSD (see ext/hal/nordic source [https://github.com/zephyrproject-rtos/zephyr/blob/master/ext/hal/nordic/mdk/nrf51.h])

	ext/hal/nxp/mcux/

	Origin: http://mcux.nxp.com

Licensing: 3-clause BSD (see ext/hal/nxp/mcux source [https://github.com/zephyrproject-rtos/zephyr/blob/master/ext/hal/nxp/mcux/drivers/fsl_rtc.h])

	ext/hal/qmsi/

	Origin: https://github.com/quark-mcu/qmsi/releases

Licensing: 3-clause BSD (see ext/hal/qmsi source [https://github.com/zephyrproject-rtos/zephyr/blob/master/ext/hal/qmsi/include/qm_common.h])

 Release Notes

Release Notes

Zephyr project is provided as source code and build scripts for different
target architectures and configurations, and not as a binary image. Updated
versions of the Zephyr project are released approximately every three-months.

All Zephyr project source code is maintained in a GitHub repository; you can
either download source as a tar.gz file (see the bottom of the GitHub release
notes pages listed below), or use Git clone and checkout commands, such as:

git clone https://github.com/zephyrproject-rtos/zephyr
cd zephyr
git checkout tags/v1.8.0

The project’s technical documentation is also tagged to correspond with a
specific release and can be found at https://www.zephyrproject.org/doc/.

Zephyr Kernel Releases

	Zephyr Kernel 1.8.0

	Zephyr Kernel 1.7.0

	Zephyr Kernel 1.6.0

	Zephyr Kernel 1.5.0

 索引

索引

 Zephyr Kernel 1.5.0

Zephyr Kernel 1.5.0

The Zephyr Engineering team is glad to announce the release of Zephyr Kernel
1.5.0. This is the first release to follow the 3-month release cadence.
This release includes numerous fixes and support for major features.
Additional changes include support for new drivers, sensors, and boards.

Major enhancements included with the release:

	TCP Support

	Integration of the Paho MQTT Library support with QoS

	Flash Filesystem Support

	Integration of the mbedTLS library for encryption

	Improved BR/EDR support (for L2CAP, in particular).

	Support for the Altera Nios II/f soft CPU architecture

A detailed list of changes since v1.4.0 by component follows:

Kernel

	Added nano_fifo_put_list() APIs, which allows queuing a list of elements
on a nanokernel FIFO.

	Removed unused memory pool structure field.

	Enhanced memory pool code.

Architectures

	ARM: Updated to include floating point registers.

	
	Altera Nios II/f soft CPU architecture support

	
	Internal Interrupt Controller

	Avalon Timer

	Avalon JTAG UART (polling mode) as default for qemu-system-nios2,
and 16550 UART as default for Altera MAX10.

Boards

	Added Nios II QEMU board.

	Added configuration for Altera MAX10 FPGA.

Drivers and Sensors

	Sensors: Added driver for I2C HMC5883L magnetometer.

	Sensors: Added driver for I2C TMP112 temperature sensor.

	Sensors: Added driver for MAX44009 light sensor.

	Sensors: Added driver for LPS25HB.

	HAL: Updated QMSI drivers to 1.1

	Added DMA QMSI shim driver.

	Added Quark SE USB device controller driver.

	Added suspend/resume to QMSI drivers.

	Added Guard for critical sections of the QMSI drivers.

	Added Zephyr File System API.

	Added driver for ENC28J60 Ethernet SPI module.

Networking

	TCP Support

	Connection handling fixes in IP stack.

	Allow sending zero length user data IP packet.

Network Buffers

	New net_buf_simple API for light-weight on-stack (or static) buffers where a
net_buf (and its associated pool) is overkill. The net_buf API now uses as
an internal implementation detail net_buf_simple.

	Add support for network buffer fragmentation.

	Add more net_buf big endian helpers.

Bluetooth

	Multiple fixes & improvements to the nble driver.

	New API for dealing with Out of Band data (like the local address).

	Various smaller fixes & improvements in many places.

Build and Infrastructure

	Added “qemugdb” target to start a local GDB on port 1234.

	Added script to filter known issues in the build output.

	Sanity: Added “-R” option to build all test with assertions.

Libraries

	File system: Imported Open Source FAT FS 0.12a code.

	Encryption: Imported mbedTLS library.

	Encryption: Updated TinyCrypt library to 2.0.

Documentation

	Fixed all the documentations warnings during build.

	Fixed several typos, trademarks and grammar.

	Moved all the boards documentation to the wiki.

	Moved Code Contribution documentation to the wiki.

	Added package “ncurses” to the list of requirements.

	Updated Mac OS X instructions.

Test and Samples

	Samples: Replaced old debug macro to use new SYS_LOG macro.

	Added TMP112 sensor application.

	Added Quark SE power management sample application.

	Added DMA memory to memory transfer sample.

	Added sample for MAX44009 light sensor.

	Added MQTT publisher and subscriber samples.

	Added mbedTLS sample client.

JIRA Related Items

Stories

	ZEP-49 [https://jira.zephyrproject.org/browse/ZEP-49] - x86: unify separate SysV and IAMCU code

	ZEP-55 [https://jira.zephyrproject.org/browse/ZEP-55] - enable nanokernel test_context on ARC

	ZEP-58 [https://jira.zephyrproject.org/browse/ZEP-58] - investigate use of -fomit-frame-pointer

	ZEP-60 [https://jira.zephyrproject.org/browse/ZEP-60] - irq priorities should be rebased to safe values

	ZEP-69 [https://jira.zephyrproject.org/browse/ZEP-69] - Extend PWM API to use arbitrary unit of time

	ZEP-203 [https://jira.zephyrproject.org/browse/ZEP-203] - clean up APIs for static exceptions

	ZEP-225 [https://jira.zephyrproject.org/browse/ZEP-225] - Add kernel API to put SoC to Deep Sleep (DS) State

	ZEP-226 [https://jira.zephyrproject.org/browse/ZEP-226] - Update sample PMA to support device suspend/resume

	ZEP-227 [https://jira.zephyrproject.org/browse/ZEP-227] - Add kernel API to put SoC to Low Power State (LPS)

	ZEP-228 [https://jira.zephyrproject.org/browse/ZEP-228] - File system interface designed after POSIX

	ZEP-232 [https://jira.zephyrproject.org/browse/ZEP-232] - Support for USB communications device class ACM

	ZEP-234 [https://jira.zephyrproject.org/browse/ZEP-234] - provide a direct memory access (DMA) interface

	ZEP-243 [https://jira.zephyrproject.org/browse/ZEP-243] - Create Wiki Structure for Boards

	ZEP-249 [https://jira.zephyrproject.org/browse/ZEP-249] - nios2: Enable altera_max10 board in sanitycheck runs for nanokernel

	ZEP-254 [https://jira.zephyrproject.org/browse/ZEP-254] - nios2: define NANO_ESF struct and populate _default_esf

	ZEP-270 [https://jira.zephyrproject.org/browse/ZEP-270] - nios2: determine optimal value for PERFOPT_ALIGN

	ZEP-271 [https://jira.zephyrproject.org/browse/ZEP-271] - nios2: enable microkernel & test cases

	ZEP-272 [https://jira.zephyrproject.org/browse/ZEP-272] - nios2: add global pointer support

	ZEP-273 [https://jira.zephyrproject.org/browse/ZEP-273] - nios2: implement flashing scripts

	ZEP-274 [https://jira.zephyrproject.org/browse/ZEP-274] - nios2: document GDB debugging procedure

	ZEP-275 [https://jira.zephyrproject.org/browse/ZEP-275] - nios2: scope support for instruction/data caches

	ZEP-279 [https://jira.zephyrproject.org/browse/ZEP-279] - nios2: demonstrate nanokernel hello world

	ZEP-285 [https://jira.zephyrproject.org/browse/ZEP-285] - FAT filesystem support on top of SPI Flash

	ZEP-289 [https://jira.zephyrproject.org/browse/ZEP-289] - nios2: implement kernel_event_logger

	ZEP-291 [https://jira.zephyrproject.org/browse/ZEP-291] - Driver for the ENC28J60 ethernet device

	ZEP-304 [https://jira.zephyrproject.org/browse/ZEP-304] - Investigate QEMU support for Nios II

	ZEP-327 [https://jira.zephyrproject.org/browse/ZEP-327] - Encryption Libraries needed for Thread support

	ZEP-340 [https://jira.zephyrproject.org/browse/ZEP-340] - TLS/SSL

	ZEP-354 [https://jira.zephyrproject.org/browse/ZEP-354] - Provide a DMA driver for Quark SE core

	ZEP-356 [https://jira.zephyrproject.org/browse/ZEP-356] - DMA device support

	ZEP-357 [https://jira.zephyrproject.org/browse/ZEP-357] - Support for the MAX44009 sensor

	ZEP-358 [https://jira.zephyrproject.org/browse/ZEP-358] - Add support for TMP112 sensor

	ZEP-412 [https://jira.zephyrproject.org/browse/ZEP-412] - Add driver API reentrancy support to RTC driver for LMT

	ZEP-414 [https://jira.zephyrproject.org/browse/ZEP-414] - Add driver API reentrancy support to flash driver

	ZEP-415 [https://jira.zephyrproject.org/browse/ZEP-415] - aaU, I want to use the NATS messaging protocol to send sensor data to the cloud

	ZEP-416 [https://jira.zephyrproject.org/browse/ZEP-416] - MQTT client capability: QoS1, QoS2

	ZEP-424 [https://jira.zephyrproject.org/browse/ZEP-424] - AON counter driver needs to add driver API reentrancy support

	ZEP-430 [https://jira.zephyrproject.org/browse/ZEP-430] - Add driver API reentrancy support to PWM shim driver

	ZEP-434 [https://jira.zephyrproject.org/browse/ZEP-434] - Driver for HMC5883L magnetometer

	ZEP-440 [https://jira.zephyrproject.org/browse/ZEP-440] - Add driver API reentrancy support to WDT shim driver

	ZEP-441 [https://jira.zephyrproject.org/browse/ZEP-441] - Add driver API reentrancy support to GPIO shim drivers

	ZEP-489 [https://jira.zephyrproject.org/browse/ZEP-489] - nios2: handle unimplemented multiply/divide instructions

	ZEP-500 [https://jira.zephyrproject.org/browse/ZEP-500] - Domain Name System client library

	ZEP-506 [https://jira.zephyrproject.org/browse/ZEP-506] - nios2: support bare metal boot and XIP on Altera MAX10

	ZEP-511 [https://jira.zephyrproject.org/browse/ZEP-511] - Add Deep Sleep support in PMA

	ZEP-512 [https://jira.zephyrproject.org/browse/ZEP-512] - Add suspend/resume support for some core devices to enable Deep Sleep support in PMA

	ZEP-541 [https://jira.zephyrproject.org/browse/ZEP-541] - Integrate QMSI releases to Zephyr

	ZEP-567 [https://jira.zephyrproject.org/browse/ZEP-567] - netz sample code

	ZEP-568 [https://jira.zephyrproject.org/browse/ZEP-568] - MQTT QoS sample app

	ZEP-573 [https://jira.zephyrproject.org/browse/ZEP-573] - IoT applications must use netz API

	ZEP-590 [https://jira.zephyrproject.org/browse/ZEP-590] - Update Zephyr’s TinyCrypt to version 2.0

	ZEP-643 [https://jira.zephyrproject.org/browse/ZEP-643] - Add file system API documentation

	ZEP-650 [https://jira.zephyrproject.org/browse/ZEP-650] - Quark SE: Implement PM reference application

	ZEP-652 [https://jira.zephyrproject.org/browse/ZEP-652] - QMSI shim driver: RTC: Implement suspend and resume callbacks

	ZEP-655 [https://jira.zephyrproject.org/browse/ZEP-655] - QMSI shim driver: PWM: Implement suspend and resume callbacks

	ZEP-658 [https://jira.zephyrproject.org/browse/ZEP-658] - QMSI shim driver: GPIO: Implement suspend and resume callbacks

	ZEP-659 [https://jira.zephyrproject.org/browse/ZEP-659] - QMSI shim driver: UART: Implement suspend and resume callbacks

	ZEP-662 [https://jira.zephyrproject.org/browse/ZEP-662] - QMSI shim driver: Pinmux: Implement suspend and resume callbacks

Epic

	ZEP-278 [https://jira.zephyrproject.org/browse/ZEP-278] - Enable Nios II CPU on Altera Max10

	ZEP-284 [https://jira.zephyrproject.org/browse/ZEP-284] - Flash Filesystem Support

	ZEP-305 [https://jira.zephyrproject.org/browse/ZEP-305] - Device Suspend / Resume infrastructure

	ZEP-306 [https://jira.zephyrproject.org/browse/ZEP-306] - PWM Enabling

	ZEP-406 [https://jira.zephyrproject.org/browse/ZEP-406] - Drivers shall be re-entrant

Bug

	ZEP-68 [https://jira.zephyrproject.org/browse/ZEP-68] - Final image contains duplicates of some routines

	ZEP-156 [https://jira.zephyrproject.org/browse/ZEP-156] - PWM Set Value API behaves incorrectly

	ZEP-158 [https://jira.zephyrproject.org/browse/ZEP-158] - PWM Set Duty Cycle API does not work

	ZEP-180 [https://jira.zephyrproject.org/browse/ZEP-180] - make menuconfig user provided options are ignored at building time

	ZEP-187 [https://jira.zephyrproject.org/browse/ZEP-187] - BLE APIs are not documented

	ZEP-218 [https://jira.zephyrproject.org/browse/ZEP-218] - [drivers/nble][PTS_TEST] Fix responding with the wrong error codes to the Prepare Write Request

	ZEP-221 [https://jira.zephyrproject.org/browse/ZEP-221] - [drivers/nble][PTS_TEST] Implement Execute Write Request handler

	ZEP-369 [https://jira.zephyrproject.org/browse/ZEP-369] - When building out of the tree, application object files are not placed into outdir

	ZEP-379 [https://jira.zephyrproject.org/browse/ZEP-379] - _k_command_stack may be improperly initialized when debugging

	ZEP-384 [https://jira.zephyrproject.org/browse/ZEP-384] - D2000 hangs after I2C communication with BMC150 sensor

	ZEP-401 [https://jira.zephyrproject.org/browse/ZEP-401] - PWM driver turns off pin if off time is 0 in set_values

	ZEP-423 [https://jira.zephyrproject.org/browse/ZEP-423] - Quark D2000 CRB documentation should include instructions to flash bootloader

	ZEP-435 [https://jira.zephyrproject.org/browse/ZEP-435] - Ethernet/IPv4/TCP: ip_buf_appdatalen returns wrong values

	ZEP-456 [https://jira.zephyrproject.org/browse/ZEP-456] - doc: IDT security section dissapeared

	ZEP-457 [https://jira.zephyrproject.org/browse/ZEP-457] - doc: contribute/doxygen/typedefs.rst: examples files are broken

	ZEP-459 [https://jira.zephyrproject.org/browse/ZEP-459] - doc: kconfig reference entries in HTML are lacking a title

	ZEP-460 [https://jira.zephyrproject.org/browse/ZEP-460] - doc: document parameters of DEVICE* macros

	ZEP-461 [https://jira.zephyrproject.org/browse/ZEP-461] - Release 1.4.0 has broken the BMI160 sample as well as an application based on it

	ZEP-463 [https://jira.zephyrproject.org/browse/ZEP-463] - Getting started guide “next” link doesn’t take you to “Checking Out the Source Code Anonymously” section

	ZEP-469 [https://jira.zephyrproject.org/browse/ZEP-469] - Ethernet/IPv4/TCP: net_receive & net_reply in server mode

	ZEP-474 [https://jira.zephyrproject.org/browse/ZEP-474] - ND: Neighbor cache is not getting cleared

	ZEP-475 [https://jira.zephyrproject.org/browse/ZEP-475] - Issue with timer callback routine: Condition checked is incorrect

	ZEP-478 [https://jira.zephyrproject.org/browse/ZEP-478] - Linux setup docs missing step to install curses development package for Fedora

	ZEP-497 [https://jira.zephyrproject.org/browse/ZEP-497] - Ethernet/IPv4/TCP: failed to get free buffer

	ZEP-499 [https://jira.zephyrproject.org/browse/ZEP-499] - TMP007 driver returns invalid values for negative temperature

	ZEP-514 [https://jira.zephyrproject.org/browse/ZEP-514] - memory corruption in microkernel memory pool defrag()

	ZEP-516 [https://jira.zephyrproject.org/browse/ZEP-516] - Ubuntu setup instructions missing ‘upgrade’ step

	ZEP-518 [https://jira.zephyrproject.org/browse/ZEP-518] - SPI not working on Arduino101

	ZEP-522 [https://jira.zephyrproject.org/browse/ZEP-522] - TCP/client-mode: disconnect

	ZEP-523 [https://jira.zephyrproject.org/browse/ZEP-523] - FIFOs defined by DEFINE_FIFO macro use the same memory buffer

	ZEP-525 [https://jira.zephyrproject.org/browse/ZEP-525] - srctree changes are breaking applications

	ZEP-526 [https://jira.zephyrproject.org/browse/ZEP-526] - build “kernel event logger” sample app failed for BOARD=quark_d2000_crb

	ZEP-534 [https://jira.zephyrproject.org/browse/ZEP-534] - Scan for consistent use of “platform/board/SoC” in documentation

	ZEP-537 [https://jira.zephyrproject.org/browse/ZEP-537] - doc: create external wiki page “Maintainers”

	ZEP-545 [https://jira.zephyrproject.org/browse/ZEP-545] - Wrong default value of CONFIG_ADC_QMSI_SAMPLE_WIDTH for x86 QMSI ADC

	ZEP-547 [https://jira.zephyrproject.org/browse/ZEP-547] - [nble] Failed to start encryption after reconnection

	ZEP-554 [https://jira.zephyrproject.org/browse/ZEP-554] - samples/drivers/aon_counter check README file

	ZEP-555 [https://jira.zephyrproject.org/browse/ZEP-555] - correct libgcc not getting linked for CONFIG_FLOAT=y on ARM

	ZEP-556 [https://jira.zephyrproject.org/browse/ZEP-556] - System hangs during I2C transfer

	ZEP-565 [https://jira.zephyrproject.org/browse/ZEP-565] - Ethernet/IPv4/TCP: last commits are breaking network support

	ZEP-571 [https://jira.zephyrproject.org/browse/ZEP-571] - ARC kernel BAT failed due to race in nested interrupts

	ZEP-572 [https://jira.zephyrproject.org/browse/ZEP-572] - X86 kernel BAT failed: Kernel Allocation Failure!

	ZEP-575 [https://jira.zephyrproject.org/browse/ZEP-575] - Ethernet/IPv4/UDP: ip_buf_appdatalen returns wrong values

	ZEP-595 [https://jira.zephyrproject.org/browse/ZEP-595] - UART: usb simulated uart doesn’t work in poll mode

	ZEP-598 [https://jira.zephyrproject.org/browse/ZEP-598] - CoAP Link format filtering is not supported

	ZEP-611 [https://jira.zephyrproject.org/browse/ZEP-611] - Links on downloads page are not named consistently

	ZEP-616 [https://jira.zephyrproject.org/browse/ZEP-616] - OS X setup instructions not working on El Capitan

	ZEP-617 [https://jira.zephyrproject.org/browse/ZEP-617] - MQTT samples build fail because netz.h file missing.

	ZEP-621 [https://jira.zephyrproject.org/browse/ZEP-621] - samples/static_lib: fatal error: stdio.h: No such file or directory

	ZEP-623 [https://jira.zephyrproject.org/browse/ZEP-623] - MQTT sample mqtt.h missing “mqtt_unsubscribe” function

	ZEP-632 [https://jira.zephyrproject.org/browse/ZEP-632] - MQTT fail to re-connect to the broker.

	ZEP-633 [https://jira.zephyrproject.org/browse/ZEP-633] - samples/usb/cdc_acm: undefined reference to ‘uart_qmsi_pm_save_config’

	ZEP-642 [https://jira.zephyrproject.org/browse/ZEP-642] - Inconsistent interpretation of pwm_pin_set_values arguments among drivers

	ZEP-645 [https://jira.zephyrproject.org/browse/ZEP-645] - ARC QMSI ADC shim driver fails to read sample data

	ZEP-646 [https://jira.zephyrproject.org/browse/ZEP-646] - I2C fail to read GY2561 sensor when GY2561 & GY271 sensor are attached to I2C bus.

	ZEP-647 [https://jira.zephyrproject.org/browse/ZEP-647] - Power management state storage should use GPS1 instead of GPS0

	ZEP-669 [https://jira.zephyrproject.org/browse/ZEP-669] - MQTT fail to pingreq if broker deliver topic to client but client doesn’t read it.

	ZEP-673 [https://jira.zephyrproject.org/browse/ZEP-673] - Sanity crashes and doesn’t kill qemu upon timeout

	ZEP-679 [https://jira.zephyrproject.org/browse/ZEP-679] - HMC5883L I2C Register Read Order

	ZEP-681 [https://jira.zephyrproject.org/browse/ZEP-681] - MQTT client sample throws too many warnings when build.

	ZEP-687 [https://jira.zephyrproject.org/browse/ZEP-687] - docs: Subsystems/Networking section is almost empty

	ZEP-689 [https://jira.zephyrproject.org/browse/ZEP-689] - Builds on em_starterkit fail

	ZEP-695 [https://jira.zephyrproject.org/browse/ZEP-695] - FatFs doesn’t compile using Newlib

	ZEP-697 [https://jira.zephyrproject.org/browse/ZEP-697] - samples/net/test_15_4 cannot be built by sanitycheck

	ZEP-703 [https://jira.zephyrproject.org/browse/ZEP-703] - USB sample apps are broken after QMSI update

	ZEP-704 [https://jira.zephyrproject.org/browse/ZEP-704] - test_atomic does not complete on ARC

	ZEP-708 [https://jira.zephyrproject.org/browse/ZEP-708] - tests/kernel/test_ipm fails on Arduino 101

	ZEP-739 [https://jira.zephyrproject.org/browse/ZEP-739] - warnings when building samples for quark_se devboard

Known issues

	
	ZEP-517 [https://jira.zephyrproject.org/browse/ZEP-517] - build on windows failed “zephyr/Makefile:869: *** multiple target patterns”

	
	No workaround, will fix in future release.

	
	ZEP-711 [https://jira.zephyrproject.org/browse/ZEP-711] - I2c: fails to write with mode fast plus

	
	No workaround need it, there is no support for high speed mode.

	
	ZEP-724 [https://jira.zephyrproject.org/browse/ZEP-724] - build on windows failed: ‘make: execvp: uname: File or path name too long’

	
	No workaround, will fix in future release.

	
	ZEP-467 [https://jira.zephyrproject.org/browse/ZEP-467] - Hang using UART and console.

	
	No workaround, will fix in future release.

	
	ZEP-599 [https://jira.zephyrproject.org/browse/ZEP-599] - Periodic call-back function for periodic REST resources is not getting invoked

	
	No workaround, will fix in future release.

	
	ZEP-471 [https://jira.zephyrproject.org/browse/ZEP-471] - Ethernet packet with multicast address is not working

	
	No workaround, will fix in future release.

	
	ZEP-473 [https://jira.zephyrproject.org/browse/ZEP-473] - Destination multicast address is not correct

	
	No workaround, will fix in future release.

 索引

索引

 Sorry, Page Not Found

Sorry, Page Not Found

[image: _images/Zephyr-Kite-in-tree.png]
Sorry, the page you requested was not found on this site.

Please check the url for misspellings.

It’s also possible we’ve removed or renamed the page you’re looking for.

Please try using the links at the top and left of the page, to navigate
the major sections of our site, or use the search box.

If you got this error by following a link, please let us know by sending
us a message using this contact us form [https://www.zephyrproject.org/about/contact], or send an email message to
info@zephyrproject.org

 索引

索引

 Documentation Copyrights

Documentation Copyrights

	2015-2017 Intel Corporation

	2015-2017 Wind River Systems, Inc

 Security Document Citations

Security Document Citations

	[SALT75]	J. H. Saltzer and M. D. Schroeder, “The protection of
information in computer systems,” Proceedings ofthe IEEE, vol. 63, no.
9, pp. 1278-1308, Sep 1975.

	[PAUL09]	M. Paul, “The Ten Best Practices for Secure Software
Development,” International Information Systems Security Certification
Consortium, Inc. [(ISC)2®], Palm Harbor, FL, USA, 2009.

	[MS12]	Microsoft Corporation, Security Development Lifecycle - SDL
Process Guidance Version 5.2,2012.

	[CCITSE12]	Common Criteria for Information Technology Security
Evaluation ver. 3.1 rev. 4, 2012.

	[MICR16]	Micrium, “Certification Kits,” 2016. [Online]. Available:
https://www.micrium.com/certification/certification-kits/.

	[NIST02]	National Institute of Standards and Technology, FIPS PUB 140-2:
Security Requirements for COMPANY PUBLIC Application note Cryptographic
Modules, Gaithersburg, 2002.

	[GHS10]	Green Hills Software, “INTEGRITY-178B Separation Kernel Security
Target v4.2,” 2010.

 NXP OpenSDA

NXP OpenSDA

Overview

OpenSDA [http://www.nxp.com/opensda] is a serial and debug adapter that is built into several NXP
evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash
programming, and serial communication, all over a simple USB cable.

The OpenSDA hardware features a Kinetis K2x microcontroller with an integrated
USB controller. On the software side, it implements a mass storage device
bootloader which offers a quick and easy way to load OpenSDA applications such
as flash programmers, run-control debug interfaces, serial to USB converters,
and more.

Zephyr supports the following debug tools through OpenSDA:

	pyOCD

	Segger J-Link

Program the Firmware

Once you’ve selected which debug tool you wish to use, you need to program the
associated OpenSDA firmware application to the OpenSDA adapter.

Put the OpenSDA adapter into bootloader mode by holding the reset button while
you power on the board. After you power on the board, release the reset button
and a USB mass storage device called BOOTLOADER or MAINTENANCE will
enumerate. Copy the OpenSDA firmware application binary to the USB mass storage
device. Power cycle the board, this time without holding the reset button.

pyOCD

pyOCD is an Open Source python 2.7 based library for programming and debugging
ARM Cortex-M microcontrollers using CMSIS-DAP.

Host Tools and Firmware

Follow the instructions in pyOCD Installation [https://github.com/mbedmicro/pyOCD#installation] to install the pyOCD flash
tool and GDB server for your host computer.

Select your board in OpenSDA [http://www.nxp.com/opensda] and download the latest DAPLink firmware
application binary. Program the Firmware with this application.

Flashing

Use the make flash build target with OPENSDA_FW=daplink to build your
Zephyr application, invoke the pyOCD flash tool and program your Zephyr
application to flash.

$ make OPENSDA_FW=daplink flash
Using /home/maureen/zephyr/boards/arm/frdm_k64f/frdm_k64f_defconfig as base
Merging /home/maureen/zephyr/tests/include/test.config
Merging prj.conf
#
configuration written to .config
#
make[1]: Entering directory '/home/maureen/zephyr'
make[2]: Entering directory '/home/maureen/zephyr/samples/hello_world/outdir/frdm_k64f'
 GEN ./Makefile
scripts/kconfig/conf --silentoldconfig Kconfig
 Using /home/maureen/zephyr as source for kernel
 GEN ./Makefile
 CHK include/generated/version.h
 UPD include/generated/version.h
 DTC dts/arm/frdm_k64f.dts_compiled
 CHK include/generated/generated_dts_board.h
 UPD include/generated/generated_dts_board.h
 CHK misc/generated/configs.c
 UPD misc/generated/configs.c
 CHK include/generated/offsets.h
 UPD include/generated/offsets.h
 CC lib/libc/minimal/source/stdlib/strtol.o

<snip>

 CC kernel/work_q.o
 AR kernel/lib.a
 CC src/main.o
 LD src/built-in.o
 AR libzephyr.a
 LINK zephyr.lnk
 IRQ isr_tables.c
 CC isr_tables.o
 LINK zephyr.elf
 BIN zephyr.bin
Flashing frdm_k64f
Flashing Target Device
INFO:root:DAP SWD MODE initialised
INFO:root:K64F not in secure state
INFO:root:ROM table #0 @ 0xe00ff000 cidr=b105100d pidr=4000bb4c4
INFO:root:[0]<e000e000:SCS-M4 cidr=b105e00d, pidr=4000bb00c, class=14>
WARNING:root:Invalid coresight component, cidr=0x0
INFO:root:[1]<e0001000: cidr=0, pidr=0, component invalid>
INFO:root:[2]<e0002000:FPB cidr=b105e00d, pidr=4002bb003, class=14>
WARNING:root:Invalid coresight component, cidr=0x1010101
INFO:root:[3]<e0000000: cidr=1010101, pidr=101010101010101, component invalid>
WARNING:root:Invalid coresight component, cidr=0x0
INFO:root:[4]<e0040000: cidr=0, pidr=0, component invalid>
INFO:root:[5]<e0041000:ETM-M4 cidr=b105900d, pidr=4000bb925, class=9, devtype=13, devid=0>
INFO:root:[6]<e0042000:ETB cidr=b105900d, pidr=4003bb907, class=9, devtype=21, devid=0>
INFO:root:[7]<e0043000:CSTF cidr=b105900d, pidr=4001bb908, class=9, devtype=12, devid=28>
INFO:root:CPU core is Cortex-M4
INFO:root:FPU present
INFO:root:6 hardware breakpoints, 4 literal comparators
INFO:root:4 hardware watchpoints
[====================] 100%
INFO:root:Programmed 12288 bytes (3 pages) at 10.57 kB/s
make[2]: Leaving directory '/home/maureen/zephyr/samples/hello_world/outdir/frdm_k64f'
make[1]: Leaving directory '/home/maureen/zephyr'

Debugging

Use the make debug build target with OPENSDA_FW=daplink to build your
Zephyr application, invoke the pyOCD GDB server, attach a GDB client, and
program your Zephyr application to flash. It will leave you at a gdb prompt.

$ make OPENSDA_FW=daplink debug
Using /home/maureen/zephyr/boards/arm/frdm_k64f/frdm_k64f_defconfig as base
Merging /home/maureen/zephyr/tests/include/test.config
Merging prj.conf
#
configuration written to .config
#
make[1]: Entering directory '/home/maureen/zephyr'
make[2]: Entering directory '/home/maureen/zephyr/samples/hello_world/outdir/frdm_k64f'
 GEN ./Makefile
scripts/kconfig/conf --silentoldconfig Kconfig
 Using /home/maureen/zephyr as source for kernel
 GEN ./Makefile
 CHK include/generated/version.h
 UPD include/generated/version.h
 DTC dts/arm/frdm_k64f.dts_compiled
 CHK include/generated/generated_dts_board.h
 UPD include/generated/generated_dts_board.h
 CHK misc/generated/configs.c
 UPD misc/generated/configs.c
 CHK include/generated/offsets.h
 UPD include/generated/offsets.h
 CC lib/libc/minimal/source/stdlib/strtol.o

<snip>

 CC kernel/work_q.o
 AR kernel/lib.a
 CC src/main.o
 LD src/built-in.o
 AR libzephyr.a
 LINK zephyr.lnk
 IRQ isr_tables.c
 CC isr_tables.o
 LINK zephyr.elf
 BIN zephyr.bin
pyOCD GDB server running on port 3333
GNU gdb (GDB) 7.11.0.20160511-git
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-pokysdk-linux --target=arm-zephyr-eabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from /home/maureen/zephyr/samples/hello_world/outdir/frdm_k64f/zephyr.elf...done.
INFO:root:DAP SWD MODE initialised
INFO:root:K64F not in secure state
INFO:root:ROM table #0 @ 0xe00ff000 cidr=b105100d pidr=4000bb4c4
INFO:root:[0]<e000e000:SCS-M4 cidr=b105e00d, pidr=4000bb00c, class=14>
WARNING:root:Invalid coresight component, cidr=0x0
INFO:root:[1]<e0001000: cidr=0, pidr=0, component invalid>
INFO:root:[2]<e0002000:FPB cidr=b105e00d, pidr=4002bb003, class=14>
WARNING:root:Invalid coresight component, cidr=0x1010101
INFO:root:[3]<e0000000: cidr=1010101, pidr=101010101010101, component invalid>
WARNING:root:Invalid coresight component, cidr=0x0
INFO:root:[4]<e0040000: cidr=0, pidr=0, component invalid>
INFO:root:[5]<e0041000:ETM-M4 cidr=b105900d, pidr=4000bb925, class=9, devtype=13, devid=0>
INFO:root:[6]<e0042000:ETB cidr=b105900d, pidr=4003bb907, class=9, devtype=21, devid=0>
INFO:root:[7]<e0043000:CSTF cidr=b105900d, pidr=4001bb908, class=9, devtype=12, devid=28>
INFO:root:CPU core is Cortex-M4
INFO:root:FPU present
INFO:root:6 hardware breakpoints, 4 literal comparators
INFO:root:4 hardware watchpoints
INFO:root:Telnet: server started on port 4444
INFO:root:GDB server started at port:3333
Remote debugging using :3333
INFO:root:One client connected!
k_cpu_idle () at /home/maureen/zephyr/arch/arm/core/cpu_idle.S:135
135 bx lr
Loading section text, size 0x233e lma 0x0
Loading section devconfig, size 0xa8 lma 0x2340
Loading section rodata, size 0x5d4 lma 0x23e8
Loading section datas, size 0x14 lma 0x29bc
Loading section initlevel, size 0xa8 lma 0x29d0
[====================] 100%
INFO:root:Programmed 45056 bytes (3 pages) at 38.21 kB/s
Start address 0x1b64, load size 10870
Transfer rate: 9 KB/sec, 1207 bytes/write.
(gdb)

Segger J-Link

Segger offers firmware running on the OpenSDA platform which makes OpenSDA
compatible to J-Link Lite, allowing users to take advantage of most J-Link
features like the ultra fast flash download and debugging speed or the
free-to-use GDB Server, by using a low-cost OpenSDA platform for developing on
evaluation boards.

Host Tools and Firmware

Download and install the Segger J-Link Software and Documentation Pack [https://www.segger.com/downloads/jlink] to
get the J-Link GDB server for your host computer.

Select your board in OpenSDA [http://www.nxp.com/opensda] and download the Segger J-Link firmware
application binary. Program the Firmware with this application.

Flashing

The Segger J-Link firmware does not support command line flashing, therefore
the make flash build target is not supported.

Debugging

Use the make debug build target with OPENSDA_FW=jlink to build your
Zephyr application, invoke the J-Link GDB server, attach a GDB client, and
program your Zephyr application to flash. It will leave you at a gdb prompt.

$ make OPENSDA_FW=jlink debug
Using /home/maureen/zephyr/boards/arm/frdm_k64f/frdm_k64f_defconfig as base
Merging /home/maureen/zephyr/tests/include/test.config
Merging prj.conf
#
configuration written to .config
#
make[1]: Entering directory '/home/maureen/zephyr'
make[2]: Entering directory '/home/maureen/zephyr/samples/hello_world/outdir/frdm_k64f'
 GEN ./Makefile
scripts/kconfig/conf --silentoldconfig Kconfig
 Using /home/maureen/zephyr as source for kernel
 GEN ./Makefile
 CHK include/generated/version.h
 UPD include/generated/version.h
 DTC dts/arm/frdm_k64f.dts_compiled
 CHK include/generated/generated_dts_board.h
 UPD include/generated/generated_dts_board.h
 CHK misc/generated/configs.c
 UPD misc/generated/configs.c
 CHK include/generated/offsets.h
 UPD include/generated/offsets.h
 CC lib/libc/minimal/source/stdlib/strtol.o

<snip>

 CC kernel/work_q.o
 AR kernel/lib.a
 CC src/main.o
 LD src/built-in.o
 AR libzephyr.a
 LINK zephyr.lnk
 IRQ isr_tables.c
 CC isr_tables.o
 LINK zephyr.elf
 BIN zephyr.bin
JLink GDB server running on port 2331
SEGGER J-Link GDB Server V6.14b Command Line Version

JLinkARM.dll V6.14b (DLL compiled Mar 9 2017 08:48:20)

-----GDB Server start settings-----
GDBInit file: none
GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333
Accept remote connection: yes
Generate logfile: off
Verify download: off
Init regs on start: off
Silent mode: off
Single run mode: on
Target connection timeout: 0 ms
------J-Link related settings------
J-Link Host interface: USB
J-Link script: none
J-Link settings file: none
------Target related settings------
Target device: MK64FN1M0xxx12
Target interface: SWD
Target interface speed: 1000kHz
Target endian: little

Connecting to J-Link...
GNU gdb (GDB) 7.11.0.20160511-git
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-pokysdk-linux --target=arm-zephyr-eabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from /home/maureen/zephyr/samples/hello_world/outdir/frdm_k64f/zephyr.elf...done.
J-Link is connected.
Firmware: J-Link OpenSDA 2 compiled Feb 28 2017 19:27:57
Hardware: V1.00
S/N: 621000000
Checking target voltage...
Target voltage: 3.30 V
Listening on TCP/IP port 2331
Connecting to target...Connected to target
Waiting for GDB connection...Remote debugging using :2331
Connected to 127.0.0.1
Reading all registers
Read 4 bytes @ address 0x00001A04 (Data = 0xBF004770)
Read 2 bytes @ address 0x000019FC (Data = 0x4040)
Read 2 bytes @ address 0x000019FE (Data = 0xF380)
Read 2 bytes @ address 0x00001A00 (Data = 0x8811)
Read 2 bytes @ address 0x00001A02 (Data = 0xBF30)
k_cpu_idle () at /home/maureen/zephyr/arch/arm/core/cpu_idle.S:135
135 bx lr
Halting target CPU...
...Target halted (PC = 0x00001A04)
Loading section text, size 0x233e lma 0x0
Downloading 4096 bytes @ address 0x00000000
Downloading 4096 bytes @ address 0x00001000
Downloading 830 bytes @ address 0x00002000
Loading section devconfig, size 0xa8 lma 0x2340
Downloading 168 bytes @ address 0x00002340
Loading section rodata, size 0x5d4 lma 0x23e8
Downloading 1492 bytes @ address 0x000023E8
Loading section datas, size 0x14 lma 0x29bc
Downloading 20 bytes @ address 0x000029BC
Loading section initlevel, size 0xa8 lma 0x29d0
Downloading 168 bytes @ address 0x000029D0
Start address 0x1b64, load size 10870
Writing register (PC = 0x641b0000)
Transfer rate: 5307 KB/sec, 1552 bytes/write.
Read 4 bytes @ address 0x00001B64 (Data = 0xF3802010)
Resetting target
Resetting target
(gdb)

Console

If you configured your Zephyr application to use a UART console (most boards
enable this by default), open a serial terminal (minicom, putty, etc.) with the
following settings:

	Speed: 115200

	Data: 8 bits

	Parity: None

	Stop bits: 1

If you configured your Zephyr application to use Segger RTT [https://www.segger.com/jlink-rtt.html] console instead,
open telnet:

$ telnet localhost 19021
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SEGGER J-Link V6.14b - Real time terminal output
J-Link OpenSDA 2 compiled Feb 28 2017 19:27:57 V1.0, SN=621000000
Process: JLinkGDBServer

 Nordic nRF5x Segger J-Link

Nordic nRF5x Segger J-Link

Overview

All Nordic nRF5x Development Kits, Preview Development Kits and Dongles are equipped
with a Debug IC (Atmel ATSAM3U2C) which provides the following functionality:

	Segger J-Link firmware and desktop tools

	SWD debug for the nRF5x IC

	Mass Storage device for drag-and-drop image flashing

	USB CDC ACM Serial Port bridged to the nRF5x UART peripheral

	Segger RTT Console

	Segger Ozone Debugger

Segger J-Link Software Installation

To install the J-Link Software and documentation pack, follow the steps below:

	Download the appropriate package from the J-Link Software and documentation pack [https://www.segger.com/jlink-software.html] [9] website

	Depending on your platform, install the package or run the installer

	When connecting a J-Link-enabled board such as an nRF5x DK, PDK or dongle, a
drive corresponding to a USB Mass Storage device as well as a serial port should come up

nRF5x Command-Line Tools Installation

The nRF5x command-line Tools allow you to control your nRF5x device from the command line,
including resetting it, erasing or programming the flash memory and more.

To install them, use the appropriate link for your operating system:

	nRF5x Command-Line Tools for Windows [https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-Win32/33444] [1]

	nRF5x Command-Line Tools for Linux 32-bit [https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-Linux32/52615] [2]

	nRF5x Command-Line Tools for Linux 64-bit [https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-Linux64/51386] [3]

	nRF5x Command-Line Tools for macOS [https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-OSX/53402] [4]

After installing, make sure that nrfjprog is somewhere in your executable path
to be able to invoke it from anywhere.

Flashing

To program the flash with a compiled Zephyr image after having followed the instructions
to install the Segger J-Link Software and the nRF5x Command-Line Tools, follow the steps below:

	Connect the micro-USB cable to the nRF5x board and to your computer

	Erase the flash memory in the nRF5x IC:

$ nrfjprog --eraseall -f nrf5<x>

Where <x> is either 1 for nRF51-based boards or 2 for nRF52-based boards

	Flash the Zephyr image from the sample folder of your choice:

$ nrfjprog --program outdir/<board>/zephyr.hex -f nrf5<x>

Where: <board> is the board name you used in the BOARD directive when building (for example nrf52_pca10040)
and <x> is either 1 for nRF51-based boards or 2 for nRF52-based boards

	Reset and start Zephyr:

$ nrfjprog --reset -f nrf5<x>

Where <x> is either 1 for nRF51-based boards or 2 for nRF52-based boards

USB CDC ACM Serial Port Setup

Important note: An issue with Segger J-Link firmware on the nRF5x boards might cause
data loss and/or corruption on the USB CDC ACM Serial Port on some machines.
To work around this disable the Mass Storage Device on your board as described in Disabling the Mass Storage Device functionality.

Windows

The serial port will appear as COMxx. Simply check the “Ports (COM & LPT)” section
in the Device Manager.

GNU/Linux

The serial port will appear as /dev/ttyACMx. By default the port is not accessible to all users.
Type the command below to add your user to the dialout group to give it access to the serial port.
Note that re-login is required for this to take effect.

$ sudo usermod -a -G dialout <username>

To avoid it being taken by the Modem Manager for a few seconds when you plug the board in:

systemctl stop ModemManager.service
systemctl disable ModemManager.service

Apple macOS (OS X)

The serial port will appear as /dev/tty.usbmodemXXXX.

Disabling the Mass Storage Device functionality

Due to a known issue in Segger’s J-Link firmware, depending on your operating system
and version you might experience data corruption or drops if you use the USB CDC
ACM Serial Port with packets larger than 64 bytes.
This has been observed on both GNU/Linux and macOS (OS X).

To avoid this, you can simply disable the Mass Storage Device by opening:

	On GNU/Linux or macOS (OS X) JLinkExe from a terminal

	On Microsoft Windows the “JLink Commander” application

And then typing the following:

MSDDisable

And finally unplugging and replugging the board. The Mass Storage Device should
not appear anymore and you should now be able to send long packets over the virtual Serial Port.
Further information from Segger can be found in the Segger SAM3U Wiki [https://wiki.segger.com/index.php?title=J-Link-OB_SAM3U] [5].

RTT Console

Segger’s J-Link supports Real-Time Tracing (RTT) [https://www.segger.com/jlink-rtt.html] [6], a technology that allows a terminal
connection (both input and output) to be established between the target (nRF5x board)
and the development computer for logging and input. Zephyr supports RTT on nRF5x targets,
which can be very useful if the UART (through USB CDC ACM) is already being used for
a purpose different than logging (such as HCI traffic in the hci_uart application).
To use RTT, you will first need to enable it by adding the following lines in your .conf file:

CONFIG_HAS_SEGGER_RTT=y
CONFIG_RTT_CONSOLE=y

Once compiled and flashed with RTT enabled, you will be able to display RTT console
messages by doing the following:

Windows

	Open the “J-Link RTT Viewer” application

	Select the following options:
	Connection: USB

	Target Device: Select your IC from the list

	Target Interface and Speed: SWD, 4000 KHz

	RTT Control Block: Auto Detection

GNU/Linux and macOS (OS X)

	Open JLinkRTTLogger from a terminal

	Select the following options:
	Device Name: Use the fully qualified device name for your IC

	Target Interface: SWD

	Interface Speed: 4000 KHz

	RTT Control Block address: auto-detection

	RTT Channel name or index: 0

	Output file: filename or /dev/stdout to display on the terminal directly

Segger Ozone

Segger J-Link is compatible with Segger Ozone [https://www.segger.com/ozone.html] [7], a visual debugger that can be obtained here:

	Segger Ozone Download [https://www.segger.com/downloads/jlink#Ozone] [8]

Once downloaded you can install it and configure it like so:

	Target Device: Select your IC from the list

	Target Interface: SWD

	Target Interface Speed: 4 MHz

	Host Interface: USB

Once configured, you can then use the File->Open menu to open the zephyr.elf
file that you can find in your outdir/<board>/ folder.

References

	[1]	https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-Win32/33444

	[2]	https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-Linux32/52615

	[3]	https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-Linux64/51386

	[4]	https://www.nordicsemi.com/eng/nordic/Products/nRF51822/nRF5x-Command-Line-Tools-OSX/53402

	[5]	https://wiki.segger.com/index.php?title=J-Link-OB_SAM3U

	[6]	https://www.segger.com/jlink-rtt.html

	[7]	https://www.segger.com/ozone.html

	[8]	https://www.segger.com/downloads/jlink#Ozone

	[9]	https://www.segger.com/jlink-software.html

 TinyCrypt Cryptographic Library

TinyCrypt Cryptographic Library

Copyright (C) 2015 by Intel Corporation, All Rights Reserved.

Overview

The TinyCrypt Library provides an implementation for targeting constrained devices
with a minimal set of standard cryptography primitives, as listed below. To better
serve applications targeting constrained devices, TinyCrypt implementations differ
from the standard specifications (see the Important Remarks section for some
important differences). Certain cryptographic primitives depend on other
primitives, as mentioned in the list below.

Aside from the Important Remarks section below, valuable information on the usage,
security and technicalities of each cryptographic primitive are found in the
corresponding header file.

	SHA-256:
	Type of primitive: Hash function.

	Standard Specification: NIST FIPS PUB 180-4.

	Requires: –

	HMAC-SHA256:
	Type of primitive: Message authentication code.

	Standard Specification: RFC 2104.

	Requires: SHA-256

	HMAC-PRNG:
	Type of primitive: Pseudo-random number generator.

	Standard Specification: NIST SP 800-90A.

	Requires: SHA-256 and HMAC-SHA256.

	AES-128:
	Type of primitive: Block cipher.

	Standard Specification: NIST FIPS PUB 197.

	Requires: –

	AES-CBC mode:
	Type of primitive: Encryption mode of operation.

	Standard Specification: NIST SP 800-38A.

	Requires: AES-128.

	AES-CTR mode:
	Type of primitive: Encryption mode of operation.

	Standard Specification: NIST SP 800-38A.

	Requires: AES-128.

	AES-CMAC mode:
	Type of primitive: Message authentication code.

	Standard Specification: NIST SP 800-38B.

	Requires: AES-128.

	AES-CCM mode:
	Type of primitive: Authenticated encryption.

	Standard Specification: NIST SP 800-38C.

	Requires: AES-128.

	ECC-DH:
	Type of primitive: Key exchange.

	Standard Specification: RFC 6090.

	Requires: ECC auxiliary functions (ecc.h/c).

	ECC-DSA:
	Type of primitive: Digital signature.

	Standard Specification: RFC 6090.

	Requires: ECC auxiliary functions (ecc.h/c).

Design Goals

	Minimize the code size of each cryptographic primitive. This means minimize
the size of a board-independent implementation, as presented in TinyCrypt.
Note that various applications may require further features, optimizations with
respect to other metrics and countermeasures for particular threats. These
peculiarities would increase the code size and thus are not considered here.

	Minimize the dependencies among the cryptographic primitives. This means
that it is unnecessary to build and allocate object code for more primitives
than the ones strictly required by the intended application. In other words,
one can select and compile only the primitives required by the application.

Important Remarks

The cryptographic implementations in TinyCrypt library have some limitations.
Some of these limitations are inherent to the cryptographic primitives
themselves, while others are specific to TinyCrypt. Some of these limitations
are discussed in-depth below.

General Remarks

	TinyCrypt does not intend to be fully side-channel resistant. Due to the
variety of side-channel attacks, many of them making certain boards
vulnerable. In this sense, instead of penalizing all library users with
side-channel countermeasures such as increasing the overall code size,
TinyCrypt only implements certain generic timing-attack countermeasures.

Specific Remarks

	SHA-256:

	The number of bits_hashed in the state is not checked for overflow. Note
however that this will only be a problem if you intend to hash more than
2^64 bits, which is an extremely large window.

	HMAC:

	The HMAC verification process is assumed to be performed by the application.
This compares the computed tag with some given tag.
Note that conventional memory-comparison methods (such as memcmp function)
might be vulnerable to timing attacks; thus be sure to use a constant-time
memory comparison function (such as compare_constant_time
function provided in lib/utils.c).

	HMAC-PRNG:

	Before using HMAC-PRNG, you must find an entropy source to produce a seed.
PRNGs only stretch the seed into a seemingly random output of arbitrary
length. The security of the output is exactly equal to the
unpredictability of the seed.

	NIST SP 800-90A requires three items as seed material in the initialization
step: entropy seed, personalization and a nonce (which is not implemented).
TinyCrypt requires the personalization byte array and automatically creates
the entropy seed using a mandatory call to the re-seed function.

	AES-128:

	The current implementation does not support other key-lengths (such as 256
bits). Note that if you need AES-256, it doesn’t sound as though your
application is running in a constrained environment. AES-256 requires keys
twice the size as for AES-128, and the key schedule is 40% larger.

	CTR mode:

	The AES-CTR mode limits the size of a data message they encrypt to 2^32
blocks. If you need to encrypt larger data sets, your application would
need to replace the key after 2^32 block encryptions.

	CBC mode:

	TinyCrypt CBC decryption assumes that the iv and the ciphertext are
contiguous (as produced by TinyCrypt CBC encryption). This allows for a
very efficient decryption algorithm that would not otherwise be possible.

	CMAC mode:

	AES128-CMAC mode of operation offers 64 bits of security against collision
attacks. Note however that an external attacker cannot generate the tags
him/herself without knowing the MAC key. In this sense, to attack the
collision property of AES128-CMAC, an external attacker would need the
cooperation of the legal user to produce an exponentially high number of
tags (e.g. 2^64) to finally be able to look for collisions and benefit
from them. As an extra precaution, the current implementation allows to at
most 2^48 calls to tc_cmac_update function before re-calling tc_cmac_setup
(allowing a new key to be set), as suggested in Appendix B of SP 800-38B.

	CCM mode:

	There are a few tradeoffs for the selection of the parameters of CCM mode.
In special, there is a tradeoff between the maximum number of invocations
of CCM under a given key and the maximum payload length for those
invocations. Both things are related to the parameter ‘q’ of CCM mode. The
maximum number of invocations of CCM under a given key is determined by
the nonce size, which is: 15-q bytes. The maximum payload length for those
invocations is defined as 2^(8q) bytes.

To achieve minimal code size, TinyCrypt CCM implementation fixes q = 2,
which is a quite reasonable choice for constrained applications. The
implications of this choice are:

The nonce size is: 13 bytes.

The maximum payload length is: 2^16 bytes = 65 KB.

The mac size parameter is an important parameter to estimate the security
against collision attacks (that aim at finding different messages that
produce the same authentication tag). TinyCrypt CCM implementation
accepts any even integer between 4 and 16, as suggested in SP 800-38C.

	TinyCrypt CCM implementation accepts associated data of any length between
0 and (2^16 - 2^8) = 65280 bytes.

	TinyCrypt CCM implementation accepts:

	Both non-empty payload and associated data (it encrypts and
authenticates the payload and only authenticates the associated data);

	Non-empty payload and empty associated data (it encrypts and
authenticates the payload);

	Non-empty associated data and empty payload (it degenerates to an
authentication-only mode on the associated data).

	RFC-3610, which also specifies CCM, presents a few relevant security
suggestions, such as: it is recommended for most applications to use a
mac size greater than 8. Besides, it is emphasized that the usage of the
same nonce for two different messages which are encrypted with the same
key obviously destroys the security properties of CCM mode.

	ECC-DH and ECC-DSA:

	TinyCrypt ECC implementation is based on nano-ecc (see
https://github.com/iSECPartners/nano-ecc) which in turn is based on
micro-ecc (see https://github.com/kmackay/micro-ecc). In the original
nano and micro-ecc documentation, there is an important remark about the
way integers are represented:

“Integer representation: To reduce code size, all large integers are
represented using little-endian words - so the least significant word is
first. You can use the ‘ecc_bytes2native()’ and ‘ecc_native2bytes()’
functions to convert between the native integer representation and the
standardized octet representation.”

Examples of Applications

It is possible to do useful cryptography with only the given small set of
primitives. With this list of primitives it becomes feasible to support a range
of cryptography usages:

	Measurement of code, data structures, and other digital artifacts (SHA256);

	Generate commitments (SHA256);

	Construct keys (HMAC-SHA256);

	Extract entropy from strings containing some randomness (HMAC-SHA256);

	Construct random mappings (HMAC-SHA256);

	Construct nonces and challenges (HMAC-PRNG);

	Authenticate using a shared secret (HMAC-SHA256);

	Create an authenticated, replay-protected session (HMAC-SHA256 + HMAC-PRNG);

	Authenticated encryption (AES-128 + AES-CCM);

	Key-exchange (EC-DH);

	Digital signature (EC-DSA);

Test Vectors

The library provides a test program for each cryptographic primitive (see ‘test’
folder). Besides illustrating how to use the primitives, these tests evaluate
the correctness of the implementations by checking the results against
well-known publicly validated test vectors.

For the case of the HMAC-PRNG, due to the necessity of performing an extensive
battery test to produce meaningful conclusions, we suggest the user to evaluate
the unpredictability of the implementation by using the NIST Statistical Test
Suite (see References).

For the case of the EC-DH and EC-DSA implementations, most of the test vectors
were obtained from the site of the NIST Cryptographic Algorithm Validation
Program (CAVP), see References.

References

	NIST FIPS PUB 180-4 (SHA-256) [http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf]

	NIST FIPS PUB 197 (AES-128) [http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf]

	NIST SP800-90A (HMAC-PRNG) [http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf]

	NIST SP 800-38A (AES-CBC and AES-CTR) [http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf]

	NIST SP 800-38B (AES-CMAC) [http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf]

	NIST SP 800-38C (AES-CCM) [http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf]

	NIST Statistical Test Suite [http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html]

	NIST Cryptographic Algorithm Validation Program (CAVP) site [http://csrc.nist.gov/groups/STM/cavp/]

	RFC 2104 (HMAC-SHA256) [https://www.ietf.org/rfc/rfc2104.txt]

	RFC 6090 (ECC-DH and ECC-DSA) [https://www.ietf.org/rfc/rfc6090.txt]

 Cryptography

Cryptography

The crypto section contains information regarding the cryptographic primitives
supported by the Zephyr kernel. Use the information to understand the principles
behind the operation of the different algorithms and how they were implemented.

The following crypto libraries have been included:

	TinyCrypt Cryptographic Library
	Overview

	Design Goals

	Important Remarks

	General Remarks

	Specific Remarks

	Examples of Applications

	Test Vectors

	References

nav.xhtml

 Table of Contents

 		Zephyr 项目中文文档

 		Introducing Zephyr

 		Licensing

 		Distinguishing Features

 		Community Support

 		Resources

 		Fundamental Terms and Concepts

 		Getting Started Guide

 		Set Up the Development Environment

 		Development Environment Setup on Linux

 		Development Environment Setup on Mac OS

 		Development Environment Setup on Windows

 		Checking Out the Source Code Anonymously

 		Building and Running an Application

 		Building a Sample Application

 		Using Custom and 3rd Party Cross Compilers

 		Running a Sample Application in QEMU

 		Contributing to the Zephyr Project

 		Contribution Guidelines

 		Licensing

 		Developer Certification of Origin (DCO)

 		Prerequisites

 		Repository layout

 		Pull Requests and Issues

 		Development Tools and Git Setup

 		Coding Style

 		Contribution Workflow

 		Commit Guidelines

 		Zephyr Kernel Primer

 		Overview

 		Source Tree Structure

 		Changes from Version 1 Kernel

 		Threads

 		Lifecycle

 		Scheduling

 		Custom Data

 		System Threads

 		Workqueue Threads

 		Timing

 		Kernel Clocks

 		Timers

 		Memory Allocation

 		Memory Slabs

 		Memory Pools

 		Heap Memory Pool

 		Synchronization

 		Semaphores

 		Mutexes

 		Alerts

 		Data Passing

 		Fifos

 		Lifos

 		Stacks

 		Message Queues

 		Mailboxes

 		Pipes

 		Other Services

 		Interrupts

 		Atomic Services

 		Polling API

 		Ring Buffers

 		Floating Point Services

 		C++ Support for Applications

 		CPU Idling

 		Zephyr Project Security

 		Zephyr Security Overview

 		Introduction

 		Current Security Definition

 		Secure Development Process

 		Secure Design

 		Security Certification

 		References

 		Secure Coding Guidelines

 		Introduction and Scope

 		Secure Coding Guidelines

 		Secure development knowledge

 		Code Review

 		Issues and Bug Tracking

 		Modifications to This Document

 		Developer Guides

 		Porting Guides

 		Architecture Porting Guide

 		Board Porting Guide

 		Legacy Applications Porting Guide

 		Migrating from Zephyr v1.6 IP Stack to v1.7

 		Application Development Primer

 		Overview

 		Application Structure

 		Application Definition

 		Makefiles

 		Application Makefile

 		Application Configuration

 		Application-Specific Code

 		Build an Application

 		Rebuilding an Application

 		Run an Application

 		Application Debugging

 		API Documentation

 		Kernel APIs

 		Device Driver Interface

 		Bluetooth API

 		Networking API

 		Input / Output Driver APIs

 		Power Management APIs

 		File System APIs

 		Device and Driver Support

 		Device Drivers and Device Model

 		Introduction

 		Standard Drivers

 		Synchronous Calls

 		Driver APIs

 		Driver Data Structures

 		Subsystems and API Structures

 		Single Driver, Multiple Instances

 		Initialization Levels

 		System Drivers

 		Device Tree in Zephyr

 		Introduction to Device Tree

 		System build requirements

 		Zephyr and Device Tree

 		Device tree file formats

 		Currently supported boards

 		Adding support for a board

 		Adding support for device tree in drivers

 		Source Tree Hierarchy

 		YAML definitions for device nodes

 		Subsystems

 		Bluetooth

 		Source tree layout

 		Further reading

 		Standard C Library

 		Logging

 		System Logging

 		Kernel Event Logger

 		Networking

 		Overview

 		IP Stack Architecture

 		Network Connectivity API

 		BSD Sockets compatible API

 		L2 Stack and Drivers

 		Network Management API

 		Network Application API

 		Initialization

 		Setup

 		Client / Server Applications

 		Network Buffers

 		Networking with QEMU

 		Power Management

 		Terminology

 		Overview

 		Tickless Idle

 		System Power Management

 		Power Schemes

 		Device Power Management Infrastructure

 		Power Management Configuration Flags

 		Sensor Drivers

 		Basic Operation

 		Configuration and Attributes

 		Triggers

 		Shell

 		Overview

 		Using shell commands

 		Shell configuration

 		Writing a shell module

 		Shell API Functions

 		Testing

 		Test Framework

 		Zephyr Sanity Tests

 		USB device stack

 		USB device controller drivers

 		USB device core layer

 		USB device class drivers

_static/down.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_images/app_kernel_conf_2.png
Do you wish to save your new configuration?
(Press <ESC><ESC> to continue kernel configuration.)

2 < No >

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_images/app_kernel_conf_4.png
Enter the name of the configuration file you wish
to load. Accept the name shown to restore the
configuration you last retrieved. Leave blank to
abort.

.configll

< Help >

_images/app_kernel_conf_1.png
