Zephyr Project Documentation
XA 1.9.0

many

8H 28,2017

Contents

S

249

Zephyr Project Documentation, % #i 1.9.0

RoR: SRR AP SUREERIE =S, AT LUE X BRHEMUR .

KT RIAR AN EERARIES, 1EEM zephyr_release_notes -

Zephyr OS FIE RIS EEFF IR Apache 2.0 license , A LU EAE GitHub 13)% H Y LINCENSE X #
BEZDNHIBARANE - BritbZ5h, Zephyr OS B N/GIH T —L846 - IR RE I, X848
Y& Zephyr_Licensing -

Zephyr T H FORAHSYEITTE GitHub % o .

Contents 1

http://zephyr-doc.readthedocs.io/zh_CN/latest/
https://github.com/zephyrproject-rtos/zephyr/blob/master/LICENSE
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, % #ii 1.9.0

2 Contents

CHAPTER 1

EBR

Introducing Zephyr

The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained systems: from simple
embedded environmental sensors and LED wearables to sophisticated smart watches and IoT wireless gateways.

The Zephyr kernel supports multiple architectures, including ARM Cortex-M, Intel x86, ARC, NIOS II, Tensilica
Xtensa and RISC V. The full list of supported boards can be found here.

Licensing

Zephyr uses the Apache 2.0 license (as found in the LICENSE file in the project’s GitHub repo). There are some
imported or reused components of the Zephyr project that use other licensing, as described in Zephyr_Licensing.

Distinguishing Features

The Zephyr kernel offers a number of features that distinguish it from other small-footprint OSes:

1. Single address-space. Combines application-specific code with a custom kernel to create a monolithic image
that gets loaded and executed on a system’s hardware. Both the application code and kernel code execute in a
single shared address space.

2. Highly configurable. Allows an application to incorporate only the capabilities it needs as it needs them, and
to specify their quantity and size.

3. Compile-time resource definition. Allows system resources to be defined at compile-time, which reduces code
size and increases performance.

4. Minimal error checking. Provides minimal run-time error checking to reduce code size and increase perfor-
mance. An optional error-checking infrastructure is provided to assist in debugging during application develop-
ment.

5. Extensive suite of services. Offers a number of familiar services for development:

https://github.com/zephyrproject-rtos/zephyr/blob/master/LICENSE
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, & 7ii 1.9.0

* Multi-threading Services for priority-based, non-preemptive and preemptive threads with optional round
robin time-slicing.

e Interrupt Services for compile-time registration of interrupt handlers.

e Memory Allocation Services for dynamic allocation and freeing of fixed-size or variable-size memory
blocks.

o Inter-thread Synchronization Services for binary semaphores, counting semaphores, and mutex
semaphores.

e Inter-thread Data Passing Services for basic message queues, enhanced message queues, and byte streams.

* Power Management Services such as tickless idle and an advanced idling infrastructure.

Community Support

The Zephyr Project Developer Community includes developers from member organizations and the general commu-
nity all joining in the development of software within the Zephyr Project. Members contribute and discuss ideas,
submit bugs and bug fixes, and provide training. They also help those in need through the community’s forums such
as mailing lists and IRC channels. Anyone can join the developer community and the community is always willing to
help its members and the User Community to get the most out of the Zephyr Project.

Welcome to the Zephyr community!

Resources

Here’s a quick summary of resources to find your way around the Zephyr Project support systems:

Zephyr Project Website: The https://zephyrproject.org website is the central source of information about the
Zephyr Project. On this site, you’ll find background and current information about the project as well as all the
relevant links to project material. For a quick start, refer to the Zephyr Introduction and Getting Started Guide.

Releases: Source code for Zephyr kernel releases are available at https://zephyrproject.org/downloads. On this
page, you’ll find release information, and links to download or clone source code from our GitHub repository.
You’ll also find links for the Zephyr SDK, a moderated collection of tools and libraries used to develop your
applications.

Source Code in GitHub: Zephyr Project source code is maintained on a public GitHub repository at https:
//github.com/zephyrproject-rtos/zephyr. You’ll find information about getting access to the repository and how
to contribute to the project in this Contribution Guide document.

Samples Code: In addition to the kernel source code, there are also many documented Sample and Demo Code
Examples that can help show you how to use Zephyr services and subsystems.

Documentation: Extensive Project technical documentation is developed along with the Zephyr kernel itself,
and can be found at https://zephyrproject.org/doc. Additional documentation is maintained in the Zephyr GitHub
wiki.

Issue Reporting and Tracking: Requirements and Issue tracking is done in our JIRA system: https:/jira.
zephyrproject.org. You can browse through the reported issues and submit issues of your own.

Mailing List: The Zephyr Mailing Lists are perhaps the most convenient way to track developer discussions
and to ask your own support questions to the Zephyr project community. You can also read through message
archives to follow past posts and discussions, a good thing to do to discover more about the Zephyr project.

IRC Chatting: You can chat online with the Zephyr project developer community and other users in our IRC
channel #zephyrproject on the freenode.net IRC server. You can use the http://webchat.freenode.net web client
or use a client-side application such as pidgin.

Chapter 1. H3x

https://zephyrproject.org
https://www.zephyrproject.org/doc/introduction/introducing_zephyr.html
https://www.zephyrproject.org/doc/getting_started/getting_started.html
https://zephyrproject.org/downloads
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr
https://www.zephyrproject.org/doc/contribute/contribute_guidelines.html
https://www.zephyrproject.org/doc/samples/samples.html
https://www.zephyrproject.org/doc/samples/samples.html
https://zephyrproject.org/doc
https://github.com/zephyrproject-rtos/zephyr/wiki
https://github.com/zephyrproject-rtos/zephyr/wiki
https://jira.zephyrproject.org
https://jira.zephyrproject.org
https://lists.zephyrproject.org/
http://webchat.freenode.net

Zephyr Project Documentation, % #i 1.9.0

Fundamental Terms and Concepts

See glossary

Getting Started Guide

Use this guide to get started with your Zephyr development.

Set Up the Development Environment

The Zephyr project supports these operating systems:
* Linux
* Mac OS
* Windows 8.1

Use the following procedures to create a new development environment.

Development Environment Setup on Linux

This section describes how to set up a Linux development system.

After completing these steps, you will be able to compile and run your Zephyr applications on the following Linux
distributions:

e Ubuntu 16.04 LTS 64-bit
¢ Fedora 25 64-bit

Where needed, alternative instructions are listed for Ubuntu and Fedora.

Installing the Host’s Operating System

Building the project’s software components including the kernel has been tested on Ubuntu and Fedora systems.
Instructions for installing these OSes are beyond the scope of this document.

Update Your Operating System

Before proceeding with the build, ensure your OS is up to date. On Ubuntu, you’ll first need to update the local
database list of available packages before upgrading:

$ sudo apt-get update
$ sudo apt-get upgrade

On Fedora:

$ sudo dnf upgrade

Note that having a newer version available for an installed package (and reported by dnf check-update) does not
imply a subsequent dnf upgrade will install it, because it must also ensure dependencies and other restrictions are
satisfied.

1.2. Getting Started Guide 5

Zephyr Project Documentation, & 7ii 1.9.0

Installing Requirements and Dependencies

Install the following with either apt-get or dnf.

Install the required packages in a Ubuntu host system with:

$ sudo apt-get install git make gcc g++ ncurses—-dev \

doxygen dfu-util device-tree-compiler python3-ply python3-pip

Install the required packages in a Fedora host system with:

$ sudo dnf group install "Development Tools"
$ sudo dnf install git make gcc glibc-static \

libstdc++-static ncurses-devel \
doxygen dfu-util dtc python3-pip \
python3-ply python3-yaml dfu-util dtc python3-pykwalify

Install additional packages required for development with Zephyr:

$ pip3 install --user -r scripts/requirements.txt

Installing the Zephyr Software Development Kit

Zephyr’s SDK (Software Development Kit) contains all necessary tools and cross-compilers needed to build the kernel
on all supported architectures. Additionally, it includes host tools such as a custom QEMU and a host compiler for
building host tools if necessary. The SDK supports the following architectures:

X386 (Intel Architecture 32 bits)

X86 IAMCU ABI (Intel Architecture 32 bits IAMCU ABI)
ARM (Advanced RISC Machines)

ARC (Argonaut RISC Core)

NIOS II

XTENSA

Follow these steps to install the SDK on your Linux host system.

1.

Download the latest SDK self-extractable binary.
Visit the Zephyr SDK archive to find all available SDK versions, including the latest version.

Alternatively, you can use the following command to download the desired version (0.9.1 can be replaced with
the version number you wish to download).

$ wget https://github.com/zephyrproject-rtos/meta-zephyr-sdk/releases/download/0.
—9.1/zephyr-sdk-0.9.1-setup.run

Run the installation binary, follow this example:

HE % Make sure you have installed all required packages for your host distribution as described in the previous
section /inux_required_software otherwise the SDK installation will fail.

$ chmod +x zephyr-sdk-<version>-setup.run
$./zephyr-sdk-<version>-setup.run

Chapter 1. H3X

https://zephyrproject.org/downloads/tools

Zephyr Project Documentation, % #i 1.9.0

There is no need to use sudo if the SDK is installed in the current user’s home directory.

3. Follow the installation instructions on the screen. The toolchain’s default installation location is /opt/
zephyr—sdk/. To install in the default installation location, you will need to use sudo. It is recommended to
install the SDK in your home directory and not in a system directory.

4. To use the Zephyr SDK, export the following environment variables and use the target location where SDK was
installed, type:

$ export ZEPHYR_GCC_VA

SDK_INSTALL DIR=<sdk installation directory>

$ export ZEPHYR_

To use the same toolchain in new sessions in the future you can set the variables in the file $HOME /.
zephyrrc, for example:

$ cat <<EOF > ~/.zephyrrc

export ZEPHYR_GCC_VARIANT=zephyr

export ZEPHYR_SDK_INSTALL_DIR=/opt/zephyr-sdk
EOF

Development Environment Setup on Mac OS

This section describes how to set up a Mac OS development system.

After completing these steps, you will be able to compile and run your Zephyr applications on the following Mac OS
version:

* Mac OS X 10.11 (EIl Capitan)
¢ macOS Sierra 10.12

Developing for Zephyr on macOS generally requires you to build the toolchain yourself. However, if there is already
an macOS toolchain for your target architecture you can use it directly.

Using a 3rd Party toolchain

If a toolchain is available for the architecture you plan to build for, then you can use it as explained in: Using Custom
and 3rd Party Cross Compilers.

An example of an available 3rd party toolchain is GCC ARM Embedded for the Cortex-M family of cores.

Installing Requirements and Dependencies

To install the software components required to build the Zephyr kernel on a Mac, you will need to build a cross
compiler for the target devices you wish to build for and install tools that the build system requires.

HEME: Minor version updates of the listed required packages might also work.

Before proceeding with the build, ensure your OS is up to date.

First, install the Homebrew (The missing package manager for macOS). Homebrew is a free and open-source software
package management system that simplifies the installation of software on Apple’s macOS operating system.

To install Homebrew, visit the Homebrew site and follow the installation instructions on the site.

1.2. Getting Started Guide 7

http://brew.sh/

Zephyr Project Documentation, & 7ii 1.9.0

To complete the Homebrew installation, you might be prompted to install some missing dependency. If so, follow
please follow the instructions provided.

After Homebrew was successfully installed, install the following tools using the brew command line.

Install tools to build Zephyr binaries:

brew install dfu-util doxygen gemu dtc python3

curl -0 'https://bootstrap.pypa.io/get-pip.py'

./get-pip.py

rm get-pip.py

pip3 install --user -r scripts/requirements.txt

v » v

Install tools needed for building the toolchain (if needed):

$ brew install gettext help2man mpfr gmp coreutils wget
$ brew tap homebrew/dupes
$ brew install grep —--with-default-names

To build the toolchain, you will need the latest version of crosstool-ng (1.23). This version was not available via brew
when writing this documentation, you can however try and see if you get 1.23 installed:

$ brew install crosstool-ng

Alternatively you can install the latest version of crosstool—-ng from source. Download the latest version from the
crosstool-ng site. The latest version usually supports the latest released compilers.

$ wget http://crosstool-ng.org/download/crosstool-ng/crosstool-ng-1.23.0.tar.bz2
$ tar xvf crosstool-ng-1.23.0.tar.bz2

$ cd crosstool-ng-1.23.0/

$./configure

$ make

$

make install

Setting Up the Toolchain
Creating a Case-sensitive File System
Building the compiler requires a case-sensitive file system. Therefore, use diskutil to create an 8 GB blank sparse

image making sure you select case-sensitive file system (OS X Extended (Case-sensitive, Journaled) and mount it.

Alternatively you can use the script below to create the image:

#!/bin/bash

ImageName=CrossToolNG

ImageNameExt=5{ImageName } . sparseimage

diskutil umount force /Volumes/${ImageName] && true

rm —-f ImageNameExt && true

hdiutil create ImageName] —volname ImageName] —type SPARSE -size 8g —-fs HFSX

hdiutil mount Ima NameExt

cd /Volumes/S$Image

When mounted, the file system of the image will be available under /Volumes. Change to the mounted directory:

$ cd /Volumes/CrossToolNG
$ mkdir build
$ cd build

8 Chapter 1. H3x

http://crosstool-ng.org

Zephyr Project Documentation, % #i 1.9.0

Setting the Toolchain Options

In the Zephyr kernel source tree we provide two configurations for both ARM and X86 that can be used to pre-select
the options needed for building the toolchain. The configuration files can be found in $ZEPHYR BASE/scripts/
cross_compiler/.

Currently the following configurations are provided:
* 1586.config: for standard ABI, for example for Galileo and gemu_x86
* iamcu.config: for IAMCU ABI, for example for the Arduino 101

* nios2.config: for Nios II boards

$ cp ZEPHYR_BASE }/scripts/cross_compiler/i586.config .config

You can create a toolchain configuration or customize an existing configuration yourself using the configuration menus:

$ export CT_PREFIX=/Volumes/CrossToolNG
$ ct-ng menuconfig

Verifying the Configuration of the Toolchain

Before building the toolchain it is advisable to perform a quick verification of the configuration set for the toolchain.
1. Open the generated . config file.

2. Verify the following lines are present, assuming the sparse image was mounted under /Volumes/
CrossToolNG:

CT_LOCAL_TARBALLS_DIR="/Volumes/CrossToolNG/src"

CT_SAVE_TARBALLS 1s not set

K_DIR=" CT_TOP_DIR}/.build"
CT_PREFIX_DIR="/Volumes/CrossToolNG/x-tools/S{CT_TARGET }"
CT_INSTALL_DIR=" CT_PREFIX_DIR}"

Following options prevent link errors
CT_WANTS_STATIC_LINK=n

- \TIC_LIBSTDCXX=n

Building the Toolchain

To build the toolchain, enter:

$ ct-ng build

The above process takes a while. When finished, the toolchain will be available under /Volumes/CrossToolNG/
x—tools.

Repeat the step for all architectures you want to support in your environment.

To use the toolchain with Zephyr, export the following environment variables and use the target location where the
toolchain was installed, type:

VARIANT=xtools
N_PATH=/Volumes/CrossToolNG/x-tools

1.2. Getting Started Guide 9

Zephyr Project Documentation, & 7ii 1.9.0

To use the same toolchain in new sessions in the future you can set the variables in the file SHOME / . zephyrrc, for
example:

$ cat <<EOF > ~/.zephyrrc

export XTOOLS_TOOLCHAIN_PATH=/Volumes/CrossToolNG/x-tools
export ZEPHYR_GCC_VARIANT=xtools

EOF

Development Environment Setup on Windows
This section describes how to configure your development environment and to build Zephyr applications in a Microsoft
Windows environment.

This guide was tested by building the Zephyr hello_world sample application on Windows versions 7, 8.1, and 10.

Update Your Operating System

Before proceeding with the build, ensure that you are running your Windows system with the latest updates installed.

Installing Requirements and Dependencies
Using MSYS2

The Zephyr development environment on Windows relies on MSYS2, a modern UNIX environment for Windows.
Follow the steps below to set it up:

1. Download and install MSYS2. Download the appropriate (32 or 64-bit) MSYS2 installer from the MSYS2
website and execute it. On the final installation screen, check the “Run MSYS2 now.” box to start up an MSYS2
shell when installation is complete. Follow the rest of the installation instructions on the MSYS2 website to
update the package database and core system packages. You may be advised to “terminate MSYS2 without
returning to shell and check for updates again”. If so, simply close the MSYS2 MSYS Shell desktop app and
run it again to complete the update.)

2. Launch the MSYS2 MSYS Shell desktop app from your start menu (if it’s not still open).

TEf#: Make sure you start MSYS2 MSYS Shell,not MSYS2 MinGW Shell.

1Ef#: There are multiple export statements in this tutorial. You can avoid typing them every time by placing
them at the bottom of your ~/ .bash_profile file.

3. If you're behind a corporate firewall, you’ll likely need to specify a proxy to get access to internet resources:

$ export http_proxy=http://proxy.mycompany.com:123
$ export https_proxy=S$http_proxy

4. Install the dependencies required to build Zephyr:

$ pacman -S git make gcc dtc diffutils ncurses-devel python3

5. Install pip and the required Python modules:

10 Chapter 1. B3

http://www.msys2.org/
http://www.msys2.org/

Zephyr Project Documentation, % #i 1.9.0

$ curl -0 'https://bootstrap.pypa.io/get-pip.py"
$./get-pip.py

$ rm get-pip.py

$ pip install —--user -r scripts/requirements.txt

6. The build system should now be ready to work with any toolchain installed in your system. In the next step
you’ll find instructions for installing toolchains for building both x86 and ARM applications.

7. Install cross compiler toolchain:

* For x86, install the 2017 Windows host ISSM toolchain from the Intel Developer Zone: ISSM Toolchain.
Use your web browser to download the toolchain’s tar . gz file.

You’ll need the tar application to unpack this file. In an MSYS2 MSYS console, install tar and use it to
extract the toolchain archive:

$ pacman -S tar
$ tar —-zxvf /c/Users/myusername/Downloads/issm-toolchain-windows-2017-01-15.
—tar.gz -C /c

substituting the .tar.gz path name with the one you downloaded.

Ef#: The ISSM toolset only supports development for Intel® Quark™ Microcontrollers, for example,
the Arduino 101 board. (Check out the “Zephyr Development Environment Setup” in this Getting Started
on Arduino 101 with ISSM document.) Additional setup is required to use the ISSM GUI for development.

¢ For ARM, install GNU ARM Embedded from the ARM developer website: GNU ARM Embedded (install
to c: \gccarmemb).

8. From within the MSYS2 MSYS Shell, clone a copy of the Zephyr source into your home directory using Git:

$ cd ~
$ git clone https://github.com/zephyrproject-rtos/zephyr.git

9. Also within the MSYS console, set up environment variables for the installed tools and for the Zephyr environ-
ment (using the provided shell script):

For x86:

C_VARIANT=issm
ALLATION PATH=/c/issm0-toolchain-windows-2017-01-25

$ export ZEPHYR
$ export ISSM T

Use the path where you extracted the ISSM toolchain.

For ARM:
$ export ZEPHYR_GCC_VARIANT=gccarmemb
$ export GCCARMEMB_TOOLCHAIN_PATH=/c/gccarmemb

And for either, run the provided script to set up zephyr project specific variables:

$ unset ZEPHYR_SDK_INSTALL_DIR
$ source ~/zephyr/zephyr-env.sh

10. Finally, you can try building the hello_world sample to check things out.
To build for the Intel® Quark™ (x86-based) Arduino 101:

1.2. Getting Started Guide 11

https://software.intel.com/en-us/articles/issm-toolchain-only-download
https://software.intel.com/en-us/articles/getting-started-arduino-101genuino-101-with-intel-system-studio-for-microcontrollers
https://software.intel.com/en-us/articles/getting-started-arduino-101genuino-101-with-intel-system-studio-for-microcontrollers
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

Zephyr Project Documentation, & 7ii 1.9.0

$ cd SZEPHYR_BASE/samples/hello_world
$ make BOARD=arduino_101

To build for the ARM-based Nordic nRF52 Development Kit:

$ cd SZEPHYR_BASE/samples/hello_world
$ make BOARD=nrf52_pcal0040

This should check that all the tools and toolchain are set up correctly for your own Zephyr develop-
ment.

Using Windows 10 WSL (Windows Subsystem for Linux)

If you are running a recent version of Windows 10 you can make use of the built-in functionality to natively run Ubuntu
binaries directly on a standard command-prompt. This allows you to install the standard Zephyr SDK and build for all
supported architectures without the need for a Virtual Machine.

1. Install Windows Subsystem for Linux (WSL) following the instructions on the official Microsoft website: WSL
Installation

Ef#: For the Zephyr SDK to function properly you will need Windows 10 build 15002 or greater. You can
check which Windows 10 build you are running in the “About your PC” section of the System Settings. If you
are running an older Windows 10 build you might need to install the Creator’s Update.

2. Follow the instructions for Ubuntu detailed in the Zephyr Linux Getting Started Guide which can be found here:
Development Environment Setup on Linux

Checking Out the Source Code Anonymously

The code is hosted in a GitHub repo that supports anonymous cloning via git.

To clone the repository anonymously, enter:

$ git clone https://github.com/zephyrproject-rtos/zephyr.git

You have successfully checked out a copy of the source code to your local machine.

Building and Running an Application

Using the ‘Hello World’ sample application as a base model, the following section will describe the pieces necessary
for creating a Zephyr application.

The processes to build and run a Zephyr application are the same across operating systems. Nevertheless, the com-
mands needed do differ from one OS to the next. The following sections contain the commands used in a Linux
development environment. If you are using Mac OS please use the appropriate commands for your OS.

Building a Sample Application

To build an example application follow these steps:

1. Make sure your environment is setup by exporting the following environment variables. When using the Zephyr
SDK on Linux for example, type:

12 Chapter 1. H3X

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

Zephyr Project Documentation, % #i 1.9.0

CC_VARIANT=zephyr
DK_INSTALL DIR=<sdk installation directory>

$ export ZEPHY
$ export ZEPHY

2. Navigate to the main project directory:

’$ cd zephyr-project

3. Source the project environment file to set the project environment variables:

’s source zephyr-env.sh

4. Build the hello_world example project, enter:

$ cd SZEPHYR_BASE/samples/hello_world
$ make

The above invocation of make will build the hello_world sample application using the default settings defined in the
application’s Makefile. You can build for a different board by defining the variable BOARD with one of the supported
boards, for example:

’$ make BOARD=arduino_101

For further information on the supported boards go see here. Alternatively, run the following command to obtain a list
of the supported boards:

’$ make help

Sample projects for different features of the project are available at at $ZEPHYR_BASE/samples. After building
an application successfully, the results can be found in the outdir sub-directory under the application root directory,
in a subdirectory that matches the BOARD string.

The ELF binaries generated by the build system are named by default zephyr.elf. This value can be overridden
in the application configuration The build system generates different names for different use cases depending on the
hardware and boards used.

Using Custom and 3rd Party Cross Compilers
The Zephyr SDK is provided for convenience and ease of use. It provides cross-compilers for all ports supported by
the Zephyr OS and does not require any extra flags when building applications or running tests.

If you have a custom cross-compiler or if you wish to use a vendor provided SDK, follow the steps below to build with
any custom or 3rd party cross-compilers:

1. To avoid any conflicts with the Zephyr SDK, enter the following commands.

$ unset ZEPHYR_GCC_VARIANT
$ unset ZEPHYR_SDK_INSTALL_DIR

2. We will use the GCC ARM Embedded compiler for this example, download the package suitable for your
operating system from the GCC ARM Embedded website and extract it on your file system. This example
assumes the compiler was extracted to: ~/gcc—arm-none-eabi-5_3-2016qgl/.

3. Navigate to the main project directory:

$ cd zephyr-project

4. Source the project environment file to set the project environment variables:

1.2. Getting Started Guide 13

https://launchpad.net/gcc-arm-embedded
https://launchpad.net/gcc-arm-embedded

Zephyr Project Documentation, & 7ii 1.9.0

$ source zephyr-env.sh

5. Build the example hello_world project and make sure you supply the CROSS_COMPILE on the command line,
enter:

{AIN_PATH="~/gcc-arm-none-eabi-5_3-2016qgl/"
VARIANT=gccarmemb

YR_BASE/samples/hello_world

OMPILE=~/gcc-arm-none—eabi-5_3-2016gl/bin/arm-none—eabi—_,

—BOARD=arduino_due

The above will build the sample using the toolchain downloaded from GCC ARM Embedded.
Alternatively, you can use the existing support for GCC ARM Embedded:

ARMEMB_TOOLCHAIN_PATH="~/gcc—arm-none-eabi-5_3-2016gql/"
export ZEPHYR GCC_VARIANT=gccarmemb
cd zephyr-project
source zephyr-env.sh
cd $SZEPHYR BASE/samples/hello_world
make BOARD=arduino_due

«“ v n

Running a Sample Application in QEMU

To perform rapid testing of an application in the development environment you can use the QEMU emulation board
configuration available for both X86 and ARM Cortex-M3 architectures. This can be easily accomplished by calling
a special target when building an application that invokes QEMU once the build process is completed.

To run an application using the x86 emulation board configuration (qemu_x86), type:

’$ make BOARD=gemu_x86 run

To run an application using the ARM gemu_cortex_m3 board configuration, type:

’$ make BOARD=gemu_cortex_m3 run

QEMU is not supported on all boards and SoCs. When developing for a specific hardware target you should always
test on the actual hardware and should not rely on testing in the QEMU emulation environment only.

Contributing to the Zephyr Project

As an open-source project, we welcome and encourage the community to submit patches for code, documentation,
tests, and more, directly to the project.

Contribution Guidelines

As an open-source project, we welcome and encourage the community to submit patches directly to the project. In our
collaborative open source environment, standards and methods for submitting changes help reduce the chaos that can
result from an active development community.

This document explains how to participate in project conversations, log bugs and enhancement requests, and submit
patches to the project so your patch will be accepted quickly in the codebase.

14 Chapter 1. H3X

https://launchpad.net/gcc-arm-embedded

Zephyr Project Documentation, % #i 1.9.0

Licensing

Licensing is very important to open source projects. It helps ensure the software continues to be available under the
terms that the author desired.

Zephyr uses the Apache 2.0 license (as found in the LICENSE file in the project’s GitHub repo) to strike a balance
between open contribution and allowing you to use the software however you would like to. There are some imported
or reused components of the Zephyr project that use other licensing, as described in Zephyr Licensing.

The license tells you what rights you have as a developer, provided by the copyright holder. It is important that
the contributor fully understands the licensing rights and agrees to them. Sometimes the copyright holder isn’t the
contributor, such as when the contributor is doing work on behalf of a company.

Developer Certification of Origin (DCO)

To make a good faith effort to ensure licensing criteria are met, the Zephyr project requires the Developer Certificate
of Origin (DCO) process to be followed.

The DCO is an attestation attached to every contribution made by every developer. In the commit message of the
contribution, (described more fully later in this document), the developer simply adds a Signed-of f-by statement
and thereby agrees to the DCO.

When a developer submits a patch, it is a commitment that the contributor has the right to submit the patch per the
license. The DCO agreement is shown below and at http://developercertificate.org/.

Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the
best of my knowledge, is covered under an appropriate open
source license and I have the right under that license to
submit that work with modifications, whether created in whole
or in part by me, under the same open source license (unless
I am permitted to submit under a different license), as
Indicated in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including
all personal information I submit with it, including my
sign-o0ff) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s)
involved.

DCO Sign-Off Methods

The DCO requires a sign-off message in the following format appear on each commit in the pull request:

1.3. Contributing to the Zephyr Project 15

https://github.com/zephyrproject-rtos/zephyr/blob/master/LICENSE
https://github.com/zephyrproject-rtos/zephyr
https://www.zephyrproject.org/doc/LICENSING.html
http://developercertificate.org/

Zephyr Project Documentation, & 7ii 1.9.0

Signed-off-by: Zephyrus Zephyr <zephyrus@zephyrproject.org>

The DCO text can either be manually added to your commit body, or you can add either —s or ——signoff to your
usual Git commit commands. If you forget to add the sign-off you can also amend a previous commit with the sign-off
by running git commit —--amend -s. If you’ve pushed your changes to GitHub already you’ll need to force
push your branch after this with git push -f.

Prerequisites

As a contributor, you’ll want to be familiar with the Zephyr project, how to configure, install, and use it as explained
in the Zephyr Project website and how to set up your development environment as introduced in the Zephyr Getting
Started Guide.

The examples below use a Linux host environment for Zephyr development. You should be familiar with common
developer tools such as Git and Make, and platforms such as GitHub.

If you haven’t already done so, you’ll need to create a (free) GitHub account on http://github.com and have Git tools
available on your development system.

Repository layout

To clone the main Zephyr Project repository use:

$ git clone https://github.com/zephyrproject-rtos/zephyr

The Zephyr project directory structure is described in Source Tree Structure documentation. In addition to the Zephyr
kernel itself, you’ll also find the sources for technical documentation, sample code, supported board configurations,
and a collection of subsystem tests. All of these are available for developers to contribute to and enhance.

Pull Requests and Issues

Before starting on a patch, first check in our Jira Zephyr Project Issues system to see what’s been reported on the issue
you’d like to address. Have a conversation on the Zephyr-devel mailing list (or the #zephyrproject IRC channel on
freenode.net) to see what others think of your issue (and proposed solution). You may find others that have encountered
the issue you’re finding, or that have similar ideas for changes or additions. Send a message to the Zephyr-devel mailing
list to introduce and discuss your idea with the development community.

It’s always a good practice to search for existing or related issues before submitting your own. When you submit
an issue (bug or feature request), the triage team will review and comment on the submission, typically within a few
business days.

You can find all open pull requests on GitHub and open Zephyr Project Issues in Jira.
Development Tools and Git Setup
Signed-off-by

The name in the commit message Signed-off-by: line and your email must match the change authorship infor-
mation. Make sure your .git/config is set up correctly:

$ git config —--global user.name "David Developer"
$ git config --global user.email "david.developer@company.com"

16 Chapter 1. B3

https://zephyrproject.org
https://www.zephyrproject.org/doc/getting_started/getting_started.html
https://www.zephyrproject.org/doc/getting_started/getting_started.html
http://github.com
https://www.zephyrproject.org/doc/kernel/overview/source_tree.html
https://jira.zephyrproject.org
https://lists.zephyrproject.org/mailman/listinfo/zephyr-devel
https://lists.zephyrproject.org/mailman/listinfo/zephyr-devel
https://lists.zephyrproject.org/mailman/listinfo/zephyr-devel
https://github.com/zephyrproject-rtos/zephyr/pulls
https://jira.zephyrproject.org

Zephyr Project Documentation, % #i 1.9.0

gitlint

When you submit a pull request to the project, a series of checks are performed to verify your commit messages meet
the requirements. The same step done during the CI process can be performed locally using the the git/int command.

Install gitlint and run it locally in your tree and branch where your patches have been committed:

$ sudo pip3 install gitlint
$ gitlint

Note, gitlint only checks HEAD (the most recent commit), so you should run it after each commit, or use the
—-—commits option to specify a commit range covering all the development patches to be submitted.

sanitycheck

To verify that your changes did not break any tests or samples, please run the sanitycheck script locally before
submitting your pull request to GitHub. To run the same tests the CI system runs, follow these steps from within your
local Zephyr source working directory:

$ source zephyr-env.sh

$ make host-tools

$ export PREBUILT_HOST_TOOLS=${ZEPHYR_BASE}/bin
$ export USE_CCACHE=1

$./scripts/sanitycheck

The above will execute the basic sanitycheck script, which will run various kernel tests using the QEMU emulator. It
will also do some build tests on various samples with advanced features that can’t run in QEMU.

We highly recommend you run these tests locally to avoid any CI failures. Using CCACHE and pre-built host tools is
optional, however it speeds up the execution time considerably.

Coding Style

Use these coding guidelines to ensure that your development complies with the project’s style and naming conventions.
In general, follow the Linux kernel coding style, with the following exceptions:

* Add braces to every if and else body, even for single-line code blocks. Use the ——ignore BRACES flag
to make checkpatch stop complaining.

» Use spaces instead of tabs to align comments after declarations, as needed.
* Use C89-style single line comments, /* /. The C99-style single line comment, //, is not allowed.
e Use /+* «/ for doxygen comments that need to appear in the documentation.

The Linux kernel GPL-licensed tool checkpatch is used to check coding style conformity. Checkpatch is available
in the scripts directory. To invoke it when committing code, edit your .git/hooks/pre-commit file to contain:

#!/bin/sh
set —e exec
exec git diff --cached | ZEPHYR_BASE }/scripts/checkpatch.pl - || true

1.3. Contributing to the Zephyr Project 17

https://kernel.org/doc/html/latest/process/coding-style.html

Zephyr Project Documentation, & 7ii 1.9.0

Contribution Workflow
One general practice we encourage, is to make small, controlled changes. This practice simplifies review, makes
merging and rebasing easier, and keeps the change history clear and clean.

When contributing to the Zephyr Project, it is also important you provide as much information as you can about your
change, update appropriate documentation, and test your changes thoroughly before submitting.

The general GitHub workflow used by Zephyr developers uses a combination of command line Git commands and
browser interaction with GitHub. As it is with Git, there are multiple ways of getting a task done. We’ll describe a
typical workflow here:

1. Create a Fork of Zephyr to your personal account on GitHub. (Click on the fork button in the top right corner of
the Zephyr project repo page in GitHub.)

2. On your development computer, clone the fork you just made:

’$ git clone https://github.com/<your github id>/zephyr

This would be a good time to let Git know about the upstream repo too:

’$ git remote add upstream https://github.com/zephyrproject-rtos/zephyr.git

and verify the remote repos:

’$ git remote -v

3. Create a topic branch (off of master) for your work (if you’re addressing Jira issue, we suggest including the Jira
issue number in the branch name):

$ git checkout master
$ git checkout -b fix_comment_typo

Some Zephyr subsystems do development work on a separate branch from master so you may need to indicate
this in your checkout:

’s git checkout -b fix_out_of_date_patch origin/net

4. Make changes, test locally, change, test, test again, ... (Check out the prior chapter on sanitycheck as well).

5. When things look good, start the pull request process by adding your changed files:

’$ git add [file(s) that changed, add -p if you want to be more specific]

You can see files that are not yet staged using:

’$ git status

6. Verify changes to be committed look as you expected:

’$ git diff --cached

7. Commit your changes to your local repo:

’$ git commit -s

The -s option automatically adds your Signed-off-by: to your commit message. Your commit will be
rejected without this line that indicates your agreement with the DCO. See the Commit Guidelines section for
specific guidelines for writing your commit messages.

18 Chapter 1. B3

https://github.com/zephyrproject-rtos/zephyr#fork-destination-box

Zephyr Project Documentation, % #i 1.9.0

8.

10.

11.

12.

13.

14.

15.

Push your topic branch with your changes to your fork in your personal GitHub account:

$ git push origin fix_comment_typo

In your web browser, go to your forked repo and click on the Compare & pull request button for the
branch you just worked on and you want to open a pull request with.

Review the pull request changes, and verify that you are opening a pull request for the appropriate branch. The
title and message from your commit message should appear as well.

If you’re working on a subsystem branch that’s not master, you may need to change the intended branch for
the pull request here, for example, by changing the base branch from master to net.

GitHub will assign one or more suggested reviewers (based on the CODEOWNERS file in the repo). If you are
a project member, you can select additional reviewers now too.

Click on the submit button and your pull request is sent and awaits review. Email will be sent as review com-
ments are made, or you can check on your pull request at https://github.com/zephyrproject-rtos/zephyr/pulls.

While you’re waiting for your pull request to be accepted and merged, you can create another branch to work
on another issue. (Be sure to make your new branch off of master and not the previous branch.):

$ git checkout master
$ git checkout -b fix_another_issue

and use the same process described above to work on this new topic branch.

If reviewers do request changes to your patch, you can interactively rebase commit(s) to fix review issues. In
your development repo:

$ git fetch --all
$ git rebase —--ignore-whitespace upstream/master

The ——ignore-whitespace option stops git apply (called by rebase) from changing any whitespace.
Continuing:

$ git rebase -i <offending-commit-id>"

In the interactive rebase editor, replace pick with edit to select a specific commit (if there’s more than one in
your pull request), or remove the line to delete a commit entirely. Then edit files to fix the issues in the review.

As before, inspect and test your changes. When ready, continue the patch submission:

$ git add [file(s)]
$ git rebase --continue

Update commit comment if needed, and continue:

$ git push —--force origin fix_comment_typo

By force pushing your update, your original pull request will be updated with your changes so you won’t need
to resubmit the pull request.

Commit Guidelines

Changes are submitted as Git commits. Each commit message must contain:

¢ A short and descriptive subject line that is less than 72 characters, followed by a blank line. The subject line

must include a prefix that identifies the subsystem being changed, followed by a colon, and a short title, for

1.3. Contributing to the Zephyr Project 19

https://github.com/zephyrproject-rtos/zephyr/pulls

Zephyr Project Documentation, & 7ii 1.9.0

example: doc: update wiki references to new site. (If you're updating an existing file, you
canuse git log <filename> to see what developers used as the prefix for previous patches of this file.)

* A change description with your logic or reasoning for the changes, followed by a blank line.

¢ A Signed-off-by line, Signed-off-by: <name> <email> typically added automatically by using git
commit -s

* If the change address a Jira issue, include a line of the form:

Jira: ZEP-xxx

All changes and topics sent to GitHub must be well-formed, as described above.

Commit Message Body

When editing the commit message, please briefly explain what your change does and why it’s needed. A change
summary of "Fixes stuff" will be rejected. An empty change summary is only acceptable for trivial changes
fully described by the commit title (e.g., doc: fix misspellings in CONTRIBUTING doc)

The description body of the commit message must include:
* what the change does,
* why you chose that approach,
» what assumptions were made, and
* how you know it works — for example, which tests you ran.

For examples of accepted commit messages, you can refer to the Zephyr GitHub changelog.

Other Commit Expectations

» Commits must build cleanly when applied on top of each other, thus avoiding breaking bisectability.
e Commits must pass the scripts/checkpatch.pl requirements.

* Each commit must address a single identifiable issue and must be logically self-contained. Unrelated changes
should be submitted as separate commits.

* You may submit pull request RFCs (requests for comments) to send work proposals, progress snapshots of your
work, or to get early feedback on features or changes that will affect multiple areas in the code base.

Identifying Contribution Origin

When adding a new file to the tree, it is important to detail the source of origin on the file, provide attributions, and
detail the intended usage. In cases where the file is an original to Zephyr, the commit message should include the
following (“Original” is the assumption if no Origin tag is present):

Origin: Original

In cases where the file is imported from an external project, the commit message shall contain details regarding the
original project, the location of the project, the SHA-id of the origin commit for the file, the intended purpose, and if
the file will be maintained by the Zephyr project, (whether or not the Zephyr project will contain a localized branch or
if it is a downstream copy).

For example, a copy of a locally maintained import:

20 Chapter 1. B3

https://github.com/zephyrproject-rtos/zephyr/commits/master

Zephyr Project Documentation, % #i 1.9.0

Origin: Contiki OS

License: BSD 3-Clause

URL: http://www.contiki-os.org/

commit: 853207acfdc6549b10eb3e44504bla75aelad6b3a
Purpose: Introduction of networking stack.
Maintained-by: Zephyr

For example, a copy of an externally maintained import:

Origin: Tiny Crypt

License: BSD 3-Clause

URL: https://github.com/0lorg/tinycrypt

commit: 08ded7£21529¢c39e5133688ffb93a9d0c94e5che
Purpose: Introduction of TinyCrypt
Maintained-by: External

Zephyr Kernel Primer

This document provides a general introduction of the Zephyr kernel’s key capabilities and services. Additional details
can be found by consulting the API Documentation and Application Development Primer documentation, and by
examining the code in the Zephyr source tree.

Overview

The Zephyr kernel lies at the heart of every Zephyr application. It provides a low footprint, high performance, multi-
threaded execution environment with a rich set of available features. The rest of the Zephyr ecosystem, including
device drivers, networking stack, and application-specific code, uses the kernel’s features to create a complete appli-
cation.

The configurable nature of the kernel allows you to incorporate only those features needed by your application, making
it ideal for systems with limited amounts of memory (as little as 2 KB!) or with simple multi-threading requirements
(such as a set of interrupt handlers and a single background task). Examples of such systems include: embedded
sensor hubs, environmental sensors, simple LED wearable, and store inventory tags.

Applications requiring more memory (50 to 900 KB), multiple communication devices (like WiFi and Bluetooth Low
Energy), and complex multi-threading, can also be developed using the Zephyr kernel. Examples of such systems
include: fitness wearables, smart watches, and IoT wireless gateways.

Source Tree Structure

Understanding the Zephyr source tree can be helpful in locating the code associated with a particular Zephyr feature.

The Zephyr source tree provides the following top-level directories, each of which may have one or more additional
levels of subdirectories which are not described here.

arch Architecture-specific kernel and system-on-chip (SoC) code. Each supported architecture (for example, x86
and ARM) has its own subdirectory, which contains additional subdirectories for the following areas:

* architecture-specific kernel source files
* architecture-specific kernel include files for private APIs
» SoC-specific code

boards Board related code and configuration files.

1.4. Zephyr Kernel Primer 21

Zephyr Project Documentation, & 7ii 1.9.0

doc Zephyr technical documentation source files and tools used to generate the http://zephyrproject.org/doc web
content.

drivers Device driver code.

dts Device tree source (.dts) files used to describe non-discoverable board-specific hardware details previously hard
coded in the OS source code.

ext Externally created code that has been integrated into Zephyr from other sources, such as hardware interface code
supplied by manufacturers and cryptographic library code.

include Include files for all public APIs, except those defined under 1ib.
kernel Architecture-independent kernel code.
1lib Library code, including the minimal standard C library.
misc Miscellaneous code that doesn’t belong to any of the other top-level directories.
samples Sample applications that demonstrate the use of Zephyr features.
scripts Various programs and other files used to build and test Zephyr applications.
subsys Subsystems of Zephyr, including:

» USB device stack code.

* Networking code, including the Bluetooth stack and networking stacks.

* File system code.

* Bluetooth host and controller

tests Test code and benchmarks for Zephyr features.

Changes from Version 1 Kernel
The current Zephyr kernel incorporates numerous changes from kernels found in the 1.5 and earlier releases, and
improves ease of use for developers.
Some of the benefits of these changes are:
* elimination of separate microkernel and nanokernel build types,
¢ elimination of the MDEF in microkernel-based applications,
* simplifying and streamlining the kernel API,
* easing restrictions on the use of kernel objects,
* reducing memory footprint by merging duplicated services, and
* improving performance by reducing context switching.

The most significant changes are discussed below.

Application Design

The earlier microkernel and nanokernel portions of Zephyr have been merged into a single entity, which is simply
referred to as “the kernel”. Consequently, there is now only a single way to design and build Zephyr applications.

The task and fiber context types have been merged into a single type, known as a “thread”. Setting a thread’s priority
to a negative priority makes it a “cooperative thread”, which operates in a fiber-like manner; setting it to a non-negative
priority makes it a “preemptive thread”, which operates in a task-like manner.

22 Chapter 1. B3

http://zephyrproject.org/doc

Zephyr Project Documentation, % #i 1.9.0

Kernel objects can now be used by both task-like threads and fiber-like threads. (The previous kernel did not permit
fibers to use microkernel objects, and could result in undesirable busy-waiting when nanokernel objects were used by
tasks.)

Kernel objects now typically allow multiple threads to wait on a given object. (The previous kernel restricted waiting
on certain types of kernel object to a single thread.)

Kernel object APIs now always execute in the context of the invoking thread. (The previous kernel required microker-
nel object APIs to context switch the thread to the microkernel server fiber, followed by another context switch back
to the invoking thread.)

The MDEF has been eliminated. Consequently, all kernel objects are now defined directly in code.

Kernel APIs

Most kernel APIs have been renamed or have had changes to their arguments (or both) to make them more intuitive,
and to improve consistency. The k_ and K_ prefixes are now used by most kernel APIs.

A previous kernel operation that can be invoked from a task, a fiber, or an ISR using distinct APIs is now invoked from
a thread or an ISR using a single common API.

Many kernel APIs now return O to indicate success and a non-zero error code to indicate the reason for failure. (The
previous kernel supported only two error codes, rather than an unlimited number of them.)

Threads

A task-like thread can now make itself temporarily non-preemptible by locking the kernel’s scheduler (rather than by
locking interrupts).

It is now possible to pass up to 3 arguments to a thread’s entry point. (The previous kernel allowed 2 arguments to be
passed to a fiber and allowed no arguments to be passed to a task.)

It is now possible to delay the start of a statically-defined threads. (The previous kernel only permitted delaying of
fibers spawned at run time.)

A task can no longer specify an “task abort handler” function that is invoked automatically when the task terminates
or aborts.

An application can no longer use “task groups” to alter the operation of a set of related tasks by invoking a single
kernel API. However, applications can provide their own APIs to achieve a similar effect.

The kernel now spawns both a “main thread” and an “idle thread” during startup. (The previous kernel spawned only
a single thread.)

The kernel’s main thread performs system initialization and then invokes main (). If no main () is defined by the
application, the main thread terminates.

System initialization code can now perform blocking operations, during which time the kernel’s idle thread executes.
Timing
Most kernel APIs now specify timeout intervals in milliseconds, rather than in system clock ticks. This change makes

things more intuitive for most developers. However, the kernel still implements timeouts using the tick-based system
clock.

The previous nanokernel timer and microkernel timer object types have been merged into a single type.

1.4. Zephyr Kernel Primer 23

Zephyr Project Documentation, & 7ii 1.9.0

Memory Allocation

The microkernel memory map object has been renamed to “memory slab”, to better reflect its management of equal-
size memory blocks.

It is now possible to specify the alignment used by the memory blocks belonging to a memory slab or a memory pool.
It is now possible to define a memory pool directly in code.

It is now possible to allocate and free memory in a malloc()-like manner from a heap data pool.

Synchronization

The previous nanokernel semaphore and microkernel semaphore object types have been merged into a single type.
The new type can now be used as a binary semaphore, as well as a counting semaphore.

An application can no longer use a “semaphore group” to allow a thread to wait on multiple semaphores simultane-
ously. Until the kernel incorporates a select () or poll () capability an application wishing to wait on multiple
semaphores must either test them individually in a non-blocking manner or use an additional mechanism, such as an
event object, to signal the application that one of the semaphores is available.

The previous microkernel event object type is renamed to “alert” and is now presented as a relative to Unix-style
signaling. Due to improvements to the implementation of semaphores, alerts are now less efficient to use for basic
synchronization than semaphores; consequently, alerts should now be reserved for scenarios requiring the use of a
callback function.

Data Passing

The previous microkernel FIFO object type has been renamed to “message queue”, to avoid confusion with the nanok-
ernel FIFO object type.

It is now possible to specify the alignment used by the data items stored in a message queue (aka microkernel FIFO).

The previous microkernel mailbox object type no longer supports the explicit message priority concept. Messages are
now implicitly ordered based on the priority of the sending thread.

The mailbox object type now supports sending asynchronous messages using a message buffer. (The previous kernel
only supported asynchronous messages using a message block.)

It is now possible to specify the alignment used by a pipe object’s buffer.

Threads

This section describes kernel services for creating, scheduling, and deleting independently executable threads of in-
structions.

Lifecycle

A thread is a kernel object that is used for application processing that is too lengthy or too complex to be performed
by an ISR.

* Concepts I

24 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Thread Creation

Thread Termination

Thread Aborting

Thread Suspension

Thread Options
* Implementation

— Spawning a Thread

— Terminating a Thread
* Suggested Uses

» Configuration Options

* APIs

Concepts

Any number of threads can be defined by an application. Each thread is referenced by a thread id that is assigned
when the thread is spawned.

A thread has the following key properties:

¢ A stack area, which is a region of memory used for the thread’s stack. The size of the stack area can be tailored
to conform to the actual needs of the thread’s processing. Special macros exist to create and work with stack
memory regions.

* A thread control block for private kernel bookkeeping of the thread’s metadata. This is an instance of type
struct k_thread.

¢ An entry point function, which is invoked when the thread is started. Up to 3 argument values can be passed
to this function.

* A scheduling priority, which instructs the kernel’s scheduler how to allocate CPU time to the thread. (See
Scheduling.)

¢ A set of thread options, which allow the thread to receive special treatment by the kernel under specific cir-
cumstances. (See Thread Options.)

A start delay, which specifies how long the kernel should wait before starting the thread.

Thread Creation

A thread must be created before it can be used. The kernel initializes the thread control block as well as one end of the
stack portion. The remainder of the thread’s stack is typically left uninitialized.

Specifying a start delay of K_NO_WATIT instructs the kernel to start thread execution immediately. Alternatively, the
kernel can be instructed to delay execution of the thread by specifying a timeout value — for example, to allow device
hardware used by the thread to become available.

The kernel allows a delayed start to be canceled before the thread begins executing. A cancellation request has no
effect if the thread has already started. A thread whose delayed start was successfully canceled must be re-spawned
before it can be used.

1.4. Zephyr Kernel Primer 25

Zephyr Project Documentation, & 7ii 1.9.0

Thread Termination

Once a thread is started it typically executes forever. However, a thread may synchronously end its execution by
returning from its entry point function. This is known as termination.

A thread that terminates is responsible for releasing any shared resources it may own (such as mutexes and dynamically
allocated memory) prior to returning, since the kernel does not reclaim them automatically.

IEf#: The kernel does not currently make any claims regarding an application’s ability to respawn a thread that
terminates.

Thread Aborting

A thread may asynchronously end its execution by aborting. The kernel automatically aborts a thread if the thread
triggers a fatal error condition, such as dereferencing a null pointer.

A thread can also be aborted by another thread (or by itself) by calling k_thread_abort (). However, itis typically
preferable to signal a thread to terminate itself gracefully, rather than aborting it.

As with thread termination, the kernel does not reclaim shared resources owned by an aborted thread.

JEf#: The kernel does not currently make any claims regarding an application’s ability to respawn a thread that
aborts.

Thread Suspension

A thread can be prevented from executing for an indefinite period of time if it becomes suspended. The function
k_thread_suspend () can be used to suspend any thread, including the calling thread. Suspending a thread that
is already suspended has no additional effect.

Once suspended, a thread cannot be scheduled until another thread calls k_thread_resume () to remove the
suspension.

HEf#: A thread can prevent itself from executing for a specified period of time using k_sleep (). However, this
is different from suspending a thread since a sleeping thread becomes executable automatically when the time limit is
reached.

Thread Options

The kernel supports a small set of thread options that allow a thread to receive special treatment under specific cir-
cumstances. The set of options associated with a thread are specified when the thread is spawned.

A thread that does not require any thread option has an option value of zero. A thread that requires a thread option
specifies it by name, using the | character as a separator if multiple options are needed (i.e. combine options using the
bitwise OR operator).

The following thread options are supported.

26 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

K_ESSENTIAL This option tags the thread as an essential thread. This instructs the kernel to treat the termination
or aborting of the thread as a fatal system error.

By default, the thread is not considered to be an essential thread.

K_FP_REGS and K_SSE_REGS These x86-specific options indicate that the thread uses the CPU’s floating point
registers and SSE registers, respectively. This instructs the kernel to take additional steps to save and restore the
contents of these registers when scheduling the thread. (For more information see Floating Point Services.)

By default, the kernel does not attempt to save and restore the contents of these registers when scheduling the
thread.

Implementation
Spawning a Thread

A thread is spawned by defining its stack area and its thread control block, and then calling k_thread_create ().
The stack area must be defined using K_THREAD_STACK_DEFINE to ensure it is properly set up in memory.

The thread spawning function returns its thread id, which can be used to reference the thread.

The following code spawns a thread that starts immediately.

#define MY STACK _SIZE 500
#define MY _PRIORITY 5

extern void my_entry_point (void x, wvoid *, wvoid «x);

K_THREAD_STACK_DEFINE (my_stack_area, MY_STACK_SIZE);
struct k_thread my_thread_data;

k_tid_t my_tid = k_thread_create (&émy_thread_data, my_stack_area,
K_THREAD_STACK_SIZEOF (my_stack_area),
my_entry_point,
NULL, NULL, NULL,
MY_PRIORITY, 0, K_NO_WAIT);

Alternatively, a thread can be spawned at compile time by calling K_THREAD_DEFINE. Observe that the macro
defines the stack area, control block, and thread id variables automatically.

The following code has the same effect as the code segment above.

#define MY _STACK _SIZE 500
#define MY _PRIORITY 5

extern void my_entry_point (void x, void x, void «x);
K_THREAD_DEFINE (my_tid, MY_STACK_SIZE,

my_entry_point, NULL, NULL, NULL,
MY PRIORITY, 0, K_NO_WAIT);

Terminating a Thread

A thread terminates itself by returning from its entry point function.

The following code illustrates the ways a thread can terminate.

1.4. Zephyr Kernel Primer 27

Zephyr Project Documentation, & 7ii 1.9.0

void my_entry_point (int unusedl, int unused2, int unused3)
{
while (1) {
if (<some condition>) {
return; /% thread terminates from mid-entry point function */

}

/#* thread terminates at end of entry point function x/

Suggested Uses

Use threads to handle processing that cannot be handled in an ISR.

Use separate threads to handle logically distinct processing operations that can execute in parallel.

Configuration Options

Related configuration options:

¢ None.

APIs

The following thread APIs are provided by kernel . h:
e K_THREAD_DEFINE
* k_thread_create()
e k_thread cancel ()
e k_thread_abort ()
* k_thread_suspend()
* k_thread_resume ()
e K_THREAD_STACK_DEFINE
e K_THREAD_ STACK_ARRAY DEFINE
e K_THREAD_STACK_MEMBER
e K_THREAD_STACK_SIZEOF

¢ K_THREAD_STACK_BUFFER

Scheduling

The kernel’s priority-based scheduler allows an application’s threads to share the CPU.

28 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

* Concepts
— Thread States
— Thread Priorities
— Scheduling Algorithm
— Cooperative Time Slicing
— Preemptive Time Slicing
— Scheduler Locking
— Thread Sleeping
— Busy Waiting
* Suggested Uses

* Configuration Options

e APIs

Concepts

The scheduler determines which thread is allowed to execute at any point in time; this thread is known as the current
thread.

Whenever the scheduler changes the identity of the current thread, or when execution of the current thread is supplanted
by an ISR, the kernel first saves the current thread’s CPU register values. These register values get restored when the
thread later resumes execution.

Thread States

A thread that has no factors that prevent its execution is deemed to be ready, and is eligible to be selected as the
current thread.

A thread that has one or more factors that prevent its execution is deemed to be unready, and cannot be selected as
the current thread.

The following factors make a thread unready:
* The thread has not been started.

* The thread is waiting on for a kernel object to complete an operation. (For example, the thread is taking a
semaphore that is unavailable.)

The thread is waiting for a timeout to occur.

The thread has been suspended.

The thread has terminated or aborted.

Thread Priorities

A thread’s priority is an integer value, and can be either negative or non-negative. Numerically lower priorities takes
precedence over numerically higher values. For example, the scheduler gives thread A of priority 4 higher priority
over thread B of priority 7; likewise thread C of priority -2 has higher priority than both thread A and thread B.

1.4. Zephyr Kernel Primer 29

Zephyr Project Documentation, & 7ii 1.9.0

The scheduler distinguishes between two classes of threads, based on each thread’s priority.

* A cooperative thread has a negative priority value. Once it becomes the current thread, a cooperative thread
remains the current thread until it performs an action that makes it unready.

* A preemptible thread has a non-negative priority value. Once it becomes the current thread, a preemptible
thread may be supplanted at any time if a cooperative thread, or a preemptible thread of higher or equal priority,
becomes ready.

A thread’s initial priority value can be altered up or down after the thread has been started. Thus it possible for a
preemptible thread to become a cooperative thread, and vice versa, by changing its priority.

The kernel supports a virtually unlimited number of thread priority levels. The configuration options
CONFIG_NUM_COOP_PRIORITIES and CONFIG_NUM_PREEMPT_PRIORITIES specify the number of priority
levels for each class of thread, resulting the following usable priority ranges:

 cooperative threads: (-CONFIG_NUM_COOP_PRIORITIES) to -1
» preemptive threads: 0 to (CONFIG_NUM_PREEMPT_PRIORITIES - 1)

For example, configuring 5 cooperative priorities and 10 preemptive priorities results in the ranges -5 to -1 and 0 to 9,
respectively.

Scheduling Algorithm

The kernel’s scheduler selects the highest priority ready thread to be the current thread. When multiple ready threads
of the same priority exist, the scheduler chooses the one that has been waiting longest.

HEM: Execution of ISRs takes precedence over thread execution, so the execution of the current thread may be
supplanted by an ISR at any time unless interrupts have been masked. This applies to both cooperative threads and
preemptive threads.

Cooperative Time Slicing

Once a cooperative thread becomes the current thread, it remains the current thread until it performs an action that
makes it unready. Consequently, if a cooperative thread performs lengthy computations, it may cause an unacceptable
delay in the scheduling of other threads, including those of higher priority and equal priority.

To overcome such problems, a cooperative thread can voluntarily relinquish the CPU from time to time to permit other
threads to execute. A thread can relinquish the CPU in two ways:

e Calling k_yield () puts the thread at the back of the scheduler’s prioritized list of ready threads, and then
invokes the scheduler. All ready threads whose priority is higher or equal to that of the yielding thread are
then allowed to execute before the yielding thread is rescheduled. If no such ready threads exist, the scheduler
immediately reschedules the yielding thread without context switching.

* Calling k_sleep () makes the thread unready for a specified time period. Ready threads of all priorities are
then allowed to execute; however, there is no guarantee that threads whose priority is lower than that of the
sleeping thread will actually be scheduled before the sleeping thread becomes ready once again.

Preemptive Time Slicing

Once a preemptive thread becomes the current thread, it remains the current thread until a higher priority thread
becomes ready, or until the thread performs an action that makes it unready. Consequently, if a preemptive thread

30 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

performs lengthy computations, it may cause an unacceptable delay in the scheduling of other threads, including those
of equal priority.

To overcome such problems, a preemptive thread can perform cooperative time slicing (as described above), or the
scheduler’s time slicing capability can be used to allow other threads of the same priority to execute.

The scheduler divides time into a series of time slices, where slices are measured in system clock ticks. The time slice
size is configurable, but this size can be changed while the application is running.

At the end of every time slice, the scheduler checks to see if the current thread is preemptible and, if so, implicitly
invokes k_yield () on behalf of the thread. This gives other ready threads of the same priority the opportunity
to execute before the current thread is scheduled again. If no threads of equal priority are ready, the current thread
remains the current thread.

Threads with a priority higher than specified limit are exempt from preemptive time slicing, and are never preempted
by a thread of equal priority. This allows an application to use preemptive time slicing only when dealing with lower
priority threads that are less time-sensitive.

TEM#: The kernel’s time slicing algorithm does not ensure that a set of equal-priority threads receive an equitable
amount of CPU time, since it does not measure the amount of time a thread actually gets to execute. For example,
a thread may become the current thread just before the end of a time slice and then immediately have to yield the
CPU. However, the algorithm does ensure that a thread never executes for longer than a single time slice without being
required to yield.

Scheduler Locking

A preemptible thread that does not wish to be preempted while performing a critical operation can instruct the sched-
uler to temporarily treat it as a cooperative thread by calling k_sched_lock (). This prevents other threads from
interfering while the critical operation is being performed.

Once the critical operation is complete the preemptible thread must call k_sched_unlock () to restore its normal,
preemptible status.

If a thread calls k_sched_lock () and subsequently performs an action that makes it unready, the scheduler will
switch the locking thread out and allow other threads to execute. When the locking thread again becomes the current
thread, its non-preemptible status is maintained.

Thread Sleeping

A thread can call k_sleep () to delay its processing for a specified time period. During the time the thread is
sleeping the CPU is relinquished to allow other ready threads to execute. Once the specified delay has elapsed the
thread becomes ready and is eligible to be scheduled once again.

A sleeping thread can be woken up prematurely by another thread using k_wakeup () . This technique can sometimes
be used to permit the secondary thread to signal the sleeping thread that something has occurred without requiring the
threads to define a kernel synchronization object, such as a semaphore. Waking up a thread that is not sleeping is
allowed, but has no effect.

Busy Waiting

A thread can call k_busy_wait () to perform a busy wait that delays its processing for a specified time period
without relinquishing the CPU to another ready thread.

1.4. Zephyr Kernel Primer 31

Zephyr Project Documentation, & 7ii 1.9.0

A busy wait is typically used instead of thread sleeping when the required delay is too short to warrant having the
scheduler context switch from the current thread to another thread and then back again.

Suggested Uses

Use cooperative threads for device drivers and other performance-critical work.
Use cooperative threads to implement mutually exclusion without the need for a kernel object, such as a mutex.

Use preemptive threads to give priority to time-sensitive processing over less time-sensitive processing.

Configuration Options

Related configuration options:
¢ CONFIG_NUM_COOP_PRIORITIES
¢ CONFIG_NUM_PREEMPT_PRIORITIES
* CONFIG_TIMESLICING
¢ CONFIG_TIMESLICE_SIZE

¢ CONFIG_TIMESLICE_PRIORITY

APls

The following thread scheduling-related APIs are provided by kernel . h:
* k_current_get ()
e k_sched_lock ()
* k_sched_unlock ()
e k_yield()
* k_sleep()
* k_wakeup ()
* k_busy_wait ()

* k _sched_time_slice_set ()

Custom Data

A thread’s custom data is a 32-bit, thread-specific value that may be used by an application for any purpose.

* Concepts
* Implementation
— Using Custom Data

* Suggested Uses

* Configuration Options

32 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

e APIs I

Concepts

Every thread has a 32-bit custom data area. The custom data is accessible only by the thread itself, and may be used
by the application for any purpose it chooses. The default custom data for a thread is zero.

Ef#: Custom data support is not available to ISRs because they operate within a single shared kernel interrupt
handling context.

Implementation
Using Custom Data

By default, thread custom data support is disabled. The configuration option CONFIG_THREAD_CUSTOM_DATA can
be used to enable support.

The k_thread_custom_data_set () and k_thread_custom_data_get () functions are used to write
and read a thread’s custom data, respectively. A thread can only access its own custom data, and not that of another
thread.

The following code uses the custom data feature to record the number of times each thread calls a specific routine.

IEf#: Obviously, only a single routine can use this technique, since it monopolizes the use of the custom data feature.

int call_tracking_routine (void)

{

u32_t call_count;

if (k_is_in_isr()) {
/* ignore any call made by an ISR */
} else {
call_count = (u32_t)k_thread_custom_data_get();

call_count++;
k_thread_custom_data_set ((void *)call_count);

/#* do rest of routine's processing #*/

Suggested Uses

Use thread custom data to allow a routine to access thread-specific information, by using the custom data as a pointer
to a data structure owned by the thread.

1.4. Zephyr Kernel Primer 33

Zephyr Project Documentation, & 7ii 1.9.0

Configuration Options

Related configuration options:

¢ CONFIG_THREAD_CUSTOM_DATA

APIs

The following thread custom data APIs are provided by kernel . h:
e k thread_custom_data_set ()
* k_thread_custom_data_get ()

System Threads

A system thread is a thread that the kernel spawns automatically during system initialization.

* Concepts
* Implementation
— Writing a main() function

* Suggested Uses

* Configuration Options
* APIs

Concepts

The kernel spawns the following system threads.

Main thread This thread performs kernel initialization, then calls the application’s main () function (if one is de-
fined).

By default, the main thread uses the highest configured preemptible thread priority (i.e. 0). If the kernel is
not configured to support preemptible threads, the main thread uses the lowest configured cooperative thread
priority (i.e. -1).

The main thread is an essential thread while it is performing kernel initialization or executing the application’s
main () function; this means a fatal system error is raised if the thread aborts. If main () is not defined, or if
it executes and then does a normal return, the main thread terminates normally and no error is raised.

Idle thread This thread executes when there is no other work for the system to do. If possible, the idle thread activates
the board’s power management support to save power; otherwise, the idle thread simply performs a “do nothing”
loop. The idle thread remains in existence as long as the system is running and never terminates.

The idle thread always uses the lowest configured thread priority. If this makes it a cooperative thread, the idle
thread repeatedly yields the CPU to allow the application’s other threads to run when they need to.

The idle thread is an essential thread, which means a fatal system error is raised if the thread aborts.

Additional system threads may also be spawned, depending on the kernel and board configuration options specified
by the application. For example, enabling the system workqueue spawns a system thread that services the work items
submitted to it. (See Workqueue Threads.)

34 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Implementation
Writing a main() function

An application-supplied main () function begins executing once kernel initialization is complete. The kernel does
not pass any arguments to the function.

The following code outlines a trivial main () function. The function used by a real application can be as complex as
needed.

void main (void)
{

/* initialize a semaphore */
/* register an ISR that gives the semaphore #*/

/#* monitor the semaphore forever x/
while (1) {
/* wait for the semaphore to be given by the ISR #*/

/* do whatever processing is now needed */

Suggested Uses

Use the main thread to perform thread-based processing in an application that only requires a single thread, rather than
defining an additional application-specific thread.

Configuration Options

Related configuration options:
¢ CONFIG_MAIN_THREAD_PRIORITY
e CONFIG_MAIN_STACK_SIZE

¢ CONFIG_IDLE_STACK_SIZE

APIs

None.

Workqueue Threads

A workqueue is a kernel object that uses a dedicated thread to process work items in a first in, first out manner. Each
work item is processed by calling the function specified by the work item. A workqueue is typically used by an ISR or
a high-priority thread to offload non-urgent processing to a lower-priority thread so it does not impact time-sensitive
processing.

1.4. Zephyr Kernel Primer 35

Zephyr Project Documentation, & 7ii 1.9.0

* Concepts
— Work Item Lifecycle
— Delayed Work
— System Workqueue
» Implementation
— Defining a Workqueue
— Submitting a Work Item
— Submitting a Delayed Work Item

* Suggested Uses

* Configuration Options
* APIs

Concepts

Any number of workqueues can be defined. Each workqueue is referenced by its memory address.
A workqueue has the following key properties:
* A queue of work items that have been added, but not yet processed.

* A thread that processes the work items in the queue. The priority of the thread is configurable, allowing it to be
either cooperative or preemptive as required.

A workqueue must be initialized before it can be used. This sets its queue to empty and spawns the workqueue’s
thread.

Work Item Lifecycle

Any number of work items can be defined. Each work item is referenced by its memory address.
A work item has the following key properties:

* A handler function, which is the function executed by the workqueue’s thread when the work item is processed.
This function accepts a single argument, which is the address of the work item itself.

* A pending flag, which is used by the kernel to signify that the work item is currently a member of a workqueue’s
queue.

* A queue link, which is used by the kernel to link a pending work item to the next pending work item in a
workqueue’s queue.

A work item must be initialized before it can be used. This records the work item’s handler function and marks it as
not pending.

A work item may be submitted to a workqueue by an ISR or a thread. Submitting a work item appends the work item
to the workqueue’s queue. Once the workqueue’s thread has processed all of the preceding work items in its queue the
thread will remove a pending work item from its queue and invoke the work item’s handler function. Depending on
the scheduling priority of the workqueue’s thread, and the work required by other items in the queue, a pending work
item may be processed quickly or it may remain in the queue for an extended period of time.

36 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

A handler function can utilize any kernel API available to threads. However, operations that are potentially blocking
(e.g. taking a semaphore) must be used with care, since the workqueue cannot process subsequent work items in its
queue until the handler function finishes executing.

The single argument that is passed to a handler function can be ignored if it is not required. If the handler function
requires additional information about the work it is to perform, the work item can be embedded in a larger data
structure. The handler function can then use the argument value to compute the address of the enclosing data structure,
and thereby obtain access to the additional information it needs.

A work item is typically initialized once and then submitted to a specific workqueue whenever work needs to be
performed. If an ISR or a thread attempts to submit a work item that is already pending, the work item is not affected;
the work item remains in its current place in the workqueue’s queue, and the work is only performed once.

A handler function is permitted to re-submit its work item argument to the workqueue, since the work item is no longer
pending at that time. This allows the handler to execute work in stages, without unduly delaying the processing of
other work items in the workqueue’s queue.

HE: A pending work item must not be altered until the item has been processed by the workqueue thread. This
means a work item must not be re-initialized while it is pending. Furthermore, any additional information the work
item’s handler function needs to perform its work must not be altered until the handler function has finished executing.

Delayed Work

An ISR or a thread may need to schedule a work item that is to be processed only after a specified period of time,
rather than immediately. This can be done by submitting a delayed work item to a workqueue, rather than a standard
work item.

A delayed work item is a standard work item that has the following added properties:
* A delay specifying the time interval to wait before the work item is actually submitted to a workqueue’s queue.
* A workqueue indicator that identifies the workqueue the work item is to be submitted to.

A delayed work item is initialized and submitted to a workqueue in a similar manner to a standard work item, although
different kernel APIs are used. When the submit request is made the kernel initiates a timeout mechanism that is
triggered after the specified delay has elapsed. Once the timeout occurs the kernel submits the delayed work item to
the specified workqueue, where it remains pending until it is processed in the standard manner.

An ISR or a thread may cancel a delayed work item it has submitted, providing the work item’s timeout is still counting
down. The work item’s timeout is aborted and the specified work is not performed.

Attempting to cancel a delayed work item once its timeout has expired has no effect on the work item; the work item
remains pending in the workqueue’s queue, unless the work item has already been removed and processed by the
workqueue’s thread. Consequently, once a work item’s timeout has expired the work item is always processed by the
workqueue and cannot be canceled.

System Workqueue

The kernel defines a workqueue known as the system workqueue, which is available to any application or kernel code
that requires workqueue support. The system workqueue is optional, and only exists if the application makes use of it.

HE: Additional workqueues should only be defined when it is not possible to submit new work items to the system
workqueue, since each new workqueue incurs a significant cost in memory footprint. A new workqueue can be justified
if it is not possible for its work items to co-exist with existing system workqueue work items without an unacceptable

1.4. Zephyr Kernel Primer 37

Zephyr Project Documentation, & 7ii 1.9.0

impact; for example, if the new work items perform blocking operations that would delay other system workqueue
processing to an unacceptable degree.

Implementation
Defining a Workqueue

A workqueue is defined using a variable of type struct k_work_g. The workqueue is initialized by defining
the stack area used by its thread and then calling k_work_qg_start (). The stack area must be defined using
K_THREAD_STACK_DEFINE to ensure it is properly set up in memory.

The following code defines and initializes a workqueue.

#define MY STACK _SIZE 512
#define MY PRIORITY 5

K_THREAD_STACK_DEFINE (my_stack_area, MY_STACK_SIZE);

struct k_work_g my_work_g;

k_work_qg_start (&émy_work_g, my_stack_area,
K_THREAD_STACK_SIZEOF (my_stack_area), MY_PRIORITY) ;

Submitting a Work Iltem

A work item is defined using a variable of type struct k_work. It must then be initialized by calling
k_work_init ().

An initialized work item can be submitted to the system workqueue by calling k_work_submit (), or to a specified
workqueue by calling k_work_submit_to_queue ().

The following code demonstrates how an ISR can offload the printing of error messages to the system workqueue.
Note that if the ISR attempts to resubmit the work item while it is still pending, the work item is left unchanged and
the associated error message will not be printed.

struct device_info {
struct k_work work;
char name[16]

} my_device;

void my_isr (void xarg)

{

if (error detected) {
k_work_submit (&émy_device.work) ;

void print_error (struct k_work xitem)
{
struct device_info xthe_device =
CONTAINER_OF (item, struct device_info, work);
printk ("Got error on device %s\n", the_device->name);

38 Chapter 1. H¥

Zephyr Project Documentation, % #i 1.9.0

}

/% Initialize name info for a device #*/
strcpy (my_device.name, "FOO_dev");

/* initialize work item for printing device's error messages */
k_work_init (émy_device.work, print_error);

/* install my_isr() as interrupt handler for the device (not shown) #*/

Submitting a Delayed Work Item

A delayed work item is defined using a variable of type struct k_delayed_work. It must then be initialized by
calling k_delayed_work_init ().

An initialized delayed work item can be submitted to the system = workqueue by
calling k_delayed_work_submit (), or to a specified workqueue by calling
k_delayed _work_submit_to_queue (). A delayed work item that has been submitted but not yet con-
sumed by its workqueue can be canceled by calling k_delayed_work_cancel ().

Suggested Uses

Use the system workqueue to defer complex interrupt-related processing from an ISR to a cooperative thread. This
allows the interrupt-related processing to be done promptly without compromising the system’s ability to respond to
subsequent interrupts, and does not require the application to define an additional thread to do the processing.

Configuration Options

Related configuration options:
* CONFIG_SYSTEM WORKQUEUE_STACK_SIZE

* CONFIG_SYSTEM WORKQUEUE_PRIORITY

APIs

* k_work_g_start ()

e k work_init ()

e k_work_submit ()

* k_work_submit_to_queue ()

* k_delayed_work_init ()

e k_delayed_work_submit ()

* k_delayed_work_submit_to_queue ()
* k_delayed_work_cancel ()

e k_work_pending ()

1.4. Zephyr Kernel Primer 39

Zephyr Project Documentation, & 7ii 1.9.0

Timing

This section describes the kernel’s time-based services, such as specifying time delays or for measuring the passage
of time.

Kernel Clocks

The kernel’s clocks are the foundation for all of its time-based services.

* Concepts
— Clock Limitations

* Implementation
— Measuring Time with Normal Precision
— Measuring Time with High Precision

* Suggested Uses

* Configuration

e APIs

Concepts

The kernel supports two distinct clocks.

* The 32-bit hardware clock is a high precision counter that tracks time in unspecified units called cycles. The
duration of a cycle is determined by the board hardware used by the kernel, and is typically measured in nanosec-
onds.

* The 64-bit system clock is a counter that tracks the number of ticks that have elapsed since the kernel was
initialized. The duration of a tick is is configurable, and typically ranges from 1 millisecond to 100 milliseconds.

The kernel also provides a number of variables that can be used to convert the time units used by the clocks into
standard time units (e.g. seconds, milliseconds, nanoseconds, etc), and to convert between the two types of clock time
units.

The system clock is used by most of the kernel’s time-based services, including kernel timer objects and the timeouts
supported by other kernel object types. For convenience, the kernel’s APIs allow time durations to be specified in
milliseconds, and automatically converts them to the corresponding number of ticks.

The hardware clock can be used to measure time with higher precision than that provided by kernel services based on
the system clock.

Clock Limitations

The system clock’s tick count is derived from the hardware clock’s cycle count. The kernel determines how many
clock cycles correspond to the desired tick frequency, then programs the hardware clock to generate an interrupt after
that many cycles; each interrupt corresponds to a single tick.

40 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Ef#: Configuring a smaller tick duration permits finer-grained timing, but also increases the amount of work the
kernel has to do to process tick interrupts since they occur more frequently. Setting the tick duration to zero disables
both kernel clocks, as well as their associated services.

Any millisecond-based time interval specified using a kernel API represents the minimum delay that will occur, and
may actually take longer than the amount of time requested.

For example, specifying a timeout delay of 100 ms when attempting to take a semaphore means that the kernel will
never terminate the operation and report failure before at least 100 ms have elapsed. However, it is possible that the
operation may take longer than 100 ms to complete, and may either complete successfully during the additional time
or fail at the end of the added time.

The amount of added time that occurs during a kernel object operation depends on the following factors.

* The added time introduced by rounding up the specified time interval when converting from milliseconds to
ticks. For example, if a tick duration of 10 ms is being used, a specified delay of 25 ms will be rounded up to 30
ms.

* The added time introduced by having to wait for the next tick interrupt before a delay can be properly tracked.
For example, if a tick duration of 10 ms is being used, a specified delay of 20 ms requires the kernel to wait
for 3 ticks to occur (rather than only 2), since the first tick can occur at any time from the next fraction of a
millisecond to just slightly less than 10 ms; only after the first tick has occurred does the kernel know the next 2
ticks will take 20 ms.

Implementation
Measuring Time with Normal Precision

This code uses the system clock to determine how much time has elapsed between two points in time.

s64_t time_stamp;
s64_t milliseconds_spent;

/* capture initial time stamp x/
time_stamp = k_uptime_get ();

/% do work for some (extended) period of time */

/+ compute how long the work took (also updates the time stamp) */
milliseconds_spent = k_uptime_delta (&time_stamp);

Measuring Time with High Precision

This code uses the hardware clock to determine how much time has elapsed between two points in time.

u32_t start_time;

u32_t stop_time;

u32_t cycles_spent;
u32_t nanoseconds_spent;

/+ capture initial time stamp x*/
start_time = k_cycle_get_32();

1.4. Zephyr Kernel Primer 41

Zephyr Project Documentation, & 7ii 1.9.0

/% do work for some (short) period of time x/

/+ capture final time stamp */
stop_time = k_cycle_get_32();

/% compute how long the work took (assumes no counter rollover) */
cycles_spent = stop_time - start_time;
nanoseconds_spent = SYS_CLOCK_HW_CYCLES_TO_NS (cycles_spent);

Suggested Uses

Use services based on the system clock for time-based processing that does not require high precision, such as fimer
objects or Thread Sleeping.

Use services based on the hardware clock for time-based processing that requires higher precision than the system
clock can provide, such as Busy Waiting or fine-grained time measurements.

HEf#: The high frequency of the hardware clock, combined with its 32-bit size, means that counter rollover must be
taken into account when taking high-precision measurements over an extended period of time.

Configuration

Related configuration options:

¢ CONFIG_SYS_CLOCK_TICKS_PER_SEC

APIs

The following kernel clock APIs are provided by kernel . h:
* k_uptime_get ()
e k_uptime_get_32 ()
e k_uptime_deltal()
* k_uptime_delta_32()
e k_cycle_get_32()
* SYS_CLOCK_HW_CYCLES_TO_NS
e K_NO_WAIT
¢ K_MSEC
¢ K_SECONDS
e K_MINUTES
e K_HOURS

¢ K_FOREVER

42 Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

Timers

A timer is a kernel object that measures the passage of time using the kernel’s system clock. When a timer’s specified
time limit is reached it can perform an application-defined action, or it can simply record the expiration and wait for
the application to read its status.

* Concepts
— Timer Limitations

» Implementation

Defining a Timer

Using a Timer Expiry Function

Reading Timer Status

Using Timer Status Synchronization

* Suggested Uses

* Configuration Options

e APIs

Concepts

Any number of timers can be defined. Each timer is referenced by its memory address.
A timer has the following key properties:

* A duration specifying the time interval before the timer expires for the first time, measured in milliseconds. It
must be greater than zero.

* A period specifying the time interval between all timer expirations after the first one, measured in milliseconds.
It must be non-negative. A period of zero means that the timer is a one shot timer that stops after a single
expiration. (For example then, if a timer is started with a duration of 200 and a period of 75, it will first expire
after 200ms and then every 75ms after that.)

* An expiry function that is executed each time the timer expires. The function is executed by the system clock
interrupt handler. If no expiry function is required a NULL function can be specified.

* A stop function that is executed if the timer is stopped prematurely while running. The function is executed by
the thread that stops the timer. If no stop function is required a NULL function can be specified.

* A status value that indicates how many times the timer has expired since the status value was last read.

A timer must be initialized before it can be used. This specifies its expiry function and stop function values, sets the
timer’s status to zero, and puts the timer into the stopped state.

A timer is started by specifying a duration and a period. The timer’s status is reset to zero, then the timer enters the
running state and begins counting down towards expiry.

When a running timer expires its status is incremented and the timer executes its expiry function, if one exists; If a
thread is waiting on the timer, it is unblocked. If the timer’s period is zero the timer enters the stopped state; otherwise
the timer restarts with a new duration equal to its period.

A running timer can be stopped in mid-countdown, if desired. The timer’s status is left unchanged, then the timer
enters the stopped state and executes its stop function, if one exists. If a thread is waiting on the timer, it is unblocked.
Attempting to stop a non-running timer is permitted, but has no effect on the timer since it is already stopped.

1.4. Zephyr Kernel Primer 43

Zephyr Project Documentation, & 7ii 1.9.0

A running timer can be restarted in mid-countdown, if desired. The timer’s status is reset to zero, then the timer begins
counting down using the new duration and period values specified by the caller. If a thread is waiting on the timer, it
continues waiting.

A timer’s status can be read directly at any time to determine how many times the timer has expired since its status
was last read. Reading a timer’s status resets its value to zero. The amount of time remaining before the timer expires
can also be read; a value of zero indicates that the timer is stopped.

A thread may read a timer’s status indirectly by synchronizing with the timer. This blocks the thread until the timer’s
status is non-zero (indicating that it has expired at least once) or the timer is stopped; if the timer status is already
non-zero or the timer is already stopped the thread continues without waiting. The synchronization operation returns
the timer’s status and resets it to zero.

1EfE: Only a single user should examine the status of any given timer, since reading the status (directly or indirectly)
changes its value. Similarly, only a single thread at a time should synchronize with a given timer. ISRs are not
permitted to synchronize with timers, since ISRs are not allowed to block.

Timer Limitations

Since timers are based on the system clock, the delay values specified when using a timer are minimum values. (See
Clock Limitations.)

Implementation
Defining a Timer
A timer is defined using a variable of type struct k_timer. It must then be initialized by calling

k_timer_init ().

The following code defines and initializes a timer.

struct k_timer my_timer;
extern void my_expiry_function(struct k_timer *timer_id);

k_timer_init (émy_timer, my_expiry_function, NULL);

Alternatively, a timer can be defined and initialized at compile time by calling K_TIMER_DEFINE.

The following code has the same effect as the code segment above.

K_TIMER_DEFINE (my_timer, my_expiry_function, NULL);

Using a Timer Expiry Function

The following code uses a timer to perform a non-trivial action on a periodic basis. Since the required work cannot
be done at interrupt level, the timer’s expiry function submits a work item to the system workqueue, whose thread
performs the work.

void my_work_handler (struct k_work *work)

{

/* do the processing that needs to be done periodically */

44 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

K_WORK_DEFINE (my_work, my_work_handler);
void my_timer_ handler (struct k_timer »dummy)

{

k_work_submit (&émy_work) ;

K_TIMER_DEFINE (my_timer, my_timer_handler, NULL);

/% start periodic timer that expires once every second #*/
k_timer_start (smy_timer, K_SECONDS (1), K_SECONDS(1));

Reading Timer Status

The following code reads a timer’s status directly to determine if the timer has expired on not.

K_TIMER_DEFINE (my_status_timer, NULL, NULL);

/% start one shot timer that expires after 200 ms */
k_timer_start (&émy_status_timer, K_MSEC(200), 0);

/#* do work */
/+ check timer status =/

if (k_timer_status_get (¢my_status_timer) > 0) {
/#* timer has expired =*/

} else if (k_timer_remaining_get (émy_status_timer) == 0) {
/+ timer was stopped (by someone else) before expiring x/
} else {

/% timer is still running #*/

Using Timer Status Synchronization

The following code performs timer status synchronization to allow a thread to do useful work while ensuring that a
pair of protocol operations are separated by the specified time interval.

K_TIMER_DEFINE (my_sync_timer, NULL, NULL);

/% do first protocol operation #*/

/% start one shot timer that expires after 500 ms */
k_timer_start (¢émy_sync_timer, K_MSEC(500), 0);

1.4. Zephyr Kernel Primer 45

Zephyr Project Documentation, & 7ii 1.9.0

/* do other work =*/

/+ ensure timer has expired (waiting for expiry, 1f necessary) x/
k_timer_status_sync (&émy_sync_timer);

/+ do second protocol operation #*/

TEME: If the thread had no other work to do it could simply sleep between the two protocol operations, without using
a timer.

Suggested Uses

Use a timer to initiate an asynchronous operation after a specified amount of time.
Use a timer to determine whether or not a specified amount of time has elapsed.

Use a timer to perform other work while carrying out operations involving time limits.

{Hf#: If a thread has no other work to perform while waiting for time to pass it should call k_sleep (). If a thread
needs to measure the time required to perform an operation it can read the system clock or the hardware clock directly,
rather than using a timer.

Configuration Options

Related configuration options:

¢ None.

APIs

The following timer APIs are provided by kernel.h:
e K_TIMER_DEFINE
e k_timer_init ()
* k_timer_start ()
e k_timer_stop ()
e k_timer_status_get ()
e k_timer_status_sync ()

* k_timer_ remaining_ get ()

Memory Allocation

This section describes kernel services that allow threads to dynamically allocate memory.

46 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Memory Slabs

A memory slab is a kernel object that allows memory blocks to be dynamically allocated from a designated memory
region. All memory blocks in a memory slab have a single fixed size, allowing them to be allocated and released
efficiently and avoiding memory fragmentation concerns.

* Concepts
— Internal Operation
» Implementation
— Defining a Memory Slab
— Allocating a Memory Block
— Releasing a Memory Block
* Suggested Uses

* Configuration Options

* APIs

Concepts

Any number of memory slabs can be defined. Each memory slab is referenced by its memory address.

A memory slab has the following key properties:
* The block size of each block, measured in bytes. It must be at least 4N bytes long, where N is greater than 0.
* The number of blocks available for allocation. It must be greater than zero.

* A buffer that provides the memory for the memory slab’s blocks. It must be at least “block size” times “number
of blocks” bytes long.

The memory slab’s buffer must be aligned to an N-byte boundary, where N is a power of 2 larger than 2 (i.e. 4, 8, 16,
...). To ensure that all memory blocks in the buffer are similarly aligned to this boundary, the block size must also be
a multiple of N.

A memory slab must be initialized before it can be used. This marks all of its blocks as unused.

A thread that needs to use a memory block simply allocates it from a memory slab. When the thread finishes with a
memory block, it must release the block back to the memory slab so the block can be reused.

If all the blocks are currently in use, a thread can optionally wait for one to become available. Any number of threads
may wait on an empty memory slab simultaneously; when a memory block becomes available, it is given to the
highest-priority thread that has waited the longest.

Unlike a heap, more than one memory slab can be defined, if needed. This allows for a memory slab with smaller
blocks and others with larger-sized blocks. Alternatively, a memory pool object may be used.

Internal Operation

A memory slab’s buffer is an array of fixed-size blocks, with no wasted space between the blocks.

The memory slab keeps track of unallocated blocks using a linked list; the first 4 bytes of each unused block provide
the necessary linkage.

1.4. Zephyr Kernel Primer 47

Zephyr Project Documentation, & 7ii 1.9.0

Implementation
Defining a Memory Slab

A memory slab is defined using a variable of type struct k_mem_slab. It must then be initialized by calling
k_mem_slab_init ().

The following code defines and initializes a memory slab that has 6 blocks that are 400 bytes long, each of which is
aligned to a 4-byte boundary..

struct k_mem_slab my_slab;
char _ _aligned(4) my_slab_buffer[6 * 400];

k_mem_slab_init (émy_slab, my_slab_buffer, 400, 6);

Alternatively, a memory slab can be defined and initialized at compile time by calling K_MEM_SLAB_DEFINE.

The following code has the same effect as the code segment above. Observe that the macro defines both the memory
slab and its buffer.

K_MEM_SLAB_DEFINE (my_slab, 400, 6, 4);

Allocating a Memory Block

A memory block is allocated by calling k_mem_slab_alloc ().

The following code builds on the example above, and waits up to 100 milliseconds for a memory block to become
available, then fills it with zeroes. A warning is printed if a suitable block is not obtained.

char +block_ptr;

if (k_mem_slab_alloc (&my_slab, &block_ptr, 100) == 0)) {
memset (block_ptr, 0, 400);

} else {
printf ("Memory allocation time-out");

Releasing a Memory Block

A memory block is released by calling k_mem_slab_free ().

The following code builds on the example above, and allocates a memory block, then releases it once it is no longer
needed.

char xblock_ptr;

k_mem_slab_alloc (&my_slab, &block_ptr, K_FOREVER);
/+* use memory block pointed at by block_ptr =/
k_mem_slab_free (&émy_slab, &block_ptr);

48 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Suggested Uses

Use a memory slab to allocate and free memory in fixed-size blocks.

Use memory slab blocks when sending large amounts of data from one thread to another, to avoid unnecessary copying
of the data.

Configuration Options

Related configuration options:

¢ None.

APIs

The following memory slab APIs are provided by kernel.h:
e K_MEM_ SLAB_DEFINE
e k mem_slab_init ()
e k mem_slab_alloc()
* k_mem_slab_free ()
* k_mem_slab_num_used_get ()

e k_mem_slab_num_free_get ()

Memory Pools

A memory pool is a kernel object that allows memory blocks to be dynamically allocated from a designated memory
region. The memory blocks in a memory pool can be of any size, thereby reducing the amount of wasted memory
when an application needs to allocate storage for data structures of different sizes. The memory pool uses a “buddy
memory allocation” algorithm to efficiently partition larger blocks into smaller ones, allowing blocks of different sizes
to be allocated and released efficiently while limiting memory fragmentation concerns.

* Concepts
— Internal Operation
* Implementation
— Defining a Memory Pool
— Allocating a Memory Block

— Releasing a Memory Block

* Suggested Uses
* APIs

1.4. Zephyr Kernel Primer 49

Zephyr Project Documentation, & 7ii 1.9.0

Concepts

Any number of memory pools can be defined. Each memory pool is referenced by its memory address.
A memory pool has the following key properties:
* A minimum block size, measured in bytes. It must be at least 4X bytes long, where X is greater than 0.

* A maximum block size, measured in bytes. This should be a power of 4 times larger than the minimum block
size. That is, “maximum block size” must equal “minimum block size” times 4"Y, where Y is greater than or
equal to zero.

* The number of maximume-size blocks initially available. This must be greater than zero.

¢ A buffer that provides the memory for the memory pool’s blocks. This must be at least “maximum block size”
times “number of maximum-size blocks” bytes long.

The memory pool’s buffer must be aligned to an N-byte boundary, where N is a power of 2 larger than 2 (i.e. 4, 8,
16, ...). To ensure that all memory blocks in the buffer are similarly aligned to this boundary, the minimum block size
must also be a multiple of N.

A thread that needs to use a memory block simply allocates it from a memory pool. Following a successful allocation,
the dat a field of the block descriptor supplied by the thread indicates the starting address of the memory block. When
the thread is finished with a memory block, it must release the block back to the memory pool so the block can be
reused.

If a block of the desired size is unavailable, a thread can optionally wait for one to become available. Any number of
threads may wait on a memory pool simultaneously; when a suitable memory block becomes available, it is given to
the highest-priority thread that has waited the longest.

Unlike a heap, more than one memory pool can be defined, if needed. For example, different applications can utilize
different memory pools; this can help prevent one application from hijacking resources to allocate all of the available
blocks.

Internal Operation

A memory pool’s buffer is an array of maximum-size blocks, with no wasted space between the blocks. Each of these
“level 0” blocks is a quad-block that can be partitioned into four smaller “level 1” blocks of equal size, if needed.
Likewise, each level 1 block is itself a quad-block that can be partitioned into four smaller “level 2” blocks in a similar
way, and so on. Thus, memory pool blocks can be recursively partitioned into quarters until blocks of the minimum
size are obtained, at which point no further partitioning can occur.

A memory pool keeps track of how its buffer space has been partitioned using an array of block set data structures.
There is one block set for each partitioning level supported by the pool, or (to put it another way) for each block size.
A block set keeps track of all free blocks of its associated size using an array of quad-block status data structures.

When an application issues a request for a memory block, the memory pool first determines the size of the smallest
block that will satisfy the request, and examines the corresponding block set. If the block set contains a free block,
the block is marked as used and the allocation process is complete. If the block set does not contain a free block, the
memory pool attempts to create one automatically by splitting a free block of a larger size or by merging free blocks
of smaller sizes; if a suitable block can’t be created, the allocation request fails.

The memory pool’s merging algorithm cannot combine adjacent free blocks of different sizes, nor can it merge adjacent
free blocks of the same size if they belong to different parent quad-blocks. As a consequence, memory fragmentation
issues can still be encountered when using a memory pool.

When an application releases a previously allocated memory block it is combined synchronously with its three “part-
ner” blocks if possible, and recursively so up through the levels. This is done in constant time, and quickly, so no
manual “defragmentation” management is needed.

50 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Implementation
Defining a Memory Pool

A memory pool is defined using a variable of type struct k_mem_pool. However, since a memory pool also
requires a number of variable-size data structures to represent its block sets and the status of its quad-blocks, the
kernel does not support the run-time definition of a memory pool. A memory pool can only be defined and initialized
at compile time by calling K_MEM_POOL_DEFINE.

The following code defines and initializes a memory pool that has 3 blocks of 4096 bytes each, which can be partitioned
into blocks as small as 64 bytes and is aligned to a 4-byte boundary. (That is, the memory pool supports block sizes of
4096, 1024, 256, and 64 bytes.) Observe that the macro defines all of the memory pool data structures, as well as its
buffer.

K_MEM_POOL_DEFINE (my_pool, 64, 4096, 3, 4);

Allocating a Memory Block

A memory block is allocated by calling k_mem_pool_alloc ().

The following code builds on the example above, and waits up to 100 milliseconds for a 200 byte memory block to
become available, then fills it with zeroes. A warning is issued if a suitable block is not obtained.

Note that the application will actually receive a 256 byte memory block, since that is the closest matching size sup-
ported by the memory pool.

struct k_mem_block block;

if (k_mem_pool_alloc (&my_pool, &block, 200, 100) == 0)) {
memset (block.data, 0, 200);

} else {
printf ("Memory allocation time-out");

}

Releasing a Memory Block

A memory block is released by calling k_mem_pool_free ().

The following code builds on the example above, and allocates a 75 byte memory block, then releases it once it is no
longer needed. (A 256 byte memory block is actually used to satisfy the request.)

struct k_mem_block block;

k_mem_pool_alloc (&émy_pool, &block, 75, K_FOREVER);
/* use memory block */
k_mem_pool_free (&block);

Suggested Uses

Use a memory pool to allocate memory in variable-size blocks.

1.4. Zephyr Kernel Primer 51

Zephyr Project Documentation, & 7ii 1.9.0

Use memory pool blocks when sending large amounts of data from one thread to another, to avoid unnecessary copying
of the data.

APIs

The following memory pool APIs are provided by kernel.h:
¢ K_MEM POOL_DEFINE
* k_mem_pool_alloc()

* k_mem_pool_free()

Heap Memory Pool

The heap memory pool is a predefined memory pool object that allows threads to dynamically allocate memory from
a common memory region in amalloc () -like manner.

* Concepts
— Internal Operation
* Implementation
— Defining the Heap Memory Pool
— Allocating Memory
— Releasing Memory

* Suggested Uses

* Configuration Options
* APIs

Concepts

Only a single heap memory pool can be defined. Unlike other memory pools, the heap memory pool cannot be directly
referenced using its memory address.

The size of the heap memory pool is configurable. The following sizes are supported: 256 bytes, 1024 bytes, 4096
bytes, and 16384 bytes.

A thread can dynamically allocate a chunk of heap memory by calling k_malloc (). The address of the allocated
chunk is guaranteed to be aligned on a multiple of 4 bytes. If a suitable chunk of heap memory cannot be found NULL
is returned.

When the thread is finished with a chunk of heap memory it can release the chunk back to the heap memory pool by
calling k_free ().

Internal Operation

The heap memory pool defines a single maximum size block that contains the entire heap; that is, a single block of 256,
1024, 4096, or 16384 bytes. The heap memory pool also defines a minimum block size of 64 bytes. Consequently, the
maximum number of blocks of each size that the heap memory pool can support is shown in the following table.

52 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

heap 64 byte 256 byte 1024 byte 4096 byte 16384 byte
size blocks blocks blocks blocks blocks

256 4 1 0 0 0

1024 16 4 1 0 0

4096 64 16 4 1 0

16384 256 64 16 4 1

TEf#: The number of blocks of a given size that can be allocated simultaneously is typically smaller than the value
shown in the table. For example, each allocation of a 256 byte block from a 1024 byte heap reduces the number of
64 byte blocks available for allocation by 4. Fragmentation of the memory pool’s buffer can also further reduce the
availability of blocks.

The kernel uses the first 16 bytes of any memory block allocated from the heap memory pool to save the block
descriptor information it needs to later free the block. Consequently, an application’s request for an N byte chunk of
heap memory requires a block that is at least (N+16) bytes long.

Implementation
Defining the Heap Memory Pool

The size of the heap memory pool is specified using the CONFIG_HEAP_MEM_ POOL_SIZE configuration option.

By default, the heap memory pool size is zero bytes. This value instructs the kernel not to define the heap memory
pool object.

Allocating Memory

A chunk of heap memory is allocated by calling k_malloc ().

The following code allocates a 200 byte chunk of heap memory, then fills it with zeros. A warning is issued if a
suitable chunk is not obtained.

Note that the application will actually allocate a 256 byte memory block, since that is the closest matching size
supported by the heap memory pool.

char *mem_ptr;

mem_ptr = k_malloc (200);
if (mem_ptr != NULL)) {
memset (mem_ptr, 0, 200);

} else {
printf ("Memory not allocated");
}

Releasing Memory

A chunk of heap memory is released by calling k_free ().

The following code allocates a 75 byte chunk of memory, then releases it once it is no longer needed. (A 256 byte
memory block from the heap memory pool is actually used to satisfy the request.)

1.4. Zephyr Kernel Primer 53

Zephyr Project Documentation, & 7ii 1.9.0

char *mem_ptr;

mem_ptr = k_malloc(75);
/% use memory block x/
k_free (mem_ptr);

Suggested Uses

Use the heap memory pool to dynamically allocate memory in amalloc () -like manner.

Configuration Options

Related configuration options:

e CONFIG_HEAP_MEM POOL_SIZE

APIs

The following heap memory pool APIs are provided by kernel.h:
e k_malloc()

e k free()

Synchronization

This section describes kernel services for synchronizing the operation of different threads, or the operation of an ISR
and a thread.

Semaphores

A semaphore is a kernel object that implements a traditional counting semaphore.

* Concepts

* Implementation
— Defining a Semaphore
— Giving a Semaphore
— Taking a Semaphore

* Suggested Uses

* Configuration Options

e APIs

54 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Concepts

Any number of semaphores can be defined. Each semaphore is referenced by its memory address.
A semaphore has the following key properties:

* A count that indicates the number of times the semaphore can be taken. A count of zero indicates that the
semaphore is unavailable.

* A limit that indicates the maximum value the semaphore’s count can reach.

A semaphore must be initialized before it can be used. Its count must be set to a non-negative value that is less than or
equal to its limit.

A semaphore may be given by a thread or an ISR. Giving the semaphore increments its count, unless the count is
already equal to the limit.

A semaphore may be taken by a thread. Taking the semaphore decrements its count, unless the semaphore is unavail-
able (i.e. at zero). When a semaphore is unavailable a thread may choose to wait for it to be given. Any number of
threads may wait on an unavailable semaphore simultaneously. When the semaphore is given, it is taken by the highest
priority thread that has waited longest.

TEf#: The kernel does allow an ISR to take a semaphore, however the ISR must not attempt to wait if the semaphore
is unavailable.

Implementation
Defining a Semaphore

A semaphore is defined using a variable of type struct k_sem. It must then be initialized by calling
k_sem_init ().

The following code defines a semaphore, then configures it as a binary semaphore by setting its count to O and its limit
to 1.

struct k_sem my_sem;

k_sem_init (émy_sem, 0, 1);

Alternatively, a semaphore can be defined and initialized at compile time by calling K_SEM_DEF INE.

The following code has the same effect as the code segment above.

K_SEM_DEFINE (my_sem, 0, 1);

Giving a Semaphore

A semaphore is given by calling k_sem_give ().

The following code builds on the example above, and gives the semaphore to indicate that a unit of data is available
for processing by a consumer thread.

void input_data_interrupt_handler (void xarqg)
{
/* notify thread that data is available x/

1.4. Zephyr Kernel Primer 55

Zephyr Project Documentation, & 7ii 1.9.0

k_sem_give (&my_sem) ;

Taking a Semaphore

A semaphore is taken by calling k_sem_take ().

The following code builds on the example above, and waits up to 50 milliseconds for the semaphore to be given. A
warning is issued if the semaphore is not obtained in time.

void consumer_thread (void)

{

if (k_sem_take (&émy_sem, K_MSEC (50)) !'= 0) {
printk ("Input data not available!");
} else {

/% fetch available data =/

Suggested Uses

Use a semaphore to control access to a set of resources by multiple threads.

Use a semaphore to synchronize processing between a producing and consuming threads or ISRs.

Configuration Options

Related configuration options:

¢ None.

APIs

The following semaphore APIs are provided by kernel . h:
e K_SEM_DEFINE
e k_sem_init ()
* k_sem_give ()
e k_sem_take ()
* k_sem_reset ()

* k_sem_count_get ()

56 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Mutexes

A mutex is a kernel object that implements a traditional reentrant mutex. A mutex allows multiple threads to safely
share an associated hardware or software resource by ensuring mutually exclusive access to the resource.

* Concepts
— Reentrant Locking
— Priority Inheritance
* Implementation
— Defining a Mutex
— Locking a Mutex
— Unlocking a Mutex

* Suggested Uses

* Configuration Options

e APIs

Concepts

Any number of mutexes can be defined. Each mutex is referenced by its memory address.
A mutex has the following key properties:

¢ A lock count that indicates the number of times the mutex has be locked by the thread that has locked it. A
count of zero indicates that the mutex is unlocked.

* An owning thread that identifies the thread that has locked the mutex, when it is locked.
A mutex must be initialized before it can be used. This sets its lock count to zero.

A thread that needs to use a shared resource must first gain exclusive rights to access it by locking the associated
mutex. If the mutex is already locked by another thread, the requesting thread may choose to wait for the mutex to be
unlocked.

After locking a mutex, the thread may safely use the associated resource for as long as needed; however, it is considered
good practice to hold the lock for as short a time as possible to avoid negatively impacting other threads that want to
use the resource. When the thread no longer needs the resource it must unlock the mutex to allow other threads to use
the resource.

Any number of threads may wait on a locked mutex simultaneously. When the mutex becomes unlocked it is then
locked by the highest-priority thread that has waited the longest.

HEf#: Mutex objects are not designed for use by ISRs.

Reentrant Locking

A thread is permitted to lock a mutex it has already locked. This allows the thread to access the associated resource at
a point in its execution when the mutex may or may not already be locked.

1.4. Zephyr Kernel Primer 57

Zephyr Project Documentation, & 7ii 1.9.0

A mutex that is repeatedly locked by a thread must be unlocked an equal number of times before the mutex becomes
fully unlocked so it can be claimed by another thread.

Priority Inheritance

The thread that has locked a mutex is eligible for priority inheritance. This means the kernel will temporarily elevate
the thread’s priority if a higher priority thread begins waiting on the mutex. This allows the owning thread to complete
its work and release the mutex more rapidly by executing at the same priority as the waiting thread. Once the mutex
has been unlocked, the unlocking thread resets its priority to the level it had before locking that mutex.

HEf#: The CONFIG_PRIORITY_CEILING configuration option limits how high the kernel can raise a thread’s
priority due to priority inheritance. The default value of 0 permits unlimited elevation.

When two or more threads wait on a mutex held by a lower priority thread, the kernel adjusts the owning thread’s
priority each time a thread begins waiting (or gives up waiting). When the mutex is eventually unlocked, the unlocking
thread’s priority correctly reverts to its original non-elevated priority.

The kernel does not fully support priority inheritance when a thread holds two or more mutexes simultaneously. This
situation can result in the thread’s priority not reverting to its original non-elevated priority when all mutexes have
been released. It is recommended that a thread lock only a single mutex at a time when multiple mutexes are shared
between threads of different priorities.

Implementation
Defining a Mutex
A mutex is defined using a variable of type struct k_mutex. It must then be initialized by calling

k_mutex_init ().

The following code defines and initializes a mutex.

struct k_mutex my_mutex;

k_mutex_init (&émy_mutex) ;

Alternatively, a mutex can be defined and initialized at compile time by calling K_MUTEX_ DEFINE.

The following code has the same effect as the code segment above.

K_MUTEX_DEFINE (my_mutex) ;

Locking a Mutex

A mutex is locked by calling k_mutex_lock ().

The following code builds on the example above, and waits indefinitely for the mutex to become available if it is
already locked by another thread.

k_mutex_lock (&my_mutex, K_FOREVER);

The following code waits up to 100 milliseconds for the mutex to become available, and gives a warning if the mutex
does not become available.

58 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

if (k_mutex_lock (&émy_mutex, K_MSEC(100)) == 0) {
/* mutex successfully locked =/
} else {

printf ("Cannot lock XYZ display\n");

}

Unlocking a Mutex

A mutex is unlocked by calling k_mutex_unlock ().

The following code builds on the example above, and unlocks the mutex that was previously locked by the thread.

k_mutex_unlock (&my_mutex) ;

Suggested Uses

Use a mutex to provide exclusive access to a resource, such as a physical device.

Configuration Options

Related configuration options:

¢ CONFIG_PRIORITY_CEILING

APIs

The following mutex APIs are provided by kernel.h:
e K_MUTEX_DEFINE
e k_mutex_init ()
e k_mutex_lock ()

e k_mutex_unlock ()

Alerts

An alert is a kernel object that allows an application to perform asynchronous signaling when a condition of interest
occurs.

* Concepts

— Alert Lifecycle

— Comparison to Unix-style Signals
» Implementation

— Defining an Alert

— Signaling an Alert

1.4. Zephyr Kernel Primer 59

Zephyr Project Documentation, & 7ii 1.9.0

— Handling an Alert
— Accepting an Alert

* Suggested Uses

* Configuration Options

e APIs

Concepts

Any number of alerts can be defined. Each alert is referenced by its memory address.
An alert has the following key properties:

¢ An alert handler, which specifies the action to be taken when the alert is signaled. The action may instruct the
system workqueue to execute a function to process the alert, mark the alert as pending so it can be processed
later by a thread, or ignore the alert.

¢ An pending count, which records the number of pending alerts that have yet to be received.
¢ An count limit, which specifies the maximum number of pending alerts that will be recorded.

An alert must be initialized before it can be used. This establishes its alert handler and sets the pending count to zero.

Alert Lifecycle

An ISR or a thread signals an alert by sending the alert when a condition of interest occurs that cannot be handled by
the detector.

Each time an alert is sent, the kernel examines its alert handler to determine what action to take.
e K_ALERT_IGNORE causes the alert to be ignored.
e K_ALERT_DEFAULT causes the pending count to be incremented, unless this would exceed the count limit.

* Any other value is assumed to be the address of an alert handler function, and is invoked by the system
workqueue thread. If the function returns zero, the signal is deemed to have been consumed; otherwise the
pending count is incremented, unless this would exceed the count limit.

The kernel ensures that the alert handler function is executed once for each time an alert is sent, even if the alert
is sent multiple times in rapid succession.

A thread accepts a pending alert by receiving the alert. This decrements the pending count. If the pending count is
currently zero, the thread may choose to wait for the alert to become pending. Any number of threads may wait for
a pending alert simultaneously; when the alert is pended it is accepted by the highest priority thread that has waited
longest.

HEME: A thread must processes pending alerts one at a time. The thread cannot receive multiple pending alerts in a
single operation.

Comparison to Unix-style Signals

Zephyr alerts are somewhat akin to Unix-style signals, but have a number of significant differences. The most notable
of these are:

60 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

e A Zephyr alert cannot be blocked; it is always delivered to its alert handler immediately.

* A Zephyr alert pends after it has been delivered to its alert handler, and only if an alert handler function does

not consume the alert.

» Zephyr has no predefined alerts or actions. All alerts are application defined, and all have a default action that

pends the alert.

Implementation

Defining an Alert

An alert is defined using a variable of type struct k_alert. It must then be initialized by calling

k_alert_init ().

The following code defines and initializes an alert. The alert allows up to 10 unreceived alert signals to pend before it

begins to ignore new pending alerts.

extern int my_alert_handler (struct k_alert =xalert);
struct k_alert my_alert;

k_alert_init (&émy_alert, my_alert_handler, 10);

Alternatively, an alert can be defined and initialized at compile time by calling K_ALERT_DEFINE.

The following code has the same effect as the code segment above.

extern int my_alert_handler (struct k_alert =xalert);

K_ALERT_DEFINE (my_alert, my_alert_handler, 10);

Signaling an Alert

An alert is signaled by calling k_alert_send ().

The following code illustrates how an ISR can signal an alert to indicate that a key press has occurred.

extern int my_alert_handler (struct k_alert =xalert);
K_ALERT_DEFINE (my_alert, my_alert_handler);

void keypress_interrupt_handler (void xargqg)

{

k_alert_send(&my_alert);

Handling an Alert

An alert handler function is used when a signaled alert should not be ignored or immediately pended. It has the
following form:
1.4. Zephyr Kernel Primer 61

Zephyr Project Documentation, & 7ii 1.9.0

int <function_name> (struct k_alert xalert)

{
/* catch the alert signal; return zero 1if the signal is consumed, #*/
/#* or non-zero to let the alert pend */

The following code illustrates an alert handler function that processes key presses detected by an ISR (as shown in the
previous section).

int my_alert_handler (struct k_alert xalert_id_is_unused)
{

/* determine what key was pressed x/

char ¢ = get_keypress();

/* do complex processing of the keystroke x/

/* signaled alert has been consumed #*/
return 0;

Accepting an Alert

A pending alert is accepted by a thread by calling k_alert_recv ().

The following code is an alternative to the code in the previous section. It uses a dedicated thread to do very complex
processing of key presses that would otherwise monopolize the system workqueue. The alert handler function is now
used only to filter out unwanted key press alerts, allowing the dedicated thread to wake up and process key press alerts
only when a numeric key is pressed.

int my_alert_handler (struct k_alert xalert_id_is_unused)
{

/* determine what key was pressed #/

char ¢ = get_keypress();

/* signal thread only if key pressed was a digit #*/
if ((c >= '0") && (c <= '9")) {
/* save key press information */

/* signaled alert should be pended x/
return 1;

} else {
/+ signaled alert has been consumed =*/
return O;

void keypress_thread(void »unusedl, wvoid »unused2, wvoid xunused3)
{

/% consume numeric key presses #*/

while (1) {

/+* wait for a key press alert to pend */
k_alert_recv(&my_alert, K_FOREVER);

62 Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

/+ process saved key press, which must be a digit =/
I g

Suggested Uses

Use an alert to minimize ISR processing by deferring interrupt-related work to a thread to reduce the amount of time
interrupts are locked.

Use an alert to allow the kernel’s system workqueue to handle an alert, rather than defining an application thread to
handle it.

Use an alert to allow the kernel’s system workqueue to preprocess an alert, prior to letting an application thread handle
it.

Configuration Options

Related configuration options:

¢ None.

APIs

The following alert APIs are provided by kernel.h:
e K_ALERT_DEFINE
e k_alert_init ()
* k_alert_send()

* k_alert_recv ()

Data Passing

This section describes kernel services for passing data between different threads, or between an ISR and a thread.

Fifos

A fifo is a kernel object that implements a traditional first in, first out (FIFO) queue, allowing threads and ISRs to add
and remove data items of any size.

* Concepts
* Implementation
— Defining a Fifo

— Writing to a Fifo

— Reading from a Fifo

1.4. Zephyr Kernel Primer 63

Zephyr Project Documentation, & 7ii 1.9.0

* Suggested Uses

* Configuration Options
* APIs

Concepts

Any number of fifos can be defined. Each fifo is referenced by its memory address.
A fifo has the following key properties:

* A queue of data items that have been added but not yet removed. The queue is implemented as a simple linked
list.

A fifo must be initialized before it can be used. This sets its queue to empty.

Fifo data items must be aligned on a 4-byte boundary, as the kernel reserves the first 32 bits of an item for use as a
pointer to the next data item in the queue. Consequently, a data item that holds N bytes of application data requires
N+4 bytes of memory.

A data item may be added to a fifo by a thread or an ISR. The item is given directly to a waiting thread, if one exists;
otherwise the item is added to the fifo’s queue. There is no limit to the number of items that may be queued.

A data item may be removed from a fifo by a thread. If the fifo’s queue is empty a thread may choose to wait for a
data item to be given. Any number of threads may wait on an empty fifo simultaneously. When a data item is added,
it is given to the highest priority thread that has waited longest.

Hf#: The kernel does allow an ISR to remove an item from a fifo, however the ISR must not attempt to wait if the
fifo is empty.

If desired, multiple data items can be added to a fifo in a single operation if they are chained together into a singly-
linked list. This capability can be useful if multiple writers are adding sets of related data items to the fifo, as it ensures
the data items in each set are not interleaved with other data items. Adding multiple data items to a fifo is also more
efficient than adding them one at a time, and can be used to guarantee that anyone who removes the first data item in
a set will be able to remove the remaining data items without waiting.

Implementation
Defining a Fifo

A fifo is defined using a variable of type st ruct k_fifo. It must then be initialized by calling k_fifo_init ().

The following code defines and initializes an empty fifo.

struct k_fifo my_fifo;

k_fifo_init (émy_fifo);

Alternatively, an empty fifo can be defined and initialized at compile time by calling K_FIFO_DEFINE.

The following code has the same effect as the code segment above.

K_FIFO_DEFINE (my_fifo);

64 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Writing to a Fifo

A data item is added to a fifo by calling k_fifo_put ().

The following code builds on the example above, and uses the fifo to send data to one or more consumer threads.

struct data_item t {
void xfifo_reserved; /+ 1st word reserved for use by fifo x/

}i
struct data_item_ t tx_data;

void producer_thread(int unusedl, int unused2, int unused3)
{
while (1) {
/* create data item to send */
tx_data =

/* send data to consumers */
k_fifo_put (émy_fifo, &tx_data);

Additionally, a singly-linked list of data items can be added to a fifo by calling k_fifo_put_list () or
k_fifo_put_slist().

Reading from a Fifo

A data item is removed from a fifo by calling k_fifo_get ().

The following code builds on the example above, and uses the fifo to obtain data items from a producer thread, which
are then processed in some manner.

void consumer_thread (int unusedl, int unused2, int unused3l)

{

struct data_item_t *rx_data;

while (1) {
rx_data = k_fifo_get (¢émy_fifo, K_FOREVER);

/% process fifo data item =/

Suggested Uses

Use a fifo to asynchronously transfer data items of arbitrary size in a “first in, first out” manner.

1.4. Zephyr Kernel Primer 65

Zephyr Project Documentation, & 7ii 1.9.0

Configuration Options

Related configuration options:

¢ None.

APIs

The following fifo APIs are provided by kernel . h:
e K_FIFO_DEFINE
e k fifo_init ()
e k _fifo_put()
e k_fifo_put_list ()
e k_fifo_put_slist ()

e k_fifo_get ()

Lifos

A lifo is a kernel object that implements a traditional last in, first out (LIFO) queue, allowing threads and ISRs to add
and remove data items of any size.

* Concepts
* Implementation

— Defining a Lifo

— Writing to a Lifo

— Reading from a Lifo
* Suggested Uses

» Configuration Options
* APIs

Concepts

Any number of lifos can be defined. Each lifo is referenced by its memory address.
A lifo has the following key properties:

* A queue of data items that have been added but not yet removed. The queue is implemented as a simple linked
list.

A lifo must be initialized before it can be used. This sets its queue to empty.

Lifo data items must be aligned on a 4-byte boundary, as the kernel reserves the first 32 bits of an item for use as a
pointer to the next data item in the queue. Consequently, a data item that holds N bytes of application data requires
N+4 bytes of memory.

66 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

A data item may be added to a lifo by a thread or an ISR. The item is given directly to a waiting thread, if one exists;
otherwise the item is added to the lifo’s queue. There is no limit to the number of items that may be queued.

A data item may be removed from a lifo by a thread. If the lifo’s queue is empty a thread may choose to wait for a
data item to be given. Any number of threads may wait on an empty lifo simultaneously. When a data item is added,
it is given to the highest priority thread that has waited longest.

Hf#: The kernel does allow an ISR to remove an item from a lifo, however the ISR must not attempt to wait if the
lifo is empty.

Implementation
Defining a Lifo

A lifo is defined using a variable of type st ruct k_11fo. It must then be initialized by calling k_1ifo_init ().

The following defines and initializes an empty lifo.

struct k_lifo my_lifo;

k_lifo_init(&émy_1lifo);

Alternatively, an empty lifo can be defined and initialized at compile time by calling K_TLIFO_DEFINE.

The following code has the same effect as the code segment above.

K_LIFO_DEFINE (my_lifo);

Writing to a Lifo

A data item is added to a lifo by calling k_11ifo_put ().

The following code builds on the example above, and uses the lifo to send data to one or more consumer threads.

struct data_item t {
void xlifo_reserved; /* 1st word reserved for use by lifo #*/

}i
struct data_item_t tx data;

void producer_thread(int unusedl, int unused2, int unused3)
{
while (1) {
/* create data item to send */
tx_data =

/* send data to consumers */
k_lifo_put(&my_lifo, &tx_data);

1.4. Zephyr Kernel Primer 67

Zephyr Project Documentation, & 7ii 1.9.0

Reading from a Lifo

A data item is removed from a lifo by calling k_1ifo_get ().

The following code builds on the example above, and uses the lifo to obtain data items from a producer thread, which
are then processed in some manner.

void consumer_thread (int unusedl, int unused2, int unused3l)

{

struct data_item_ t «+rx_data;

while (1) {
rx_data = k_lifo_get (¢émy_lifo, K_FOREVER);

/* process lifo data item #*/

Suggested Uses

Use a lifo to asynchronously transfer data items of arbitrary size in a “last in, first out” manner.

Configuration Options

Related configuration options:

¢ None.

APIs

The following lifo APIs are provided by kernel.h:
e K_LIFO_DEFINE
e k lifo_init ()
e k_lifo_put ()

ek _lifo_get ()

Stacks

A stack is a kernel object that implements a traditional last in, first out (LIFO) queue, allowing threads and ISRs to
add and remove a limited number of 32-bit data values.

* Concepts
* Implementation

— Defining a Stack

— Pushing to a Stack

68 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

— Popping from a Stack

» Suggested Uses

» Configuration Options

* APIs

Concepts

Any number of stacks can be defined. Each stack is referenced by its memory address.
A stack has the following key properties:

* A queue of 32-bit data values that have been added but not yet removed. The queue is implemented using an
array of 32-bit integers, and must be aligned on a 4-byte boundary.

* A maximum quantity of data values that can be queued in the array.
A stack must be initialized before it can be used. This sets its queue to empty.

A data value can be added to a stack by a thread or an ISR. The value is given directly to a waiting thread, if one
exists; otherwise the value is added to the lifo’s queue. The kernel does nor detect attempts to add a data value to a
stack that has already reached its maximum quantity of queued values.

Hf#: Adding a data value to a stack that is already full will result in array overflow, and lead to unpredictable
behavior.

A data value may be removed from a stack by a thread. If the stack’s queue is empty a thread may choose to wait for
it to be given. Any number of threads may wait on an empty stack simultaneously. When a data item is added, it is
given to the highest priority thread that has waited longest.

1Hf#: The kernel does allow an ISR to remove an item from a stack, however the ISR must not attempt to wait if the
stack is empty.

Implementation
Defining a Stack
A stack is defined using a variable of type struct k_stack. It must then be initialized by calling

k_stack_init ().

The following code defines and initializes an empty stack capable of holding up to ten 32-bit data values.

#define MAX_ ITEMS 10

u32_t my_stack_array[MAX_ITEMS];
struct k_stack my_stack;

k_stack_init (¢émy_stack, my_stack_array, MAX_ ITEMS);

Alternatively, a stack can be defined and initialized at compile time by calling K_STACK_DEFINE.

1.4. Zephyr Kernel Primer 69

Zephyr Project Documentation, & 7ii 1.9.0

The following code has the same effect as the code segment above. Observe that the macro defines both the stack and
its array of data values.

K_STACK_DEFINE (my_stack, MAX ITEMS);

Pushing to a Stack

A data item is added to a stack by calling k_stack_push ().

The following code builds on the example above, and shows how a thread can create a pool of data structures by saving
their memory addresses in a stack.

/+ define array of data structures */
struct my_buffer_type {
int fieldl;

}i
struct my_buffer type my_buffers[MAX_ITEMS];
/% save address of each data structure in a stack #*/

for (int i = 0; i < MAX_ITEMS; i++) |
k_stack_push (&émy_stack, (u32_t)e&my_buffers[i]);

Popping from a Stack

A data item is taken from a stack by calling k_stack_pop ().

The following code builds on the example above, and shows how a thread can dynamically allocate an unused data
structure. When the data structure is no longer required, the thread must push its address back on the stack to allow
the data structure to be reused.

struct my_buffer_ type *new_buffer;

k_stack_pop (¢buffer_stack, (u32_t x)&new_buffer, K_FOREVER);
new_buffer->fieldl =

Suggested Uses

Use a stack to store and retrieve 32-bit data values in a “last in, first out”” manner, when the maximum number of stored
items is known.

Configuration Options

Related configuration options:

¢ None.

APIs

The following stack APIs are provided by kernel.h:

70 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

e K_STACK_DEFINE
e k_stack_init ()
e k_stack_push ()

* k_stack_pop ()

Message Queues

A message queue is a kernel object that implements a simple message queue, allowing threads and ISRs to asyn-
chronously send and receive fixed-size data items.

* Concepts
* Implementation
— Defining a Message Queue
— Writing to a Message Queue
— Reading from a Message Queue

» Suggested Uses

* Configuration Options
* APIs

Concepts

Any number of message queues can be defined. Each message queue is referenced by its memory address.
A message queue has the following key properties:

* A ring buffer of data items that have been sent but not yet received.

¢ A data item size, measured in bytes.

* A maximum quantity of data items that can be queued in the ring buffer.

The message queue’s ring buffer must be aligned to an N-byte boundary, where N is a power of 2 (i.e. 1, 2, 4, 8, ...).
To ensure that the messages stored in the ring buffer are similarly aligned to this boundary, the data item size must also
be a multiple of N.

A message queue must be initialized before it can be used. This sets its ring buffer to empty.

A data item can be sent to a message queue by a thread or an ISR. The data item a pointed at by the sending thread
is copied to a waiting thread, if one exists; otherwise the item is copied to the message queue’s ring buffer, if space is
available. In either case, the size of the data area being sent must equal the message queue’s data item size.

If a thread attempts to send a data item when the ring buffer is full, the sending thread may choose to wait for space to
become available. Any number of sending threads may wait simultaneously when the ring buffer is full; when space
becomes available it is given to the highest priority sending thread that has waited the longest.

A data item can be received from a message queue by a thread. The data item is copied to the area specified by the
receiving thread; the size of the receiving area must equal the message queue’s data item size.

1.4. Zephyr Kernel Primer 71

Zephyr Project Documentation, & 7ii 1.9.0

If a thread attempts to receive a data item when the ring buffer is empty, the receiving thread may choose to wait for a
data item to be sent. Any number of receiving threads may wait simultaneously when the ring buffer is empty; when
a data item becomes available it is given to the highest priority receiving thread that has waited the longest.

TEME: The kernel does allow an ISR to receive an item from a message queue, however the ISR must not attempt to
wait if the message queue is empty.

Implementation
Defining a Message Queue

A message queue is defined using a variable of type struct k_msgg. It must then be initialized by calling
k_msgg_init ().

The following code defines and initializes an empty message queue that is capable of holding 10 items, each of which
is 12 bytes long.

struct data_item_ type {
u32_t fieldl;
u32_t field2;
u32_t field3;

}i

char _ _aligned(4) my_msgqg_buffer[10 % sizeof (data_item_type)];
struct k_msgg my_msgqg;

k_msgg_init (&my_msgqg, my_msgq buffer, sizeof (data_item type), 10);

Alternatively, a message queue can be defined and initialized at compile time by calling K_MSGQ_DEF INE.

The following code has the same effect as the code segment above. Observe that the macro defines both the message
queue and its buffer.

K_MSGQ_DEFINE (my_msgqg, sizeof (data_item_type), 10, 4);

Writing to a Message Queue

A data item is added to a message queue by calling k_msgqg_put ().

The following code builds on the example above, and uses the message queue to pass data items from a producing
thread to one or more consuming threads. If the message queue fills up because the consumers can’t keep up, the
producing thread throws away all existing data so the newer data can be saved.

void producer_thread(void)

{
struct data_item_t data;

while (1) {
/* create data item to send (e.g. measurement, timestamp, ...) */
data =

/* send data to consumers */
while (k_msgg_put (&émy_msgq, &data, K_NO_WAIT) != 0) {

72 Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

/+ message queue is full: purge old data & try again */
k_msgg_purge (&my_msgq) ;
}

/+ data item was successfully added to message queue */

Reading from a Message Queue

A data item is taken from a message queue by calling k_msgqg_get ().

The following code builds on the example above, and uses the message queue to process data items generated by one
or more producing threads.

void consumer_thread (void)

{
struct data_item_t data;

while (1) {
/+ get a data item */

k_msgqg_get (&my_msgq, &data, K_FOREVER);

/+ process data item */

Suggested Uses

Use a message queue to transfer small data items between threads in an asynchronous manner.

HEM#: A message queue can be used to transfer large data items, if desired. However, this can increase interrupt
latency as interrupts are locked while a data item is written or read. It is usually preferable to transfer large data items
by exchanging a pointer to the data item, rather than the data item itself. The kernel’s memory map and memory pool
object types can be helpful for data transfers of this sort.

A synchronous transfer can be achieved by using the kernel’s mailbox object type.

Configuration Options

Related configuration options:

¢ None.

APIs

The following message queue APIs are provided by kernel. h:

¢ K_MSGQ_DEFINE

1.4. Zephyr Kernel Primer 73

Zephyr Project Documentation, & 7ii 1.9.0

* k_msgg_init ()

* k_msgg_put ()

* k_msgqg_get ()

¢ k_msgg_purge ()

* k_msgqg_num_used_get ()

¢ k_msgqg_num_free_get ()
Mailboxes
A mailbox is a kernel object that provides enhanced message queue capabilities that go beyond the capabilities of a

message queue object. A mailbox allows threads to send and receive messages of any size synchronously or asyn-
chronously.

* Concepts

Message Format

Message Lifecycle

Thread Compatibility

Message Flow Control

* Implementation

Defining a Mailbox

Message Descriptors

Sending a Message
— Receiving a Message
* Suggested Uses

» Configuration Options

* APIs

Concepts

Any number of mailboxes can be defined. Each mailbox is referenced by its memory address.
A mailbox has the following key properties:

* A send queue of messages that have been sent but not yet received.

* A receive queue of threads that are waiting to receive a message.
A mailbox must be initialized before it can be used. This sets both of its queues to empty.

A mailbox allows threads, but not ISRs, to exchange messages. A thread that sends a message is known as the sending
thread, while a thread that receives the message is known as the receiving thread. Each message may be received by
only one thread (i.e. point-to-multipoint and broadcast messaging is not supported).

Messages exchanged using a mailbox are handled non-anonymously, allowing both threads participating in an ex-
change to know (and even specify) the identity of the other thread.

74 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Message Format

A message descriptor is a data structure that specifies where a message’s data is located, and how the message is to be
handled by the mailbox. Both the sending thread and the receiving thread supply a message descriptor when accessing
a mailbox. The mailbox uses the message descriptors to perform a message exchange between compatible sending
and receiving threads. The mailbox also updates certain message descriptor fields during the exchange, allowing both
threads to know what has occurred.

A mailbox message contains zero or more bytes of message data. The size and format of the message data is
application-defined, and can vary from one message to the next. There are two forms of message data:

* A message buffer is an area of memory provided by the thread that sends or receives the message. An array or
structure variable can often be used for this purpose.

* A message block is an area of memory allocated from a memory pool.

A message may not have both a message buffer and a message block. A message that has neither form of message
data is called an empty message.

Ef#: A message whose message buffer or memory block exists, but contains zero bytes of actual data, is not an
empty message.

Message Lifecycle

The life cycle of a message is straightforward. A message is created when it is given to a mailbox by the sending
thread. The message is then owned by the mailbox until it is given to a receiving thread. The receiving thread may
retrieve the message data when it receives the message from the mailbox, or it may perform data retrieval during a
second, subsequent mailbox operation. Only when data retrieval has occurred is the message deleted by the mailbox.

Thread Compatibility

A sending thread can specify the address of the thread to which the message is sent, or it send it to any thread by
specifying K_ANY. Likewise, a receiving thread can specify the address of the thread from which it wishes to receive
a message, or it can receive a message from any thread by specifying K_ANY. A message is exchanged only when the
requirements of both the sending thread and receiving thread are satisfied; such threads are said to be compatible.

For example, if thread A sends a message to thread B (and only thread B) it will be received by thread B if thread B
tries to receive a message from thread A or if thread B tries to receive from any thread. The exchange will not occur
if thread B tries to receive a message from thread C. The message can never be received by thread C, even if it tries to
receive a message from thread A (or from any thread).

Message Flow Control

Mailbox messages can be exchanged synchronously or asynchronously. In a synchronous exchange, the sending
thread blocks until the message has been fully processed by the receiving thread. In an asynchronous exchange, the
sending thread does not wait until the message has been received by another thread before continuing; this allows the
sending thread to do other work (such as gather data that will be used in the next message) before the message is given
to a receiving thread and fully processed. The technique used for a given message exchange is determined by the
sending thread.

The synchronous exchange technique provides an implicit form of flow control, preventing a sending thread from
generating messages faster than they can be consumed by receiving threads. The asynchronous exchange technique

1.4. Zephyr Kernel Primer 75

Zephyr Project Documentation, & 7ii 1.9.0

provides an explicit form of flow control, which allows a sending thread to determine if a previously sent message still
exists before sending a subsequent message.

Implementation
Defining a Mailbox
A mailbox is defined using a variable of type struct k_mbox. It must then be initialized by calling

k_mbox_init ().

The following code defines and initializes an empty mailbox.

struct k_mbox my_mailbox;

k_mbox_init (&émy_mailbox) ;

Alternatively, a mailbox can be defined and initialized at compile time by calling K_MBOX_DEFINE.

The following code has the same effect as the code segment above.

K_MBOX_DEFINE (my_mailbox) ;

Message Descriptors

A message descriptor is a structure of type st ruct k_mbox_msg. Only the fields listed below should be used; any
other fields are for internal mailbox use only.

info A 32-bit value that is exchanged by the message sender and receiver, and whose meaning is defined by the appli-
cation. This exchange is bi-directional, allowing the sender to pass a value to the receiver during any message
exchange, and allowing the receiver to pass a value to the sender during a synchronous message exchange.

size The message data size, in bytes. Set it to zero when sending an empty message, or when sending a message buffer
or message block with no actual data. When receiving a message, set it to the maximum amount of data desired,
or to zero if the message data is not wanted. The mailbox updates this field with the actual number of data bytes
exchanged once the message is received.

tx_data A pointer to the sending thread’s message buffer. Set it to NULL when sending a memory block, or when
sending an empty message. Leave this field uninitialized when receiving a message.

tx_block The descriptor for the sending thread’s memory block. Set tx_block.pool_id to NULL when sending an
empty message. Leave this field uninitialized when sending a message buffer, or when receiving a message.

tx_target_thread The address of the desired receiving thread. Set it to K_ANY to allow any thread to receive the
message. Leave this field uninitialized when receiving a message. The mailbox updates this field with the actual
receiver’s address once the message is received.

rx_source_thread The address of the desired sending thread. Set it to K_ANY to receive a message sent by any thread.
Leave this field uninitialized when sending a message. The mailbox updates this field with the actual sender’s
address once the message is received.

Sending a Message

A thread sends a message by first creating its message data, if any. A message buffer is typically used when the data
volume is small, and the cost of copying the data is less than the cost of allocating and freeing a message block.

76 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Next, the sending thread creates a message descriptor that characterizes the message to be sent, as described in the
previous section.

Finally, the sending thread calls a mailbox send API to initiate the message exchange. The message is immediately
given to a compatible receiving thread, if one is currently waiting. Otherwise, the message is added to the mailbox’s
send queue.

Any number of messages may exist simultaneously on a send queue. The messages in the send queue are sorted
according to the priority of the sending thread. Messages of equal priority are sorted so that the oldest message can be
received first.

For a synchronous send operation, the operation normally completes when a receiving thread has both received the
message and retrieved the message data. If the message is not received before the waiting period specified by the
sending thread is reached, the message is removed from the mailbox’s send queue and the send operation fails. When
a send operation completes successfully the sending thread can examine the message descriptor to determine which
thread received the message, how much data was exchanged, and the application-defined info value supplied by the
receiving thread.

HEM: A synchronous send operation may block the sending thread indefinitely, even when the thread specifies a
maximum waiting period. The waiting period only limits how long the mailbox waits before the message is received
by another thread. Once a message is received there is no limit to the time the receiving thread may take to retrieve
the message data and unblock the sending thread.

For an asynchronous send operation, the operation always completes immediately. This allows the sending thread to
continue processing regardless of whether the message is given to a receiving thread immediately or added to the send
queue. The sending thread may optionally specify a semaphore that the mailbox gives when the message is deleted by
the mailbox, for example, when the message has been received and its data retrieved by a receiving thread. The use
of a semaphore allows the sending thread to easily implement a flow control mechanism that ensures that the mailbox
holds no more than an application-specified number of messages from a sending thread (or set of sending threads) at
any point in time.

TEM#: A thread that sends a message asynchronously has no way to determine which thread received the message,
how much data was exchanged, or the application-defined info value supplied by the receiving thread.

Sending an Empty Message

This code uses a mailbox to synchronously pass 4 byte random values to any consuming thread that wants one. The
message “info” field is large enough to carry the information being exchanged, so the data portion of the message isn’t
used.

void producer_thread (void)

{

struct k_mbox_msg send_msg;
while (1) {

/#* generate random value to send */
u32_t random_value = sys_rand32_get();

/* prepare to send empty message */
send_msg.info = random_value;
send_msg.size = 0;

send_msg.tx_data = NULL;

1.4. Zephyr Kernel Primer 77

Zephyr Project Documentation, & 7ii 1.9.0

send_msg.tx_block.pool_id = NULL;
send_msg.tx_target_thread = K_ANY;

/+ send message and wait until a consumer receives it #*/
k_mbox_put (&émy_mailbox, &send_msg, K_FOREVER);

Sending Data Using a Message Buffer

This code uses a mailbox to synchronously pass variable-sized requests from a producing thread to any consuming
thread that wants it. The message “info” field is used to exchange information about the maximum size message buffer
that each thread can handle.

void producer_thread (void)
{

char buffer[100];

int buffer_bytes_used;

struct k_mbox_msg send_msg;
while (1) {
/* generate data to send x/

buffer_bytes_used = ... ;
memcpy (buffer, source, buffer_bytes_used);

/+ prepare to send message */
send_msg.info = buffer_bytes_used;
send_msg.size = buffer_ bytes_used;
send_msg.tx_data = buffer;
send_msg.tx_target_thread = K_ANY;

/* send message and wait until a consumer receives it #*/
k_mbox_put (&émy_mailbox, &send_msg, K_FOREVER);

/* info, size, and tx_target_thread fields have been updated */

/* verify that message data was fully received #*/
if (send_msg.size < buffer_bytes_used) {
printf ("some message data dropped during transfer!");
printf ("receiver only had room for %d bytes", send_msg.info);

Sending Data Using a Message Block

This code uses a mailbox to send asynchronous messages. A semaphore is used to hold off the sending of a new
message until the previous message has been consumed, so that a backlog of messages doesn’t build up when the
consuming thread is unable to keep up.

The message data is stored in a memory block obtained from a memory pool, thereby eliminating unneeded data

78 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

copying when exchanging large messages. The memory pool contains only two blocks: one block gets filled with data
while the previously sent block is being processed

/* define a semaphore, indicating that no message has been sent =*/
K_SEM_DEFINE (my_sem, 1, 1);

/+ define a memory pool containing 2 blocks of 4096 bytes =/
K_MEM_POOL_DEFINE (my_pool, 4096, 4096, 2, 4);

void producer_thread (void)

{

struct k_mbox_msg send_msg;
volatile char ~hw_buffer;
while (1) {

/#* allocate a memory block to hold the message data */
k_mem_pool_alloc (&mp_pool, &send_msg.tx_block, 4096, K_FOREVER);

/* keep overwriting the hardware—-generated data in the block */
/+ until the previous message has been received by the consumer x/
do {

memcpy (send_msg.tx_block.data, hw_buffer, 4096);
} while (k_sem_take (&my_sem, K_NO_WAIT) != 0);

/* finish preparing to send message */
send_msg.size = 4096;
send_msg.tx_target_thread = K_ANY;

/* send message containing most current data and loop around */
k_mbox_async_put (&my_mailbox, &send_msg, &my_sem);

Receiving a Message

A thread receives a message by first creating a message descriptor that characterizes the message it wants to receive.
It then calls one of the mailbox receive APIs. The mailbox searches its send queue and takes the message from the
first compatible thread it finds. If no compatible thread exists, the receiving thread may choose to wait for one. If no
compatible thread appears before the waiting period specified by the receiving thread is reached, the receive operation
fails. Once a receive operation completes successfully the receiving thread can examine the message descriptor to
determine which thread sent the message, how much data was exchanged, and the application-defined info value
supplied by the sending thread.

Any number of receiving threads may wait simultaneously on a mailboxes’ receive queue. The threads are sorted
according to their priority; threads of equal priority are sorted so that the one that started waiting first can receive a
message first.

HEM: Receiving threads do not always receive messages in a first in, first out (FIFO) order, due to the thread
compatibility constraints specified by the message descriptors. For example, if thread A waits to receive a message
only from thread X and then thread B waits to receive a message from thread Y, an incoming message from thread Y
to any thread will be given to thread B and thread A will continue to wait.

The receiving thread controls both the quantity of data it retrieves from an incoming message and where the data ends
up. The thread may choose to take all of the data in the message, to take only the initial part of the data, or to take no

1.4. Zephyr Kernel Primer 79

Zephyr Project Documentation, & 7ii 1.9.0

data at all. Similarly, the thread may choose to have the data copied into a message buffer of its choice or to have it
placed in a message block. A message buffer is typically used when the volume of data involved is small, and the cost
of copying the data is less than the cost of allocating and freeing a memory pool block.

The following sections outline various approaches a receiving thread may use when retrieving message data.

Retrieving Data at Receive Time

The most straightforward way for a thread to retrieve message data is to specify a message buffer when the message is
received. The thread indicates both the location of the message buffer (which must not be NULL) and its size.

The mailbox copies the message’s data to the message buffer as part of the receive operation. If the message buffer is
not big enough to contain all of the message’s data, any uncopied data is lost. If the message is not big enough to fill
all of the buffer with data, the unused portion of the message buffer is left unchanged. In all cases the mailbox updates
the receiving thread’s message descriptor to indicate how many data bytes were copied (if any).

The immediate data retrieval technique is best suited for small messages where the maximum size of a message is
known in advance.

HEM#: This technique can be used when the message data is actually located in a memory block supplied by the
sending thread. The mailbox copies the data into the message buffer specified by the receiving thread, then frees the
message block back to its memory pool. This allows a receiving thread to retrieve message data without having to
know whether the data was sent using a message buffer or a message block.

The following code uses a mailbox to process variable-sized requests from any producing thread, using the immediate
data retrieval technique. The message “info” field is used to exchange information about the maximum size message
buffer that each thread can handle.

void consumer_thread (void)

{
struct k_mbox_msg recv_msg;
char buffer[100];

int i;
int total;

while (1) {
/% prepare to receive message #*/
recv_msg.info = 100;
recv_msg.size = 100;
recv_msg.rx_source_thread = K_ANY;

/* get a data item, waiting as long as needed */
k_mbox_get (&my_mailbox, &recv_msg, buffer, K_FOREVER);

/* info, size, and rx_source_thread fields have been updated #*/

/* verify that message data was fully received #*/

if (recv_msg.info != recv_msg.size) {
printf ("some message data dropped during transfer!");
printf ("sender tried to send %d bytes", recv_msg.info);

/+ compute sum of all message bytes (from 0 to 100 of them) #*/
total = 0;
for (i = 0; 1 < recv_msg.size; i++) {

80 Chapter 1. H¥

Zephyr Project Documentation, % #i 1.9.0

total += buffer[il];

Retrieving Data Later Using a Message Buffer

A receiving thread may choose to defer message data retrieval at the time the message is received, so that it can retrieve
the data into a message buffer at a later time. The thread does this by specifying a message buffer location of NULL
and a size indicating the maximum amount of data it is willing to retrieve later.

The mailbox does not copy any message data as part of the receive operation. However, the mailbox still updates the
receiving thread’s message descriptor to indicate how many data bytes are available for retrieval.

The receiving thread must then respond as follows:

« If the message descriptor size is zero, then either the sender’s message contained no data or the receiving thread
did not want to receive any data. The receiving thread does not need to take any further action, since the mailbox
has already completed data retrieval and deleted the message.

« If the message descriptor size is non-zero and the receiving thread still wants to retrieve the data, the thread must
call k_mbox_data_get () and supply a message buffer large enough to hold the data. The mailbox copies
the data into the message buffer and deletes the message.

« If the message descriptor size is non-zero and the receiving thread does not want to retrieve the data, the thread
must call k_mbox_data_get (). and specify a message buffer of NULL. The mailbox deletes the message
without copying the data.

The subsequent data retrieval technique is suitable for applications where immediate retrieval of message data is
undesirable. For example, it can be used when memory limitations make it impractical for the receiving thread to
always supply a message buffer capable of holding the largest possible incoming message.

Ef#: This technique can be used when the message data is actually located in a memory block supplied by the
sending thread. The mailbox copies the data into the message buffer specified by the receiving thread, then frees the
message block back to its memory pool. This allows a receiving thread to retrieve message data without having to
know whether the data was sent using a message buffer or a message block.

The following code uses a mailbox’s deferred data retrieval mechanism to get message data from a producing thread
only if the message meets certain criteria, thereby eliminating unneeded data copying. The message “info” field
supplied by the sender is used to classify the message.

void consumer_thread (void)

{
struct k_mbox_msg recv_msg;
char buffer[10000];

while (1) {
/* prepare to receive message #*/
recv_msg.size = 10000;
recv_msg.rx_source_thread = K_ANY;

/+ get message, but not its data */
k_mbox_get (&émy_mailbox, &recv_msg, NULL, K_FOREVER) ;

/* get message data for only certain types of messages */

1.4. Zephyr Kernel Primer 81

Zephyr Project Documentation, & 7ii 1.9.0

if (is_message_type_ok (recv_msg.info)) {
/% retrieve message data and delete the message */
k_mbox_data_get (&recv_msg, buffer);

/+ process data in "buffer" %/
} else {

/% Ignore message data and delete the message */
k_mbox_data_get (&recv_msg, NULL);

Retrieving Data Later Using a Message Block

A receiving thread may choose to retrieve message data into a memory block, rather than a message buffer. This is
done in much the same way as retrieving data subsequently into a message buffer — the receiving thread first receives
the message without its data, then retrieves the data by calling k_mbox_data_block_get (). The mailbox fills in
the block descriptor supplied by the receiving thread, allowing the thread to access the data. The mailbox also deletes
the received message, since data retrieval has been completed. The receiving thread is then responsible for freeing the
message block back to the memory pool when the data is no longer needed.

This technique is best suited for applications where the message data has been sent using a memory block.

Ef#: This technique can be used when the message data is located in a message buffer supplied by the sending
thread. The mailbox automatically allocates a memory block and copies the message data into it. However, this is
much less efficient than simply retrieving the data into a message buffer supplied by the receiving thread. In addition,
the receiving thread must be designed to handle cases where the data retrieval operation fails because the mailbox
cannot allocate a suitable message block from the memory pool. If such cases are possible, the receiving thread must
either try retrieving the data at a later time or instruct the mailbox to delete the message without retrieving the data.

The following code uses a mailbox to receive messages sent using a memory block, thereby eliminating unneeded data
copying when processing a large message. (The messages may be sent synchronously or asynchronously.)

/* define a memory pool containing 1 block of 10000 bytes x/
K_MEM_POOL_DEFINE (my_pool, 10000, 10000, 1, 4);

void consumer_thread (void)

{
struct k_mbox_msg recv_msg;
struct k_mem_block recv_block;

int total;
char xdata_ptr;
int i;

while (1) {
/* prepare to receive message */
recv_msg.size = 10000;
recv_msg.rx_source_thread = K_ANY;

/+ get message, but not its data */
k_mbox_get (&my_mailbox, &recv_msg, NULL, K_FOREVER) ;

82 Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

/* get message data as a memory block and discard message =*/
k_mbox_data_block_get (&recv_msg, &my_pool, &recv_block, K_FOREVER) ;

/* compute sum of all message bytes in memory block */

total = 0;
data_ptr = (char «) (recv_block.data);
for (i = 0; 1 < recv_msg.size; 1i++) {

total += data_ptr++;
}

/+* release memory block containing data */
k_mem_pool_free (&recv_block);

HEM: An incoming message that was sent using a message buffer is also processed correctly by this algorithm,
since the mailbox automatically allocates a memory block from the memory pool and fills it with the message data.
However, the performance benefit of using the memory block approach is lost.

Suggested Uses

Use a mailbox to transfer data items between threads whenever the capabilities of a message queue are insufficient.

Configuration Options

Related configuration options:

¢ CONFIG_NUM_MBOX_ASYNC_MSGS

APIs

The following APIs for a mailbox are provided by kernel.h:
e K_MBOX_DEFINE
* k mbox_init ()
* k_mbox_put ()
* k_mbox_async_put ()
* k_mbox_get ()
* k_mbox_data_get ()
* k_mbox_data_block_get ()

Pipes

A pipe is a kernel object that allows a thread to send a byte stream to another thread. Pipes can be used to transfer
chunks of data in whole or in part, and either synchronously or asynchronously.

1.4. Zephyr Kernel Primer 83

Zephyr Project Documentation, & 7ii 1.9.0

* Concepts
* Implementation
— Writing to a Pipe
— Reading from a Pipe

* Suggested uses

* Configuration Options

e APIs

Concepts

The pipe can be configured with a ring buffer which holds data that has been sent but not yet received; alternatively,
the pipe may have no ring buffer.

Any number of pipes can be defined. Each pipe is referenced by its memory address.
A pipe has the following key property:

* A size that indicates the size of the pipe’s ring buffer. Note that a size of zero defines a pipe with no ring buffer.
A pipe must be initialized before it can be used. The pipe is initially empty.

Data can be synchronously sent either in whole or in part to a pipe by a thread. If the specified minimum number of
bytes can not be immediately satisfied, then the operation will either fail immediately or attempt to send as many bytes
as possible and then pend in the hope that the send can be completed later. Accepted data is either copied to the pipe’s
ring buffer or directly to the waiting reader(s).

Data can be asynchronously sent in whole using a memory block to a pipe by a thread. Once the pipe has accepted all
the bytes in the memory block, it will free the memory block and may give a semaphore if one was specified.

Data can be synchronously received from a pipe by a thread. If the specified minimum number of bytes can not be
immediately satisfied, then the operation will either fail immediately or attempt to receive as many bytes as possible
and then pend in the hope that the receive can be completed later. Accepted data is either copied from the pipe’s ring
buffer or directly from the waiting sender(s).

IEf#: The kernel does NOT allow for an ISR to send or receive data to/from a pipe even if it does not attempt to wait
for space/data.

Implementation

A pipe is defined using a variable of type struct k_pipe and an optional character buffer of type unsigned
char. It must then be initialized by calling k_pipe_init ().

The following code defines and initializes an empty pipe that has a ring buffer capable of holding 100 bytes and is
aligned to a 4-byte boundary.

unsigned char __aligned(4) my_ring buffer[100];
struct k_pipe my_pipe;

k_pipe_init (émy_pipe, my_ring buffer, sizeof (my_ring_buffer));

84 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Alternatively, a pipe can be defined and initialized at compile time by calling K_PIPE_DEFINE.

The following code has the same effect as the code segment above. Observe that that macro defines both the pipe and
its ring buffer.

K_PIPE_DEFINE (my_pipe, 100, 4);

Writing to a Pipe

Data is added to a pipe by calling k_pipe_put ().

The following code builds on the example above, and uses the pipe to pass data from a producing thread to one or

more consuming threads. If the pipe’s ring buffer fills up because the consumers can’t keep up, the producing thread
waits for a specified amount of time.

struct message_header {
bi

void producer_thread (void)
{
unsigned char *data;
size_t total_size;
size_t bytes_written;
int rc;

while (1) {
/* Craft message to send in the pipe #*/
data = ...;
total_size = ...;

/* send data to the consumers #*/
rc = k_pipe_put (¢my_pipe, data, total_size, &bytes_written,
sizeof (struct message_header), K_NO_WAIT);

if (rc < 0) {
/+ Incomplete message header sent x/

} else if (bytes_written < total_size) {
/* Some of the data was sent #*/

} else {
/% All data sent =*/

Reading from a Pipe

Data is read from the pipe by calling k_pipe_get ().

The following code builds on the example above, and uses the pipe to process data items generated by one or more
producing threads.

1.4. Zephyr Kernel Primer 85

Zephyr Project Documentation, & 7ii 1.9.0

void consumer_thread (void)
{
unsigned char buffer[120];
size_t bytes_read;
struct message_header +rheader = (struct message_header «)buffer;

while (1) {
rc = k_pipe_get (&émy_pipe, buffer, sizeof (buffer), &bytes_read,
sizeof (header), K_MSEC(100));

if ((rc < 0) || (bytes_read < sizeof (header))) {
/* Incomplete message header received */

} else if (header->num_data_bytes + sizeof (header) > bytes_read) {
/+ Only some data was received #*/

} else {
/+ All data was received =*/

Suggested uses

Use a pipe to send streams of data between threads.

TEf#: A pipe can be used to transfer long streams of data if desired. However it is often preferable to send pointers
to large data items to avoid copying the data. The kernel’s memory map and memory pool object types can be helpful
for data transfers of this sort.

Configuration Options

Related configuration options:

e CONFIG_NUM_PIPE_ASYNC_MSGS

APIs

The following message queue APIs are provided by kernel. h:
e K_PIPE_DEFINE
* k_pipe_init ()
* k_pipe_put ()
* k_pipe_get ()
* k_pipe_block_put ()

86 Chapter 1. H¥

Zephyr Project Documentation, % #i 1.9.0

Other Services

This section describes other services provided by the kernel.

Interrupts

An interrupt service routine (ISR) is a function that executes asynchronously in response to a hardware or software
interrupt. An ISR normally preempts the execution of the current thread, allowing the response to occur with very low
overhead. Thread execution resumes only once all ISR work has been completed.

* Concepts
— Preventing Interruptions
— Offloading ISR Work
» Implementation
— Defining a regular ISR
— Defining a ‘direct’ ISR
— Implementation Details
* Suggested Uses

* Configuration Options

* APIs

Concepts

Any number of ISRs can be defined, subject to the constraints imposed by underlying hardware.
An ISR has the following key properties:

¢ An interrupt request (IRQ) signal that triggers the ISR.

¢ A priority level associated with the IRQ.

* An interrupt handler function that is invoked to handle the interrupt.

* An argument value that is passed to that function.

An IDT (Interrupt Descriptor Table) or a vector table is used to associate a given interrupt source with a given ISR.
Only a single ISR can be associated with a specific IRQ at any given time.

Multiple ISRs can utilize the same function to process interrupts, allowing a single function to service a device that
generates multiple types of interrupts or to service multiple devices (usually of the same type). The argument value
passed to an ISR’s function allows the function to determine which interrupt has been signaled.

The kernel provides a default ISR for all unused IDT entries. This ISR generates a fatal system error if an unexpected
interrupt is signaled.

The kernel supports interrupt nesting. This allows an ISR to be preempted in mid-execution if a higher priority inter-
rupt is signaled. The lower priority ISR resumes execution once the higher priority ISR has completed its processing.

An ISR’s interrupt handler function executes in the kernel’s interrupt context. This context has its own dedicated
stack area (or, on some architectures, stack areas). The size of the interrupt context stack must be capable of handling
the execution of multiple concurrent ISRs if interrupt nesting support is enabled.

1.4. Zephyr Kernel Primer 87

Zephyr Project Documentation, & 7ii 1.9.0

HEE: Many kernel APIs can be used only by threads, and not by ISRs. In cases where a routine may be invoked
by both threads and ISRs the kernel provides the k_is_in_isr () API to allow the routine to alter its behavior
depending on whether it is executing as part of a thread or as part of an ISR.

Preventing Interruptions

In certain situations it may be necessary for the current thread to prevent ISRs from executing while it is performing
time-sensitive or critical section operations.

A thread may temporarily prevent all IRQ handling in the system using an IRQ lock. This lock can be applied even
when it is already in effect, so routines can use it without having to know if it is already in effect. The thread must
unlock its IRQ lock the same number of times it was locked before interrupts can be once again processed by the
kernel while the thread is running.

B The IRQ lock is thread-specific. If thread A locks out interrupts then performs an operation that allows thread
B to run (e.g. giving a semaphore or sleeping for N milliseconds), the thread’s IRQ lock no longer applies once thread
A is swapped out. This means that interrupts can be processed while thread B is running unless thread B has also
locked out interrupts using its own IRQ lock. (Whether interrupts can be processed while the kernel is switching
between two threads that are using the IRQ lock is architecture-specific.)

When thread A eventually becomes the current thread once again, the kernel re-establishes thread A’s IRQ lock. This
ensures thread A won’t be interrupted until it has explicitly unlocked its IRQ lock.

Alternatively, a thread may temporarily disable a specified IRQ so its associated ISR does not execute when the IRQ
is signaled. The IRQ must be subsequently enabled to permit the ISR to execute.

HE: Disabling an IRQ prevents all threads in the system from being preempted by the associated ISR, not just the
thread that disabled the IRQ.

Offloading ISR Work

An ISR should execute quickly to ensure predictable system operation. If time consuming processing is required
the ISR should offload some or all processing to a thread, thereby restoring the kernel’s ability to respond to other
interrupts.

The kernel supports several mechanisms for offloading interrupt-related processing to a thread.

* An ISR can signal a helper thread to do interrupt-related processing using a kernel object, such as a fifo, lifo, or
semaphore.

* An ISR can signal an alert which causes the system workqueue thread to execute an associated alert handler
function. (See Alerts.)

* An ISR can instruct the system workqueue thread to execute a work item. (See TBD.)

When an ISR offloads work to a thread, there is typically a single context switch to that thread when the ISR completes,
allowing interrupt-related processing to continue almost immediately. However, depending on the priority of the thread
handling the offload, it is possible that the currently executing cooperative thread or other higher-priority threads may
execute before the thread handling the offload is scheduled.

88 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Implementation
Defining a regular ISR

An ISR is defined at run-time by calling TRQ_ CONNECT. It must then be enabled by calling irg_enable ().

HE: IRQ_CONNECT() is not a C function and does some inline assembly magic behind the scenes. All its
arguments must be known at build time. Drivers that have multiple instances may need to define per-instance config
functions to configure each instance of the interrupt.

The following code defines and enables an ISR.

#define MY DEV_IRQ 24 /% device uses IRQ 24 =/

#define MY _DEV_PRIO 2 /* device uses interrupt priority 2 */

/* argument passed to my_isr(), in this case a pointer to the device x/
#define MY _ ISR ARG DEVICE_GET (my_device)

#define MY IRQ FLAGS 0 /% IRQ flags. Unused on non-x86 */

void my_isr (void xarg)
{
/* ISR code #*/

void my_isr_installer (void)
{

IRQ_CONNECT (MY_DEV_IRQ, MY DEV_PRIO, my_isr, MY_ISR_ARG, MY_IRQ_FLAGS);
irg _enable (MY_DEV_TIRQ);

Defining a ‘direct’ ISR

Regular Zephyr interrupts introduce some overhead which may be unacceptable for some low-latency use-cases.
Specifically:

* The argument to the ISR is retrieved and passed to the ISR

* If power management is enabled and the system was idle, all the hardware will be resumed from low-power
state before the ISR is executed, which can be very time-consuming

 Although some architectures will do this in hardware, other architectures need to switch to the interrupt stack in
code

 After the interrupt is serviced, the OS then performs some logic to potentially make a scheduling decision.

Zephyr supports so-called ‘direct’ interrupts, which are installed via TRQ_DIRECT_CONNECT. These direct
interrupts have some special implementation requirements and a reduced feature set; see the definition of
IRQ_DIRECT_CONNECT for details.

The following code demonstrates a direct ISR:

#define MY DEV_IRQ 24 /% device uses IRQ 24 */

#define MY DEV_PRIO 2 /* device uses interrupt priority 2 x/

/* argument passed to my_isr(), in this case a pointer to the device x/
#define MY IRQ FLAGS 0 /% IRQ flags. Unused on non-x86 x/

1.4. Zephyr Kernel Primer 89

Zephyr Project Documentation, & 7ii 1.9.0

ISR_DIRECT_DECLARE (my_isr)

{
do_stuff();
ISR_DIRECT_PM(); /# PM done after servicing interrupt for best latency #*/
return 1; /x We should check if scheduling decision should be made #*/

void my_isr_installer (void)
{

IRQ_DIRECT_CONNECT (MY_DEV_IRQ, MY _DEV_PRIO, my_isr, MY_IRQ_FLAGS);
irg_enable (MY_DEV_TIRQ) ;

Implementation Details

Interrupt tables are set up at build time using some special build tools. The details laid out here apply to all architectures
except x86, which are covered in the x86 Details section below.

Any invocation of TRQ_CONNECT will declare an instance of struct _isr_list which is placed in a special .intList
section:

struct _isr_list {
/** IRQ line number */
s32_t irqg;
/#++ Flags for this IRQ, see ISR_FLAG_x definitions #/
s32_t flags;
/4*+ ISR to call =/
void xfunc;
/*+* Parameter for non-direct IRQs x/
void xparam;

}i

Zephyr is built in two phases; the first phase of the build produces zephyr_prebuilt.elf which contains all the entries in
the .intList section preceded by a header:

struct {
void xspurious_irqg handler;
void xsw_irqg_handler;
u32_t num_isrs;
u32_t num_vectors;
struct _isr_list isrs[]; <- of size num_isrs

}i

This data consisting of the header and instances of struct _isr_list inside zephyr_prebuilt.elf is then used by the
gen_isr_tables.py script to generate a C file defining a vector table and software ISR table that are then compiled
and linked into the final application.

The priority level of any interrupt is not encoded in these tables, instead IRQ_ CONNECT also has a runtime component
which programs the desired priority level of the interrupt to the interrupt controller. Some architectures do not support
the notion of interrupt priority, in which case the priority argument is ignored.

90 Chapter 1. H¥

Zephyr Project Documentation, % #i 1.9.0

Vector Table

A vector table is generated when CONFIG_GEN_IRQ_VECTOR_TABLE is enabled. This data structure is used
natively by the CPU and is simply an array of function pointers, where each element n corresponds to the IRQ handler
for IRQ line n, and the function pointers are:

1. For ‘direct’ interrupts declared with TRQ_DIRECT_CONNECT, the handler function will be placed here.

2. For regular interrupts declared with TRQ_ CONNECT, the address of the common software IRQ handler is placed
here. This code does common kernel interrupt bookkeeping and looks up the ISR and parameter from the
software ISR table.

3. For interrupt lines that are not configured at all, the address of the spurious IRQ handler will be placed here.
The spurious IRQ handler causes a system fatal error if encountered.

Some architectures (such as the Nios II internal interrupt controller) have a common entry point for all interrupts and
do not support a vector table, in which case the CONFIG_GEN_IRQ_VECTOR_TABLE option should be disabled.

Some architectures may reserve some initial vectors for system exceptions and declare this in a table elsewhere, in
which case CONFIG_GEN_IRQ_START_VECTOR needs to be set to properly offset the indices in the table.

SW ISR Table

This is an array of struct _isr_table_entry:

struct _isr_table_entry {
void xarg;
void (*isr) (void «);
bi

This is used by the common software IRQ handler to look up the ISR and its argument and execute it. The active IRQ
line is looked up in an interrupt controller register and used to index this table.

x86 Details

The x86 architecture has a special type of vector table called the Interrupt Descriptor Table (IDT) which must be laid
out in a certain way per the x86 processor documentation. It is still fundamentally a vector table, and the gen_idt
tool uses the .intList section to create it. However, on APIC-based systems the indexes in the vector table do not
correspond to the IRQ line. The first 32 vectors are reserved for CPU exceptions, and all remaining vectors (up to
index 255) correspond to the priority level, in groups of 16. In this scheme, interrupts of priority level O will be placed
in vectors 32-47, level 1 48-63, and so forth. When the gen_idt tool is constructing the IDT, when it configures an
interrupt it will look for a free vector in the appropriate range for the requested priority level and set the handler there.

There are some APIC variants (such as MVIC) where priorities cannot be set by the user and the position in the vector
table does correspond to the IRQ line. Systems like this will enable CONFIG_X86_FIXED_IRQ_MAPPING.

On x86 when an interrupt or exception vector is executed by the CPU, there is no foolproof way to determine which
vector was fired, so a software ISR table indexed by IRQ line is not used. Instead, the IRQ_CONNECT call creates
a small assembly language function which calls the common interrupt code in _interrupt_enter () with the
ISR and parameter as arguments. It is the address of this assembly interrupt stub which gets placed in the IDT. For
interrupts declared with IRQ_DIRECT_CONNECT the parameterless ISR is placed directly in the IDT.

On systems where the position in the vector table corresponds to the interrupt’s priority level, the interrupt con-
troller needs to know at runtime what vector is associated with an IRQ line. gen_idt additionally creates an
_irq_to_interrupt_vector array which maps an IRQ line to its configured vector in the IDT. This is used at runtime
by IRQ_CONNECT to program the IRQ-to-vector association in the interrupt controller.

1.4. Zephyr Kernel Primer 91

Zephyr Project Documentation, & 7ii 1.9.0

Suggested Uses

Use aregular or direct ISR to perform interrupt processing that requires a very rapid response, and can be done quickly
without blocking.

JEf#: Interrupt processing that is time consuming, or involves blocking, should be handed off to a thread. See
Offloading ISR Work for a description of various techniques that can be used in an application.

Configuration Options

Related configuration options:
¢ CONFIG_ISR_STACK_SIZE

Additional architecture-specific and device-specific configuration options also exist.

APIs

The following interrupt-related APIs are provided by irqg.h:
e TRQ_CONNECT
¢ TRQO_DIRECT_CONNECT
e TSR _DIRECT_HEADER
e ISR _DIRECT_FOOTER
e ISR_DIRECT_PM
e TSR _DIRECT_DECLARE
e irg_lock ()
e irg_unlock ()
* irg_enable()
e irg_disable()
e irg is_enabled()
The following interrupt-related APIs are provided by kernel . h:
e k is_in_isr ()

e k_is_preempt_thread()

Atomic Services

An atomic variable is a 32-bit variable that can be read and modified by threads and ISRs in an uninterruptible manner.

* Concepts

* Implementation

— Defining an Atomic Variable

92 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

— Manipulating an Atomic Variable
— Manipulating an Array of Atomic Variables

* Suggested Uses

* Configuration Options

e APIs

Concepts

Any number of atomic variables can be defined.

Using the kernel’s atomic APIs to manipulate an atomic variable guarantees that the desired operation occurs correctly,
even if higher priority contexts also manipulate the same variable.

The kernel also supports the atomic manipulation of a single bit in an array of atomic variables.

Implementation
Defining an Atomic Variable

An atomic variable is defined using a variable of type atomic_t.

By default an atomic variable is initialized to zero. However, it can be given a different value using ATOMIC_INIT:

atomic_t flags = ATOMIC_INIT (OxFEF);

Manipulating an Atomic Variable

An atomic variable is manipulated using the APIs listed at the end of this section.

The following code shows how an atomic variable can be used to keep track of the number of times a function has been
invoked. Since the count is incremented atomically, there is no risk that it will become corrupted in mid-increment if
a thread calling the function is interrupted if by a higher priority context that also calls the routine.

atomic_t call_count;

int call_counting_routine (void)

{
/* increment invocation counter x/
atomic_inc (&call_count);

/#* do rest of routine's processing #*/

Manipulating an Array of Atomic Variables

An array of 32-bit atomic variables can be defined in the conventional manner. However, you can also define an N-bit
array of atomic variables using ATOMIC_DEF INE.

1.4. Zephyr Kernel Primer 93

Zephyr Project Documentation, & 7ii 1.9.0

A single bit in array of atomic variables can be manipulated using the APIs listed at the end of this section that end
with _bit ().

The following code shows how a set of 200 flag bits can be implemented using an array of atomic variables.

#define NUM_FLAG BITS 200
ATOMIC_DEFINE (flag_bits, NUM_FLAG_BITS);

/% set specified flag bit & return its previous value */
int set_flag bit (int bit_position)
{

return (int)atomic_set_bit (flag_bits, bit_position);

Suggested Uses

Use an atomic variable to implement critical section processing that only requires the manipulation of a single 32-bit
value.

Use multiple atomic variables to implement critical section processing on a set of flag bits in a bit array longer than 32
bits.

TEf#: Using atomic variables is typically far more efficient than using other techniques to implement critical sections
such as using a mutex or locking interrupts.

Configuration Options

Related configuration options:
e CONFIG_ATOMIC_OPERATIONS_BUILTIN
* CONFIG_ATOMIC_OPERATIONS_CUSTOM

¢ CONFIG_ATOMIC_OPERATIONS_C

APIs

The following atomic operation APIs are provided by atomic. h:
e ATOMIC_INIT
e ATOMIC_DEFINE
* atomic_get ()
* atomic_set ()
* atomic_clear ()
* atomic_add()
e atomic_sub ()
e atomic_inc ()

* atomic_dec ()

94 Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

* atomic_and()

e atomic_or ()

* atomic_xor ()

* atomic_nand{()

e atomic_cas ()

e atomic_set_bit ()

* atomic_clear_bit ()

* atomic_test_bit ()

e atomic_test_and_set_bit ()

e atomic_test_and_clear_bit ()

Polling API

The polling API is used to wait concurrently for any one of multiple conditions to be fulfilled.

» Concepts
* Implementation

— Using k_poll()

— Using k_poll_signal()
* Suggested Uses

» Configuration Options

* APIs

Concepts

The polling API’s main function is k_poll (), which is very similar in concept to the POSIX poll () function,
except that it operates on kernel objects rather than on file descriptors.

The polling API allows a single thread to wait concurrently for one or more conditions to be fulfilled without actively
looking at each one individually.

There is a limited set of such conditions:

* a semaphore becomes available

* akernel FIFO contains data ready to be retrieved

* apoll signal is raised
A thread that wants to wait on multiple conditions must define an array of poll events, one for each condition.
All events in the array must be initialized before the array can be polled on.

Each event must specify which type of condition must be satisfied so that its state is changed to signal the requested
condition has been met.

Each event must specify what kernel object it wants the condition to be satisfied.

1.4. Zephyr Kernel Primer 95

Zephyr Project Documentation, & 7ii 1.9.0

Each event must specify which mode of operation is used when the condition is satisfied.
Each event can optionally specify a tag to group multiple events together, to the user’s discretion.
Apart from the kernel objects, there is also a poll signal pseudo-object type that be directly signaled.

The k_poll () function returns as soon as one of the conditions it is waiting for is fulfilled. It is possible for more
than one to be fulfilled when k_pol1 () returns, if they were fulfilled before k_poll () was called, or due to the
preemptive multi-threading nature of the kernel. The caller must look at the state of all the poll events in the array to
figured out which ones were fulfilled and what actions to take.

Currently, there is only one mode of operation available: the object is not acquired. As an example, this means that
when k_poll () returns and the poll event states that the semaphore is available, the caller of k_pol1 () must then
invoke k_sem_take () to take ownership of the semaphore. If the semaphore is contested, there is no guarantee that
it will be still available when k_sem_give () is called.

Implementation
Using k_poll()

The main APl is k_poll (), which operates on an array of poll events of type struct k_poll_event. Each
entry in the array represents one event a call to k_po11 () will wait for its condition to be fulfilled.

They can be initialized using either the runtime initializers K_POLL_EVENT_INITIALIZER() or
k_poll_event_init (), or the static initializer K_POLL_EVENT_STATIC_INITIALIZER(). An
object that matches the type specified must be passed to the initializers. = The mode must be set to
K_POLI_MODE_NOTIFY_ONLY. The state must be set to K_POLIL_STATE_NOT_READY (the initializers
take care of this). The user tag is optional and completely opaque to the API: it is there to help a user to group similar
events together. Being optional, it is passed to the static initializer, but not the runtime ones for performance reasons.
If using runtime initializers, the user must set it separately in the struct k_poll_event data structure. If an
event in the array is to be ignored, most likely temporarily, its type can be set to K_POLL_TYPE_IGNORE.

struct k_poll_event events[2] = {
K_POLL_EVENT_STATIC_INITIALIZER (K_POLL_TYPE_SEM AVAILABLE,
K_POLL_MODE_NOTIFY_ ONLY,
&my_sem, 0),
K_POLL_EVENT_STATIC_INITIALIZER (K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ ONLY,
smy_fifo, 0),
}i

or at runtime

struct k_poll_event events[2];
void some_init (void)
{
k_poll_event_init (&events[0],
K_POLL_TYPE_SEM_AVAILARBRLE,
K_POLL_MODE_NOTIFY ONLY,
&my__sem) ;

k_poll_event_init (&events[1],
K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
smy_fifo);

96 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

// tags are left uninitialized if unused

After the events are initialized, the array can be passed to k_poll (). A timeout can be specified to wait only for a
specified amount of time, or the special values K_NO_WAIT and K_FOREVER to either not wait or wait until an event
condition is satisfied and not sooner.

Only one thread can poll on a semaphore or a FIFO at a time. If a second thread tries to poll on the same semaphore or
FIFO, k_poll () immediately returns with the return value -EADDRINUSE. In that case, if other conditions passed
to k_poll () were met, their state will be set in the corresponding poll event.

In case of success, k_pol1 () returns 0. If it times out, it returns ~-EAGATN.

// assume there is no contention on this semaphore and FIFO
// —EADDRINUSE will not occur; the semaphore and/or data will be available

void do_stuff (void)

{
rc = k_poll(events, 2, 1000);

if (rc == 0) {
if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {
k_sem_take (events[0] .sem, 0);
} else if (events[l].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {

data = k_fifo_get (events[1l].fifo, 0);
// handle data
}
} else {
// handle timeout

When k_poll () is called in a loop, the events state must be reset to K_POLL_STATE_NOT_READY by the user.

void do_stuff (void)
{
for(;;) {
rc = k_poll (events, 2, K_FOREVER);

if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {
k_sem_take (events[0] .sem, 0);
} else if (events[l].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {

data = k_fifo_get (events[l].fifo, 0);
// handle data
}
events[0] .state = K_POLL_STATE_NOT_READY;
events[l].state = K_POLL_STATE_NOT_READY;

Using k_poll_signal()

One of the types of events is K_POLL_TYPE_SIGNAL: this is a “direct” signal to a poll event. This can be seen as a
lightweight binary semaphore only one thread can wait for.

A poll signal is a separate object of type struct k_poll signal that must be attached to a k_poll_event,
similar to a semaphore or FIFO. It must first be initialized either via K_POLL_SIGNAL_INITIALIZER() or
k_poll_signal_init ().

1.4. Zephyr Kernel Primer 97

Zephyr Project Documentation, & 7ii 1.9.0

struct k_poll_signal signal;
void do_stuff (void)

{
k_poll_signal_init (&signal);

It is signaled via the k_poll_signal () function. This function takes a user result parameter that is opaque to the
API and can be used to pass extra information to the thread waiting on the event.

struct k_poll_signal signal;

// thread A
void do_stuff (void)

{
k_poll_signal_init (&signal);

struct k_poll_event events[l] = {
K_POLL_EVENT_INITIALIZER (K_POLL_TYPE_ SIGNAL,
K_POLL_MODE_NOTIFY_ONLY,
&signal);

}i

k_poll (events, 1, K_FOREVER);

if (events.signal->result == 0x1337) {
// A-OK!
} else {

// weird error

// thread B
void signal_do_stuff (void)

{
k_poll_signal (&signal, 0x1337);

If the signal is to be polled in a loop, both its event state and its signaled field must be reset on each iteration if it has
been signaled.

struct k_poll_signal signal;
void do_stuff (void)

{
k_poll_signal_init (&signal);

struct k_poll_event events[l] = {
K_POLL_EVENT_ INITIALIZER (K_POLL_TYPE_ SIGNAL,
K_POLL_MODE_NOTIFY_ONLY,
&signal);

}i

for (;;) |
k_poll (events, 1, K_FOREVER);

if (events[0].signal->result == 0x1337) {
// A-OK!
} else {

// weird error

98 Chapter 1. H¥

Zephyr Project Documentation, % #i 1.9.0

}

events|[0] .signal->signaled = 0;
events[0] .state = K_POLL_STATE_NOT_READY;

Suggested Uses

Use k_poll () to consolidate multiple threads that would be pending on one object each, saving possibly large
amounts of stack space.

Use a poll signal as a lightweight binary semaphore if only one thread pends on it.

IEf#: Because objects are only signaled if no other thread is waiting for them to become available and only one
thread can poll on a specific object, polling is best used when objects are not subject of contention between multiple
threads, basically when a single thread operates as a main “server” or “dispatcher” for multiple objects and is the only
one trying to acquire these objects.

Configuration Options

Related configuration options:

¢ CONFIG_POLL

APIs

The following polling APIs are provided by kernel . h:
e K POLL_EVENT_INITIALIZER
e K_ POLL_EVENT_STATIC_INITIALIZER
* k_poll_event_init ()
* k_poll()
* k_poll_signal_init ()
* k_poll_signal ()

Ring Buffers

A ring buffer is a circular buffer of 32-bit words, whose contents are stored in first-in-first-out order. Data items can
be enqueued and dequeued from a ring buffer in chunks of up to 1020 bytes. Each data item also has two associated
metadata values: a type identifier and a 16-bit integer value, both of which are application-specific.

* Concepts

— Concurrency

1.4. Zephyr Kernel Primer 99

Zephyr Project Documentation, & 7ii 1.9.0

— Internal Operation

» Implementation
— Defining a Ring Buffer
— Enqueuing Data

— Retrieving Data

e APIs

Concepts

Any number of ring buffers can be defined. Each ring buffer is referenced by its memory address.
A ring buffer has the following key properties:

* A data buffer of 32-bit words. The data buffer contains the data items that have been added to the ring buffer
but not yet removed.

* A data buffer size, measured in 32-bit words. This governs the maximum amount of data (including metadata
values) the ring buffer can hold.

A ring buffer must be initialized before it can be used. This sets its data buffer to empty.

A ring buffer data item is an array of 32-bit words from 0 to 1020 bytes in length. When a data item is enqueued its
contents are copied to the data buffer, along with its associated metadata values (which occupy one additional 32-bit
word). If the ring buffer has insufficient space to hold the new data item the enqueue operation fails.

A data items is dequeued from a ring buffer by removing the oldest enqueued item. The contents of the dequeued data
item, as well as its two metadata values, are copied to areas supplied by the retriever. If the ring buffer is empty, or if
the data array supplied by the retriever is not large enough to hold the data item’s data, the dequeue operation fails.

Concurrency

The ring buffer APIs do not provide any concurrency control. Depending on usage (particularly with respect to number
of concurrent readers/writers) applications may need to protect the ring buffer with mutexes and/or use semaphores to
notify consumers that there is data to read.

For the trivial case of one producer and one consumer, concurrency shouldn’t be needed.

Internal Operation

The ring buffer always maintains an empty 32-bit word in its data buffer to allow it to distinguish between empty and
full states.

If the size of the data buffer is a power of two, the ring buffer uses efficient masking operations instead of expensive
modulo operations when enqueuing and dequeuing data items.

Implementation

100 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Defining a Ring Buffer

A ring buffer is defined using a variable of type struct ring_buf. It must then be initialized by calling
sys_ring_buf_init ().

The following code defines and initializes an empty ring buffer (which is part of a larger data structure). The ring
buffer’s data buffer is capable of holding 64 words of data and metadata information.

#define MY RING _BUF_SIZE 64

struct my_struct {
struct ring buf rb;
u32_t buffer [MY_RING_BUF_SIZE];

bi
struct my_struct ms;

void init_my_struct {
sys_ring_buf_init (&éms.rb, sizeof (ms.buffer), ms.buffer);

Alternatively, a ring buffer can be defined and initialized at compile time using one of two macros at file scope. Each
macro defines both the ring buffer itself and its data buffer.

The following code defines a ring buffer with a power-of-two sized data buffer, which can be accessed using efficient
masking operations.

/* Buffer with 278 (or 256) words */
SYS_RING_BUF_DECLARE_POW2 (my_ring_buf, 8);

The following code defines a ring buffer with an arbitrary-sized data buffer, which can be accessed using less efficient
modulo operations.

#define MY _RING_BUF_WORDS 93
SYS_RING_BUF_DECLARE_SIZE (my_ring_buf, MY_RING_BUF_WORDS) ;

Enqueuing Data

A data item is added to a ring buffer by calling sys_ring_buf_put ().

u32_t my_data[MY_DATA_WORDS];
int ret;

ret = sys_ring_buf_put (&ring_buf, TYPE_FOO, 0, my_data, SIZE32_OF (my_data));
if (ret == -EMSGSIZE) {
/#* not enough room for the data item */

If the data item requires only the type or application-specific integer value (i.e. it has no data array), a size of 0 and
data pointer of NULL can be specified.

int ret;

ret = sys_ring_buf_put (&ring_buf, TYPE_BAR, 17, NULL, 0);

1.4. Zephyr Kernel Primer 101

Zephyr Project Documentation, & 7ii 1.9.0

if (ret == -EMSGSIZE) {
/* not enough room for the data item =/

Retrieving Data

A data item is removed from a ring buffer by calling sys_ring_buf_get ().

u32_t my_data[MY_DATA_WORDS];
ulée_t my_type;

u8_t my_value;

u8_t my_size;

int ret;

my_size = SIZE32_OF (my_data);
ret = sys_ring_buf_get (&ring_buf, &my_type, &my_value, my_data, &my_size);
if (ret == -EMSGSIZE) {

printk ("Buffer is too small, need %d u32_t\n", my_size);

} else if (ret == -EAGAIN) {
printk ("Ring buffer is empty\n");
} else {

printk ("Got item of type %u value &u of size %u dwords\n",
my_type, my_value, my_size);

APIs

The following ring buffer APIs are provided by include/misc/ring_buffer.h:
* SYS_RING_BUF_DECLARE_POW2 ()
* SYS_RING_BUF_DECLARE_STIZE ()
* sys_ring buf_init ()
e sys_ring_buf_is_empty ()
* sys_ring_buf_space_get ()
* sys_ring_buf_put ()

* sys_ring_buf_get ()

Floating Point Services

The kernel allows threads to use floating point registers on board configurations that support these registers.

1EM#: Floating point services are currently available only for boards based on the ARM Cortex-M4 or the Intel x86
architectures. The services provided are architecture specific.

The kernel does not support the use of floating point registers by ISRs.

102 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

* Concepts

— No FP registers mode

— Unshared FP registers mode

— Shared FP registers mode
» Implementation

— Performing Floating Point Arithmetic
* Suggested Uses

» Configuration Options

* APIs

Concepts

The kernel can be configured to provide only the floating point services required by an application. Three modes of
operation are supported, which are described below. In addition, the kernel’s support for the SSE registers can be
included or omitted, as desired.

No FP registers mode

This mode is used when the application has no threads that use floating point registers. It is the kernel’s default floating
point services mode.

If a thread uses any floating point register, the kernel generates a fatal error condition and aborts the thread.

Unshared FP registers mode

This mode is used when the application has only a single thread that uses floating point registers.

The kernel initializes the floating point registers so they can be used by any thread. The floating point registers are left
unchanged whenever a context switch occurs.

TEM#: Incorrect operation may result if two or more threads use floating point registers, as the kernel does not attempt
to detect (or prevent) multiple threads from using these registers.

Shared FP registers mode

This mode is used when the application has two or more threads that use floating point registers. Depending upon the
underlying CPU architecture, the kernel supports one or more of the following thread sub-classes:

* non-user: A thread that cannot use any floating point registers
* FPU user: A thread that can use the standard floating point registers

* SSE user: A thread that can use both the standard floating point registers and SSE registers

1.4. Zephyr Kernel Primer 103

Zephyr Project Documentation, & 7ii 1.9.0

The kernel initializes the floating point registers so they can be used by any thread, then saves and restores these
registers during context switches to ensure the computations performed by each FPU user or SSE user are not impacted
by the computations performed by the other users.

On the ARM Cortex-M4 architecture the kernel treats all threads as FPU users when shared FP registers mode is
enabled. This means that the floating point registers are saved and restored during a context switch, even when the
associated threads are not using them. Each thread must provide an extra 132 bytes of stack space where these register
values can be saved.

On the x86 architecture the kernel treats each thread as a non-user, FPU user or SSE user on a case-by-case basis.
A “lazy save” algorithm is used during context switching which updates the floating point registers only when it is
absolutely necessary. For example, the registers are not saved when switching from an FPU user to a non-user thread,
and then back to the original FPU user. The following table indicates the amount of additional stack space a thread
must provide so the registers can be saved properly.

Thread type | FP register use | Extra stack space required
cooperative any 0 bytes

preemptive none 0 bytes

preemptive FPU 108 bytes

preemptive SSE 464 bytes

The x86 kernel automatically detects that a given thread is using the floating point registers the first time the thread
accesses them. The thread is tagged as an SSE user if the kernel has been configured to support the SSE registers, or
as an FPU user if the SSE registers are not supported. If this would result in a thread that is an FPU user being tagged
as an SSE user, or if the application wants to avoid the exception handling overhead involved in auto-tagging threads,
it is possible to pre-tag a thread using one of the techniques listed below.

* A statically-created x86 thread can be pre-tagged by passing the K_FP_REGS or K_SSE_REGS option to
K_THREAD_DEFINE.

* A dynamically-created x86 thread can be pre-tagged by passing the K_FP_REGS or K_SSE_REGS option to
k_thread_create().

* An already-created x86 thread can pre-tag itself once it has started by passing the K_FP_REGS or
K_SSE_REGS option to k_float_enable ().

If an x86 thread uses the floating point registers infrequently it can call k_float_disable () toremove its tagging
as an FPU user or SSE user. This eliminates the need for the kernel to take steps to preserve the contents of the floating
point registers during context switches when there is no need to do so. When the thread again needs to use the floating
point registers it can re-tag itself as an FPU user or SSE user by calling k_float_enable ().

Implementation
Performing Floating Point Arithmetic

No special coding is required for a thread to use floating point arithmetic if the kernel is properly configured.

The following code shows how a routine can use floating point arithmetic to avoid overflow issues when computing
the average of a series of integer values.

int average (int xvalues, int num_values)

{

double sum;

int i;
sum = 0.0;
for (i = 0; i < num_values; i++) {

104 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

sum += xvalues;
values++;

}

return (int) ((sum / num_values) + 0.5);

Suggested Uses

Use the kernel floating point services when an application needs to perform floating point operations.

Configuration Options

To configure unshared FP registers mode, enable the CONFIG_FLOAT configuration option and leave the
CONF IG_FP_SHARING configuration option disabled.

To configure shared FP registers mode, enable both the CONFIG_FLOAT configuration option and the
CONFIG_FP_SHARING configuration option. Also, ensure that any thread that uses the floating point registers has
sufficient added stack space for saving floating point register values during context switches, as described above.

Use the CONFIG_SSE configuration option to enable support for SSEx instructions (x86 only).

APIs

The following floating point APIs (x86 only) are provided by kernel . h:
e k float_enable()

e k float_disable ()

C++ Support for Applications
The kernel supports applications written in both C and C++. However, to use C++ in an application you must configure
the kernel to include C++ support and the build system must select the correct compiler.

The build system selects the C++ compiler based on the suffix of the files. Files identified with either a ¢xx or a cpp
suffix are compiled using the C++ compiler. For example, myCplusplusApp . cpp is compiled using C++.

The kernel currently provides only a subset of C++ functionality. The following features are not supported:
* Dynamic object management with the new and delete operators
e RTTI (run-time type information)
» Exceptions
« Static global object destruction
While not an exhaustive list, support for the following functionality is included:
* Inheritance
* Virtual functions
* Virtual tables

« Static global object constructors

1.4. Zephyr Kernel Primer 105

Zephyr Project Documentation, & 7ii 1.9.0

Static global object constructors are initialized after the drivers are initialized but before the application main ()
function. Therefore, use of C++ is restricted to application code.

Hf#: Do not use C++ for kernel, driver, or system initialization code.

CPU Idling

Although normally reserved for the idle thread, in certain special applications, a thread might want to make the CPU
idle.

* Concepts
* Implementation
— Making the CPU idle
— Making the CPU idle in an atomic fashion

* Suggested Uses

* APIs

Concepts

Making the CPU idle causes the kernel to pause all operations until an event, normally an interrupt, wakes up the CPU.
In a regular system, the idle thread is responsible for this. However, in some constrained systems, it is possible that
another thread takes this duty.

Implementation

Making the CPU idle

Making the CPU idle is simple: call the k_cpu_idle() APL. The CPU will stop executing instructions until an event
occurs. Make sure interrupts are not locked before invoking it. Most likely, it will be called within a loop.

static k_sem my_sem;
void my_isr (void xunused)
{

k_sem_give (&my_sem) ;

}
void main (void)
{
k_sem_init (émy_sem, 0, 1);
/* walit for semaphore from ISR, then do related work */

for (;;) |

/* wait for ISR to trigger work to perform */

106 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

if (k_sem_take (&émy_sem, K_NO_WAIT) == 0) {

/% ... do processing #*/

/+ put CPU to sleep to save power x/
k_cpu_idle();

Making the CPU idle in an atomic fashion

It is possible that there is a need to do some work atomically before making the CPU idle. In such a case,
k_cpu_atomic_idle() should be used instead.

In fact, there is a race condition in the previous example: the interrupt could occur between the time the semaphore
is taken, finding out it is not available and making the CPU idle again. In some systems, this can cause the CPU
to idle until another interrupt occurs, which might be never, thus hanging the system completely. To prevent this,
k_cpu_atomic_idle() should have been used, like in this example.

static k_sem my_sem;

void my_isr (void xunused)
{

k_sem_give (&my_sem) ;

void main (void)

{
k_sem_init (&émy_sem, 0, 1);
for (;;) A
unsigned int key = irqg lock();
J *
* Wait for semaphore from ISR; if acquired, do related work, then
* go to next loop iteration (the semaphore might have been given

* again),; else, make the CPU idle.
*/

if (k_sem_take (&émy_sem, K_NO_WAIT) == 0) {
irg unlock (key) ;
/% ... do processing */

} else {

/* put CPU to sleep to save power */
k_cpu_atomic_idle (key) ;

1.4. Zephyr Kernel Primer 107

Zephyr Project Documentation, & 7ii 1.9.0

Suggested Uses

Use k_cpu_atomic_idle() when a thread has to do some real work in addition to idling the CPU to wait for an event.
See example above.

Use k_cpu_idle() only when a thread is only responsible for idling the CPU, i.e. not doing any real work, like in this
example below.

void main (void)
{

/* ... do some system/application initialization #*/

/% thread is only used for CPU idling from this point on #*/
for (;;) A

k_cpu_idle();
}

IEf#: Do not use these APIs unless absolutely necessary. In a normal system, the idle thread takes care of power
management, including CPU idling.

APIs

The following CPU idling APIs are provided by kernel . h:
* k_cpu_idle()

e k_cpu_atomic_idle ()

Zephyr Project Security

These documents describe the requirements, processes, and developer guidelines for ensuring security is addressed
within the Zephyr project.

Zephyr Security Overview

Revision history

Rev Date Description

1.0 Draft | July 27, 2016 Initial draft version
1.0-rcl April 21,2017 | Draft for review by TSC

Introduction

This document outlines the steps of the Zephyr Security board towards a defined security process that helps developers
build more secure software while addressing security compliance requirements. It presents the key ideas of the secu-
rity process and outlines which documents need to be created. After the process is implemented and all supporting
documents are created, this document is a top-level overview and entry point.

108 Chapter 1. B3

Zephyr Project Documentation, & 7ii 1.9.0

Overview and Scope

We begin with an overview of the Zephyr development process, which mainly focuses on security functionality.

In subsequent sections, the individual parts of the process are treated in detail. As depicted in Figure 1, these main
steps are:

1. Secure Development: Defines the system architecture and development process that ensures adherence to
relevant coding guidelines and quality assurance procedures.

2. Secure Design: Defines security procedures and implement measures to enforce them. A security architecture
of the system and relevant sub-modules is created, threats are identified, and countermeasures designed. Their
correct implementation and the validity of the threat models are checked by code reviews. Finally, a process
shall be defined for reporting, classifying, and mitigating security issues..

3. Security Certification: Defines the certifiable part of the Zephyr RTOS. This includes an evaluation target, its
assets, and how these assets are protected. Certification claims shall be determined and backed with appropriate
evidence.

Secure System {ég':;;;;} Quality
De\relnpment Architecture Guidelines Assurance
Security Security Security Issue
Architecture Reviews Management
Security Evaluation Certification Certification
Certification target claim evidence

1.1: Figure 1. Security Process Steps

Intended Audience

This document is a guideline for the development of a security process by the Zephyr Security Committee and the
Zephyr Technical Steering Committee. It provides an overview of the Zephyr security process for (security) engineers
and architects.

Nomenclature

In this document, the keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC2119.

These words are used to define absolute requirements (or prohibitions), highly recommended requirements, and truly
optional requirements. As noted in RFC-2119, “These terms are frequently used to specify behavior with security
implications. The effects on security of not implementing a MUST or SHOULD, or doing something the specification

1.5. Zephyr Project Security 109

https://www.ietf.org/rfc/rfc2119.txt

Zephyr Project Documentation, & 7ii 1.9.0

says MUST NOT or SHOULD NOT be done may be very subtle. Document authors should take the time to elaborate
the security implications of not following recommendations or requirements as most implementors will not have had
the benefit of the experience and discussion that produced the specification.”

Security Document Update

This document is a living document. As new requirements, features, and changes are identified, they will be added to
this document through the following process:

1. Changes will be submitted from the interested party(ies) via pull requests to the Zephyr documentation reposi-
tory.

2. The security committee will review these changes and provide feedback or acceptance of the changes.

3. Once accepted, these changes will become part of the document.

Current Security Definition

This section recapitulates the current status of secure development within the Zephyr RTOS. Currently, focus is put on
functional security and code quality assurance, although additional security features are scoped.

The three major security measures currently implemented are:

* Security Functionality with a focus on cryptographic algorithms and protocols. Support for cryptographic
hardware is scoped for future releases.The Zephyr runtime architecture is a monolithic binary and removes the
need for dynamic loaders , thereby reducing the exposed attack surface.

¢ Quality Assurance is driven by using a development process that requires all code to be reviewed before being
committed to the common repository. Furthermore, the reuse of proven building blocks such as network stacks
increases the overall quality level and guarantees stable APIs. Static code analyses are planned for the near
future.

» Execution Protection including thread separation, stack and memory protection is currently not available in the
upstream Zephyr RTOS but is planned for future releases.

These topics are discussed in more detail in the following subsections.

Security Functionality

The security functionality in Zephyr hinges mainly on the inclusion of cryptographic algorithms, and on its monolithic
system design.

The cryptographic features are provided through a set of cryptographic libraries. Applications can choose TinyCrypt2
or mbedTLS based on their needs. TinyCrypt2 supports key cryptographic algorithms required by the connectivity
stacks. Tinycrypt2, however, only provides a limited set of algorithms. mbedTLS supports a wider range of algorithms,
but at the cost of additional requirements such as malloc support. Applications can choose the solution that matches
their individual requirements. Future work may include APIs to abstract the underlying crypto library choice.

APIs for vendor specific cryptographic IPs in both hardware and software are planned, including secure key storage in
the form of secure access modules (SAMs), Trusted Platform Modules (TPMs), and Trusted Execution Environments
(TEEs).

The security architecture is based on a monolithic design where the Zephyr kernel and all applications are compiled
into a single static binary. System calls are implemented as function calls without requiring context switches. Static
linking eliminates the potential for dynamically loading malicious code. Memory protection and task separation
techniques are in scope for future releases.

110 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Quality Assurance

The Zephyr project uses an automated quality assurance process. The goal is to have a process including mandatory
code reviews, feature and issue management/tracking, and static code analyses.

Code reviews are documented and enforced using a voting system before getting checked into the repository by the
responsible subsystem’s maintainer. The main goals of the code review are:

* Verifying correct functionality of the implementation

¢ Increasing the readability and maintainability of the contributed source code
 Ensuring appropriate usage of string and memory functions

* Validation of the user input

* Reviewing the security relevant code for potential issues

The current coding guidelines focus mostly on coding styles and conventions. Functional correctness is ensured by the
build system and the experience of the reviewer. Especially for security relevant code, concrete and detailed guidelines
need to be developed and aligned with the developers (see: Secure Coding Guidelines).

Static code analyses are run on the Zephyr code tree on a regular basis using the open source Coverity Scan tool.
Coverity Scan now includes complexity analysis.

Bug and issue tracking and management is performed using Jira. The term “survivability” was coined to cover pro-
active security tasks such as security issue categorization and management. Initial effort has been started on the
definition of vulnerability categorization and mitigation processes within Jira.

Issues determined by Coverity should have more stringent reviews before they are closed as non issues (at least another
person educated in security processes need to agree on non-issue before closing).

A security subcommittee has been formed to develop a security process in more detail; this document is part of that
process.

Execution Protection

Execution protection is planned for future releases and is roughly categorized into the following tasks:

* Memory separation: Memory will be partitioned into regions and assigned attributes based on the owner of
that region of memory. Threads will only have access to regions they control.

 Stack protection: Stack guards would provide mechanisms for detecting and trapping stack overruns. Individ-
ual threads should only have access to their own stacks.

¢ Thread separation: Individual threads should only have access to their own memory resources. As threads
are scheduled, only memory resources owned by that thread will be accessible.Topics such as program flow
protection and other measures for tamper resistance are currently not in scope.

System Level Security (Ecosystem, ...)

System level security encompasses a wide variety of categories. Some examples of these would be:
* Secure/trusted boot
* QOver the air (OTA) updates
* External Communication

¢ Device authentication

1.5. Zephyr Project Security 111

Zephyr Project Documentation, & 7ii 1.9.0

¢ Access control of onboard resources
— Flash updating
— Secure storage
— Peripherals

¢ Root of trust

* Reduction of attack surface

Some of these categories are interconnected and rely on multiple pieces to be in place to produce a full solution for
the application.

Secure Development Process

The development of secure code shall adhere to certain criteria. These include coding guidelines and development
processes that can be roughly separated into two categories related to software quality and related to software security.
Furthermore, a system architecture document shall be created and kept up-to-date with future development.

System Architecture

A high-level schematic of the Zephyr system architecture is given in Figure 2. It separates the architecture into an
OS part (kernel + OS Services) and a user-specific part (Application Services). The OS part itself contains low-level,
platform specific drivers and the generic implementation of I/O APIs, file systems, kernel-specific functions, and the
cryptographic library.

A document describing the system architecture and design choices shall be created and kept up to date with future
development. This document shall include the base architecture of the Zephyr OS and an overview of important
submodules. For each of the modules, a dedicated architecture document shall be created and evaluated against the
implementation. These documents shall serve as an entry point to new developers and as a basis for the security
architecture. Please refer to the Zephyr Kernel subsystem documentation for detailed information.

Secure Coding Guidelines

Designing an open software system such as Zephyr to be secure requires adhering to a defined set of design standards.
These standards are included in the Zephyr Project documentation, specifically in its Secure Coding Guidelines section.
In [SALT75], the following, widely accepted principles for protection mechanisms are defined to prevent security
violations and limit their impact:

* Open design as a design guideline incorporates the maxim that protection mechanisms cannot be kept secret on
any system in widespread use. Instead of relying on secret, custom-tailored security measures, publicly accepted
cryptographic algorithms and well established cryptographic libraries shall be used.

¢ Economy of mechanism specifies that the underlying design of a system shall be kept as simple and small
as possible. In the context of the Zephyr project, this can be realized, e.g., by modular code [PAUL09] and
abstracted APIs.

¢ Complete mediation requires that each access to every object and process needs to be authenticated first.
Mechanisms to store access conditions shall be avoided if possible.

¢ Fail-safe defaults defines that access is restricted by default and permitted only in specific conditions defined
by the system protection scheme, e.g., after successful authentication. Furthermore, default settings for services
shall be chosen in a way to provide maximum security. This corresponds to the “Secure by Default” paradigm
[MS12].

112 Chapter 1. H3x

Zephyr Project Documentation, & 7ii 1.9.0

" Application
g r
b Smart Objects / High Level APIs / Data Models
A _
c LWM2M MQarT HTTP
o
.ﬁ
o L DTLS TLS
E —
< . TCP/UDP
;
3 IPvE/IPvd
=
m
i =
a
A=
=
o
w
v
i
o

&

Kernel Services f Schedulers

Power Management

kernel

I

Platform

———T— | ————— E—E—— [———

P 1.2: Figure 2: Zephyr System Architecture

1.5. Zephyr Project Security 113

Zephyr Project Documentation, & 7ii 1.9.0

Separation of privilege is the principle that two conditions or more need to be satisfied before access is granted.
In the context of the Zephyr project, this could encompass split keys [PAULO9].

Least privilege describes an access model in which each user, program, thread, and fiber shall have the smallest
possible subset of permissions in the system required to perform their task. This positive security model aims to
minimize the attack surface of the system.

Least common mechanism specifies that mechanisms common to more than one user or process shall not be
shared if not strictly required. The example given in [SALT75] is a function that should be implemented as a
shared library executed by each user and not as a supervisor procedure shared by all users.

Psychological acceptability requires that security features are easy to use by the developers in order to ensure
its usage and the correctness of its application.

In addition to these general principles, the following points are specific to the development of a secure RTOS:

* Complementary Security/Defense in Depth: do not rely on a single threat mitigation approach. In case of the

complementary security approach, parts of the threat mitigation are performed by the underlying platform. In
case such mechanisms are not provided by the platform, or are not trusted, a defense in depth [MS12] paradigm
shall be used.

Less commonly used services off by default: to reduce the exposure of the system to potential attacks, features
or services shall not be enabled by default if they are only rarely used (a threshold of 80% is given in [MS12]).
For the Zephyr project, this can be realized using the configuration management. Each functionality and module
shall be represented as a configuration option and needs to be explicitly enabled. Then, all features, protocols,
and drivers not required for a particular use case can be disabled. The user shall be notified if low-level options
and APIs are enabled but not used by the application.

Change management: to guarantee a traceability of changes to the system, each change shall follow a specified
process including a change request, impact analysis, ratification, implementation, and validation phase. In each
stage, appropriate documentation shall be provided. All commits shall be related to a bug report or change
request in the issue tracker. Commits without a valid reference shall be denied.

Based on these design principles and commonly accepted best practices, a secure development guide shall be devel-
oped, published, and implemented into the Zephyr development process. Further details on this are given in the Secure
Design section.

Quality Assurance

The quality assurance part encompasses the following criteria:

* Adherence to the Coding Guidelines with respect to coding style, naming schemes of modules, functions,

variables, and so forth. This increases the readability of the Zephyr code base and eases the code review. These
coding guidelines are enforced by automated scripts prior to check-in.

* Adherence to Deployment Guidelines is required to ensure consistent releases with a well-documented feature

set and a trackable list of security issues.

Code Reviews ensure the functional correctness of the code base and shall be performed on each proposed code
change prior to check-in. Code reviews shall be performed by at least one independent reviewer other than the
author(s) of the code change. These reviews shall be performed by the subsystem maintainers and developers
on a functional level and are to be distinguished from security reviews as laid out in Chapter 4. Please refer to
the development model documentation on the Zephyr project Wiki.

Static Code Analysis tools efficiently detect common coding mistakes in large code bases. All code shall be
analyzed using an appropriate tool prior to merges into the main repository. This is not per individual commit,
but is to be run on some interval on specific branches. It is mandatory to remove all findings or waive potential
false-positives before each release. To process process documentation. Waivers shall be documented centrally
and in form of a comment inside the source code itself. The documentation shall include the employed tool and

114

Chapter 1. H3x

https://wiki.zephyrproject.org/view/Development_Model

Zephyr Project Documentation, % #i 1.9.0

its version, the date of the analysis, the branch and parent revision number, the reason for the waiver, the author
of the respective code, and the approver(s) of the waiver. This shall as a minimum run on the main release
branch and on the security branch. It shall be ensured that each release has zero issues with regard to static code
analysis (including waivers). Please refer to the development model documentation on the Zephyr project Wiki.

* Complexity Analyses shall be performed as part of the development process and metrics such as cyclomatic
complexity shall be evaluated. The main goal is to keep the code as simple as possible.

e Automation: the review process and checks for coding rule adherence are a mandatory part of the pre-
commit checks. To ensure consistent application, they shall be automated as part of the pre-commit proce-
dure. Prior to merging large pieces of code in from subsystems, in addition to review process and coding
rule adherence, all static code analysis must have been run and issues resolved.

Release and Lifecycle Management

Lifecycle management contains several aspects:

* Device management encompasses the possibility to update the operating system and/or security related sub-
systems of Zephyr enabled devices in the field.

* Lifecycle management: system stages shall be defined and documented along with the transactions between
the stages in a system state diagram. For security reasons, this shall include locking of the device in case an
attack has been detected, and a termination if the end of life is reached.

* Release management describes the process of defining the release cycle, documenting releases, and maintaining
a record of known vulnerabilities and mitigations. Especially for certification purposes the integrity of the
release needs to be ensured in a way that later manipulation (e.g. inserting of backdoors, etc.) can be easily
detected.

* Rights management and NDAs: if required by the chosen certification, the confidentiality and integrity of the
system needs to be ensured by an appropriate rights management (e.g. separate source code repository) and
non-disclosure agreements between the relevant parties. In case of a repository shared between several parties,
measures shall be taken that no malicious code is checked in.

These points shall be evaluated with respect to their impact on the development process employed for the Zephyr
project.

Secure Design

In order to obtain a certifiable system or product, the security process needs to be clearly defined and its application
needs to be monitored and driven. This process includes the development of security related modules in all of its
stages and the management of reported security issues. Furthermore, threat models need to be created for currently
known and future attack vectors, and their impact on the system needs to be investigated and mitigated. Please refer
to the secure coding guidelines outlined in the Zephyr project documentation for detailed information.

The software security process includes:

* Adherence to the Secure Development Guidelines is mandatory to avoid that individual components breach
the system security and to minimize the vulnerability of individual modules. While this can be partially achieved
by automated tests, it is inevitable to investigate the correct implementation of security features such as coun-
termeasures manually in security-critical modules.

* Security Reviews shall be performed by a security architect in preparation of each security-targeted release and
each time a security-related module of the Zephyr project is changed. This process includes the validation of the
effectiveness of implemented security measures, the adherence to the global security strategy and architecture,
and the preparation of audits towards a security certification if required.

1.5. Zephyr Project Security 115

https://wiki.zephyrproject.org/view/Development_Model
https://www.zephyrproject.org/doc/contribute/security.html

Zephyr Project Documentation, & 7ii 1.9.0

* Security Issue Management encompasses the evaluation of potential system vulnerabilities and their mitigation
as described in the Security Issue Management Section.

These criteria and tasks need to be integrated into the development process for secure software and shall be automated
wherever possible. On system level, and for each security related module of the secure branch of Zephyr, a directly
responsible security architect shall be defined to guide the secure development process.

Security Architecture

The general guidelines above shall be accompanied by an architectural security design on system- and module-level.
The high level considerations include

¢ The identification of security and compliance requirements

* Functional security such as the use of cryptographic functions whenever applicable

* Design of countermeasures against known attack vectors

* Recording of security relevant auditable events

* Support for Trusted Platform Modules (TPM) and Trusted Execution Environments (TEE)
e Mechanisms to allow for in-the-field updates of devices using Zephyr

e Task scheduler and separation

The security architecture development is based on assets derived from the structural overview of the overall system
architecture. Based on this, the individual steps include:

1. Identification of assets such as user data, authentication and encryption keys, key generation data (obtained
from RNGQG), security relevant status information.

2. Identification of threats against the assets such as breaches of confidentiality, manipulation of user data, etc.

3. Definition of requirements regarding security and protection of the assets, e.g. countermeasures or memory
protection schemes.

The security architecture shall be harmonized with the existing system architecture and implementation to determine
potential deviations and mitigate existing weaknesses. Newly developed sub-modules that are integrated into the
secure branch of the Zephyr project shall provide individual documents describing their security architecture. Addi-
tionally, their impact on the system level security shall be considered and documented.

Security Issue Management

In order to quickly respond to security threats towards the Zephyr RTOS, a well-defined security issue management
needs to be established.

Such issues shall be reported through the Zephyr Jira bug tracking system. Some JIRA modifications will be necessary
to accommodate management of security issues. In addition, there will be guidelines that govern visibility, control,
and resolution of security issues. The following is the current proposal:

* A boolean field shall be added to JIRA bugs to mark it security sensitive (or any other name that makes sense).
This renders the entry invisible to anyone except as described below.

* Security sensitive bugs are only accessible (view/modify) to members of the Security Group; members of this
Security Group are:

— members of the Security Subcommittee

— other as proposed and ratified Security Subcommittee, who will also have the authority to remove others

116 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

— the reporter
— Ability to add other users for individual issues

* Security Subcommittee meetings have to review the embargoed bugs on every meeting with more than three
people in attendance. Said review process shall decide if new issues needs to be embargoed or not.

 Security sensitive bugs shall be made public (by removing the security sensitive indicator) after an embargo
period of TBD days. The Security Subcommittee is the only entity with authority to extend the embargo period
on a case by case basis; the JIRA entry should be updated with the rationale for the embargo extension so at some
point said rationale will be made public.If the Security Subcommittee does not act upon a security sensitive bug
after its TBD days of embargo are over, it shall be automatically made public by removing the security sensitive
setting.

 Likewise, there shall be code repositories marked as security sensitive, accessible only to the Security Group
members where the code to fix said issues is being worked on and reviewed. The person/s contributing the fix
shall also have access, but fix contributors shall have only access to the tree for said fix, not to other security
sensitive trees.

* A CVE space shall be allocated to assign Zephyr issues when the SWG decides such is needed.
 The severity of the issue with regard to security shall be entered by the reporter.

e All security relevant issues shall trigger an automated notification on the Zephyr security mailing list (secu-
rity @lists.zephyrproject.org). Any member of the security board can then triage the severity of the issue accord-
ing to the Common Vulnerability Scoring System v3.0

* Depending on the resulting severity score of the issue, the issue is prioritized and assigned to the owner of the
affected module. Additionally, the system security architect and the security architect of the module are notified
and shall take the responsibility to mitigate the issue and review the solution or counter-measure. In any case, the
security issue shall be documented centrally, including the affected modules, software releases, and applicable
workarounds for immediate mitigation. A list of known security issues per public release of the Zephyr shall be
published and maintained by the security board after a risk assessment.

Threat Modeling and Mitigation

The modeling of security threats against the Zephyr RTOS is required for the development of an accurate security
architecture and for most certification schemes. The first step of this process is the definition of assets to be protected
by the system. The next step then models how these assets are protected by the system and which threats against them
are present. After a threat has been identified, a corresponding threat model is created. This model contains the asset
and system vulnerabilities, as well as the description of the potential exploits of these vulnerabilities. Additionally,
the impact on the asset, the module it resides in, and the overall system is to be estimated. This threat model is then
considered in the module and system security architecture and appropriate counter-measures are defined to mitigate
the threat or limit the impact of exploits.

In short, the threat modeling process can be separated into these steps (adapted from Application Thread Modeling:
1. Definition of assets
2. Application decomposition and creation of appropriate data flow diagrams (DFDs)
3. Threat identification and categorization using the STRIDE and CVSS approaches
4. Determination of countermeasures and other mitigation approaches

This procedure shall be carried out during the design phase of modules and before major changes of the module
or system architecture. Additionally, new models shall be created or existing ones shall be updated whenever new
vulnerabilities or exploits are discovered. During security reviews, the threat models and the mitigation techniques
shall be evaluated by the responsible security architect.

1.5. Zephyr Project Security 117

mailto:security@lists.zephyrproject.org
mailto:security@lists.zephyrproject.org
https://www.first.org/cvss/specification-document
https://www.owasp.org/index.php/Application_Threat_Modeling
https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx
https://www.first.org/cvss/specification-document

Zephyr Project Documentation, & 7ii 1.9.0

From these threat models and mitigation techniques tests shall be derived that prove the effectiveness of the counter-
measures. These tests shall be integrated into the continuous integration workflow to ensure that the security is not
impaired by regressions.

Vulnerability Analyses

In order to find weak spots in the software implementation, vulnerability analyses (VA) shall be performed. Of special
interest are investigations on cryptographic algorithms, critical OS tasks, and connectivity protocols.

On a pure software level, this encompasses

* Penetration testing of the RTOS on a particular hardware platform, which involves testing the respective Zephyr
OS configuration and hardware as one system.

* Side channel attacks (timing invariance, power invariance, etc.) should be considered. For instance, ensuring
timing invariance of the cryptographic algorithms and modules is required to reduce the attack surface. This
applies to both the software implementations and when using cryptographic hardware.

* Fuzzing tests shall be performed on both exposed APIs and protocols.

The list given above serves primarily illustration purposes. For each module and for the complete Zephyr system (in
general on a particular hardware platform), a suitable VA plan shall be created and executed. The findings of these
analyses shall be considered in the security issue management process, and learnings shall be formulated as guidelines
and incorporated into the secure coding guide.

If possible (as in case of fuzzing analyses), these tests shall be integrated into the continuous integration process.

Security Certification

One goal of creating a secure branch of the Zephyr RTOS is to create a certifiable system or certifiable submodules
thereof. The certification scope and scheme is yet to be decided. However, many certification such as Common
Criteria [CCITSE12] require evidence that the evaluation claims are indeed fulfilled, so a general certification process
is outlined in the following. Based on the final choices for the certification scheme and evaluation level, this process
needs to be refined.

Generic Certification Process

In general, the steps towards a certification or precertification (compare [MICR16]) are:

1. The definition of assets to be protected within the Zephyr RTOS. Potential candidates are confidential infor-
mation such as cryptographic keys, user data such as communication logs, and potentially IP of the vendor or
manufacturer.

2. Developing a threat model and security architecture to protect the assets against exploits of vulnerabilities of
the system. As a complete threat model includes the overall product including the hardware platform, this might
be realized by a split model containing a pre-certified secure branch of Zephyr which the vendor could use to
certify their Zephyr-enabled product.

3. Formulating an evaluation target that includes the certification claims on the security of the assets to be
evaluated and certified, as well as assumptions on the operating conditions.

4. Providing proof that the claims are fulfilled. This includes consistent documentation of the security development
process, etc.

These steps are partially covered in previous sections as well. In contrast to these sections, the certification process
only requires to consider those components that shall be covered by the certification. The security architecture, for
example, considers assets on system level and might include items not relevant for the certification.

118 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Certification Options

For the security certification as such, the following options can be pursued:

1. Abstract (pre-)certification of Zephyr as a pure software system: this option requires assumptions on the
underlying hardware platform and the final application running on top of Zephyr. If these assumptions are met
by the hardware and the application, a full certification can be more easily achieved. This option is the most
flexible approach but puts the largest burden on the product vendor.

2. Certification of Zephyr on specific hardware platform without a specific application in mind: this scenario
describes the enablement of a secure platform running the Zephyr RTOS. The hardware manufacturer certifies
the platform under defined assumptions on the application. If these are met, the final product can be certified
with little effort.

3. Certification of an actual product: in this case, a full product including a specific hardware, the Zephyr RTOS,
and an application is certified.

In all three cases, the certification scheme (e.g. FIPS 140-2 [NIST02] or Common Criteria [CCITSE12]), the scope of
the certification (main-stream Zephyr, security branch, or certain modules), and the certification/assurance level need
to be determined.

In case of partial certifications (options 1 and 2), assumptions on hardware and/or software are required for certifica-
tions. These can include [GHS10]

» Appropriate physical security of the hardware platform and its environment.

* Sufficient protection of storage and timing channels on the hardware platform itself and all connected devices.
(No mentioning of remote connections.)

* Only trusted/assured applications running on the device

* The device and its software stack is configured and operated by properly trained and trusted individuals with
no malicious intent.

These assumptions shall be part of the security claim and evaluation target documents.

References

See security-citations

Secure Coding Guidelines

Traditionally, microcontroller-based systems have not placed much emphasis on security. They have usually been
thought of as isolated, disconnected from the world, and not very vulnerable, just because of the difficulty in accessing
them. The Internet of Things has changed this. Now, code running on small microcontrollers often has access to
the internet, or at least to other devices (that may themselves have vulnerabilities). Given the volume they are often
deployed at, uncontrolled access can be devastating'.

This document describes the requirements and process for ensuring security is addressed within the Zephyr project.
All code submitted should comply with these guidelines.

Much of this document comes from the CII best practices document.

! An attack resulted in a significant portion of DNS infrastructure being taken down.

1.5. Zephyr Project Security 119

https://github.com/linuxfoundation/cii-best-practices-badge
http://www.theverge.com/2016/10/21/13362354/dyn-dns-ddos-attack-cause-outage-status-explained

Zephyr Project Documentation, & 7ii 1.9.0

Introduction and Scope

This document covers guidelines for the Zephyr Project, from a security perspective. Many of the ideas contained
herein are captured from other open source efforts.

We begin with an overview of secure design as it relates to Zephyr. This is followed by a section on Secure development
knowledge, which gives basic requirements that a developer working on the project will need to have. This section
gives references to other security documents, and full details of how to write secure software are beyond the scope of
this document. This section also describes vulnerability knowledge that at least one of the primary developers should
have. This knowledge will be necessary for the review process described below this.

Following this is a description of the review process used to incorporate changes into the Zephyr codebase. This is
followed by documentation about how security-sensitive issues are handled by the project.

Finally, the document covers how changes are to be made to this document.

Secure Coding Guidelines

Designing an open software system such as Zephyr to be secure requires adhering to a defined set of design standards.
In [SALT75], the following, widely accepted principles for protection mechanisms are defined to help prevent security
violations and limit their impact:

¢ Open design as a design guideline incorporates the maxim that protection mechanisms cannot be kept secret on
any system in widespread use. Instead of relying on secret, custom-tailored security measures, publicly accepted
cryptographic algorithms and well established cryptographic libraries shall be used.

* Economy of mechanism specifies that the underlying design of a system shall be kept as simple and small
as possible. In the context of the Zephyr project, this can be realized, e.g., by modular code [PAUL09] and
abstracted APIs.

* Complete mediation requires that each access to every object and process needs to be authenticated first.
Mechanisms to store access conditions shall be avoided if possible.

* Fail-safe defaults defines that access is restricted by default and permitted only in specific conditions defined
by the system protection scheme, e.g., after successful authentication. Furthermore, default settings for services
shall be chosen in a way to provide maximum security. This corresponds to the “Secure by Default” paradigm
[MS12].

» Separation of privilege is the principle that two conditions or more need to be satisfied before access is granted.
In the context of the Zephyr project, this could encompass split keys [PAUL09].

 Least privilege describes an access model in which each user, program, and thread, shall have the smallest
possible subset of permissions in the system required to perform their task. This positive security model aims to
minimize the attack surface of the system.

* Least common mechanism specifies that mechanisms common to more than one user or process shall not be
shared if not strictly required. The example given in [SALT75] is a function that should be implemented as a
shared library executed by each user and not as a supervisor procedure shared by all users.

* Psychological acceptability requires that security features are easy to use by the developers in order to ensure
their usage and the correctness of its application.

In addition to these general principles, the following points are specific to the development of a secure RTOS:

¢ Complementary Security/Defense in Depth: do not rely on a single threat mitigation approach. In case of the
complementary security approach, parts of the threat mitigation are performed by the underlying platform. In
case such mechanisms are not provided by the platform, or are not trusted, a defense in depth [MS12] paradigm
shall be used.

120 Chapter 1. B3

https://www.zephyrproject.org/

Zephyr Project Documentation, % #i 1.9.0

* Less commonly used services off by default: to reduce the exposure of the system to potential attacks, features
or services shall not be enabled by default if they are only rarely used (a threshold of 80% is given in [MS12]).
For the Zephyr project, this can be realized using the configuration management. Each functionality and module
shall be represented as a configuration option and needs to be explicitly enabled. Then, all features, protocols,
and drivers not required for a particular use case can be disabled. The user shall be notified if low-level options
and APIs are enabled but not used by the application.

* Change management: to guarantee a traceability of changes to the system, each change shall follow a specified
process including a change request, impact analysis, ratification, implementation, and validation phase. In each
stage, appropriate documentation shall be provided. All commits shall be related to a bug report or change
request in the issue tracker. Commits without a valid reference shall be denied.

Secure development knowledge

Secure designer

The Zephyr project must have at least one primary developer who knows how to design secure software.
This requires understanding the following design principles, including the 8 principles from Saltzer and Schroeder:

» economy of mechanism (keep the design as simple and small as practical, e.g., by adopting sweeping simplifi-
cations)

* fail-safe defaults (access decisions shall deny by default, and projects’ installation shall be secure by default)
» complete mediation (every access that might be limited must be checked for authority and be non-bypassable)

* open design (security mechanisms should not depend on attacker ignorance of its design, but instead on more
easily protected and changed information like keys and passwords)

* separation of privilege (ideally, access to important objects should depend on more than one condition, so that
defeating one protection system won’t enable complete access. For example, multi-factor authentication, such
as requiring both a password and a hardware token, is stronger than single-factor authentication)

* least privilege (processes should operate with the least privilege necessary)

¢ least common mechanism (the design should minimize the mechanisms common to more than one user and
depended on by all users, e.g., directories for temporary files)

* psychological acceptability (the human interface must be designed for ease of use - designing for “least aston-
ishment” can help)

* limited attack surface (the set of the different points where an attacker can try to enter or extract data)

* input validation with whitelists (inputs should typically be checked to determine if they are valid before they
are accepted; this validation should use whitelists (which only accept known-good values), not blacklists (which
attempt to list known-bad values)).

Vulnerability Knowledge

A “primary developer” in a project is anyone who is familiar with the project’s code base, is comfortable making
changes to it, and is acknowledged as such by most other participants in the project. A primary developer would
typically make a number of contributions over the past year (via code, documentation, or answering questions). De-
velopers would typically be considered primary developers if they initiated the project (and have not left the project
more than three years ago), have the option of receiving information on a private vulnerability reporting channel (if
there is one), can accept commits on behalf of the project, or perform final releases of the project software. If there is
only one developer, that individual is the primary developer.

1.5. Zephyr Project Security 121

http://web.mit.edu/Saltzer/www/publications/protection/

Zephyr Project Documentation, & 7ii 1.9.0

At least one of the primary developers must know of common kinds of errors that lead to vulnerabilities in this kind
of software, as well as at least one method to counter or mitigate each of them.

Examples (depending on the type of software) include SQL injection, OS injection, classic buffer overflow, cross-
site scripting, missing authentication, and missing authorization. See the CWE/SANS top 25 or OWASP Top 10 for
commonly used lists.

Security Subcommittee

There shall be a “security subcommittee”, responsible for enforcing this guideline, monitoring reviews, and improving
these guidelines.

This team will be established according to the Zephyr Project charter.

Code Review

The Zephyr project shall use a code review system that all changes are required to go through. Each change shall be
reviewed by at least one primary developer that is not the author of the change. This developer shall determine if this
change affects the security of the system (based on their general understanding of security), and if so, shall request
the developer with vulnerability knowledge, or the secure designer to also review the code. Any of these individuals
shall have the ability to block the change from being merged into the mainline code until the security issues have been
addressed.

Issues and Bug Tracking
The Zephyr project shall have an issue tracking system (such as JIRA) that can be used to record and track defects that
are found in the system.

Because security issues are often sensitive, this issue tracking system shall have a field to indicate a security issue.
Setting this field shall result in the issue only being visible to a project-maintained core security team. In addition,
there shall be a field to allow core security members to add additional users that will have visibility to a given issue.

This embargo, or limited visibility, shall only be for a fixed duration, with a default being a project-decided value.
However, because security considerations are often external to the Zephyr project itself, it may be necessary to increase
this embargo time. The time necessary shall be clearly annotated in the issue itself.

The list of issues shall be reviewed at least once a month by the security committee on the Zephyr Project. This review
should focus on tracking the fixes, determining if any external parties need to be notified or involved, and determining
when to lift the embargo on the issue. The embargo should not be lifted via an automated means, but the review team
should avoid unnecessary delay in lifting issues that have been resolved.

Modifications to This Document

Changes to this document shall be reviewed by the security committee, and approved by consensus.

Developer Guides

Porting Guides

This section contains details regarding porting the Zephyr kernel to new architectures, SoCs and boards.

122 Chapter 1. H3x

http://cwe.mitre.org/top25/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.atlassian.com/software/jira

Zephyr Project Documentation, % #i 1.9.0

Architecture Porting Guide
An architecture port is needed to enable Zephyr to run on an ISA (instruction set architecture) or an ABI (Application
Binary Interface) that is not currently supported.
The following are examples of ISAs and ABIs that Zephyr supports:
* x86_32 ISA with System V ABI
* x86_32 ISA with IAMCU ABI
¢ ARMv7-M ISA with Thumb?2 instruction set and ARM Embedded ABI (aeabi)
* ARCv2 ISA
An architecture port can be divided in several parts; most are required and some are optional:

* The early boot sequence: each architecture has different steps it must take when the CPU comes out of reset
(required).

¢ Interrupt and exception handling: each architecture handles asynchronous and unrequested events in a spe-
cific manner (required).

* Thread context switching: the Zephyr context switch is dependent on the ABI and each ISA has a different set
of registers to save (required).

¢ Thread creation and termination: A thread’s initial stack frame is ABI and architecture-dependent, and thread
abortion possibly as well (required).

* Device drivers: most often, the system clock timer and the interrupt controller are tied to the architecture (some
required, some optional).

« Utility libraries: some common kernel APIs rely on a architecture-specific implementation for performance
reasons (required).

* CPU idling/power management: most architectures implement instructions for putting the CPU to sleep (partly
optional, most likely very desired).

e Fault management: for implementing architecture-specific debug help and handling of fatal error in threads
(partly optional).

* Linker scripts and toolchains: architecture-specific details will most likely be needed in the build system and
when linking the image (required).

Early Boot Sequence

The goal of the early boot sequence is to take the system from the state it is after reset to a state where is can run C
code and thus the common kernel initialization sequence. Most of the time, very few steps are needed, while some
architectures require a bit more work to be performed.

Common steps for all architectures:
 Setup an initial stack.
* If running an XIP (eXecute-In-Place) kernel, copy initialized data
e from ROM to RAM.
* If not using an ELF loader, zero the BSS section.
e Jump to _Cstart (), the early kernel initialization

— _Cstart () is responsible for context switching out of the fake context running at startup into the main
thread.

1.6. Developer Guides 123

Zephyr Project Documentation, & 7ii 1.9.0

Some examples of architecture-specific steps that have to be taken:
* If given control in real mode on x86_32, switch to 32-bit protected mode.
 Setup the segment registers on x86_32 to handle boot loaders that leave them in an unknown or broken state.
* Initialize a board-specific watchdog on Cortex-M3/4.
» Switch stacks from MSP to PSP on Cortex-M.
* Use a different approach than calling into _Swap() on Cortex-M to prevent race conditions.

Setup FIRQ and regular IRQ handling on ARCv2.

Interrupt and Exception Handling

Each architecture defines interrupt and exception handling differently.

When a device wants to signal the processor that there is some work to be done on its behalf, it raises an interrupt.
When a thread does an operation that is not handled by the serial flow of the software itself, it raises an exception.
Both, interrupts and exceptions, pass control to a handler. The handler is known as an ISR (Interrupt Service Routine)
in the case of interrupts. The handler perform the work required the exception or the interrupt. For interrupts, that
work is device-specific. For exceptions, it depends on the exception, but most often the core kernel itself is responsible
for providing the handler.

The kernel has to perform some work in addition to the work the handler itself performs. For example:
* Prior to handing control to the handler:
— Save the currently executing context.
— Possibly getting out of power saving mode, which includes waking up devices.
— Updating the kernel uptime if getting out of tickless idle mode.
* After getting control back from the handler:
— Decide whether to perform a context switch.
— When performing a context switch, restore the context being context switched in.
This work is conceptually the same across architectures, but the details are completely different:
* The registers to save and restore.
* The processor instructions to perform the work.
* The numbering of the exceptions.
* etc.
It thus needs an architecture-specific implementation, called the interrupt/exception stub.

Another issue is that the kernel defines the signature of ISRs as:

void (xisr) (void xparameter)

Architectures do not have a consistent or native way of handling parameters to an ISR. As such there are two commonly
used methods for handling the parameter.

» Using some architecture defined mechanism, the parameter value is forced in the stub. This is commonly found
in X86-based architectures.

124 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

¢ The parameters to the ISR are inserted and tracked via a separate table requiring the architecture to discover
at runtime which interrupt is executing. A common interrupt handler demuxer is installed for all entries of the
real interrupt vector table, which then fetches the device’s ISR and parameter from the separate table. This
approach is commonly used in the ARC and ARM architectures via the CONFIG_GEN_ISR_TABLES imple-
mentation. You can find examples of the stubs by looking at _interrupt_enter () in x86, _IntExit ()
in ARM, _isr_wrapper () in ARM, or the full implementation description for ARC in arch/arc/core/
isr_wrapper.S.

Each architecture also has to implement primitives for interrupt control:
* locking interrupts: irg_lock (), irg_unlock ().
* registering interrupts: TRQ_CONNECT () .
 programming the priority if possible irq_priority_set ().

* enabling/disabling interrupts: irg_enable (), irg_disable ().

Ef#: IRQ _CONNECT is a macro that uses assembler and/or linker script tricks to connect interrupts at build time,
saving boot time and text size.

The vector table should contain a handler for each interrupt and exception that can possibly occur. The handler can
be as simple as a spinning loop. However, we strongly suggest that handlers at least print some debug information.
The information helps figuring out what went wrong when hitting an exception that is a fault, like divide-by-zero
or invalid memory access, or an interrupt that is not expected (spurious interrupt). See the ARM implementation in
arch/arm/core/fault.c for an example.

Thread Context Switching

Multi-threading is the basic purpose to have a kernel at all. Zephyr supports two types of threads: preemptible and
cooperative.

Two crucial concepts when writing an architecture port are the following:
» Cooperative threads run at a higher priority than preemptible ones, and always preempt them.

 After handling an interrupt, if a cooperative thread was interrupted, the kernel always goes back to running that
thread, since it is not preemptible.

A context switch can happen in several circumstances:
* When a thread executes a blocking operation, such as taking a semaphore that is currently unavailable.
* When a preemptible thread unblocks a thread of higher priority by releasing the object on which it was blocked.

* When an interrupt unblocks a thread of higher priority than the one currently executing, if the currently executing
thread is preemptible.

e When a thread runs to completion.

e When a thread causes a fatal exception and is removed from the running threads. For example, referencing
invalid memory,

Therefore, the context switching must thus be able to handle all these cases.

The kernel keeps the next thread to run in a “cache”, and thus the context switching code only has to fetch from that
cache to select which thread to run.

There are two types of context switches: cooperative and preemptive.

1.6. Developer Guides 125

Zephyr Project Documentation, & 7ii 1.9.0

* A cooperative context switch happens when a thread willfully gives the control to another thread. There are two
cases where this happens

— When a thread explicitly yields.

— When a thread tries to take an object that is currently unavailable and is willing to wait until the object
becomes available.

* A preemptive context switch happens either because an ISR or a thread causes an operation that schedules a
thread of higher priority than the one currently running, if the currently running thread is preemptible. An
example of such an operation is releasing an object on which the thread of higher priority was waiting.

TEf#: Control is never taken from cooperative thread when one of them is the running thread.

A cooperative context switch is always done by having a thread call the _Swap () kernel internal symbol. When
_Swap is called, the kernel logic knows that a context switch has to happen: _Swap does not check to see if a context
switch must happen. Rather, _Swap decides what thread to context switch in. _Swap is called by the kernel logic
when an object being operated on is unavailable, and some thread yielding/sleeping primitives.

TEf#: On x86 and Nios2, _Swap is generic enough and the architecture flexible enough that _Swap can be called
when exiting an interrupt to provoke the context switch. This should not be taken as a rule, since neither the ARM
Cortex-M or ARCv2 port do this.

Since _Swap is cooperative, the caller-saved registers from the ABI are already on the stack. There is no need to save
them in the k_thread structure.

A context switch can also be performed preemptively. This happens upon exiting an ISR, in the kernel interrupt exit
stub:

e _interrupt_enter on x86 after the handler is called.
e IntExit on ARM.
e firg exitand_rirg _exit on ARCv2.

In this case, the context switch must only be invoked when the interrupted thread was preemptible, not when it was a
cooperative one, and only when the current interrupt is not nested.

The kernel also has the concept of “locking the scheduler”. This is a concept similar to locking the interrupts, but
lighter-weight since interrupts can still occur. If a thread has locked the scheduler, is it temporarily non-preemptible.

So, the decision logic to invoke the context switch when exiting an interrupt is simple:
« If the interrupted thread is not preemptible, do not invoke it.
¢ Else, fetch the cached thread from the ready queue, and:
— If the cached thread is not the current thread, invoke the context switch.
— Else, do not invoke it.

This is simple, but crucial: if this is not implemented correctly, the kernel will not function as intended and will
experience bizarre crashes, mostly due to stack corruption.

HEM#: If running a coop-only system, i.e. if CONFIG_NUM_PREEMPT_PRIORITIES is 0, no preemptive context
switch ever happens. The interrupt code can be optimized to not take any scheduling decision when this is the case.

126 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Thread Creation and Termination

To start a new thread, a stack frame must be constructed so that the context switch can pop it the same way it would
pop one from a thread that had been context switched out. This is to be implemented in an architecture-specific
_new_thread internal routine.

The thread entry point is also not to be called directly, i.e. it should not be set as the PC (program counter) for the
new thread. Rather it must be wrapped in _thread_entry. This means that the PC in the stack frame shall be set
to _thread_entry, and the thread entry point shall be passed as the first parameter to _thread_entry. The
specifics of this depend on the ABIL

The need for an architecture-specific thread termination implementation depends on the architecture. There is a generic
implementation, but it might not work for a given architecture.

One reason that has been encountered for having an architecture-specific implementation of thread termination is that
aborting a thread might be different if aborting because of a graceful exit or because of an exception. This is the case
for ARM Cortex-M, where the CPU has to be taken out of handler mode if the thread triggered a fatal exception, but
not if the thread gracefully exits its entry point function.

This means implementing an architecture-specific version of k_thread_abort (), and setting the Kconfig option
CONFIG_ARCH_HAS_THREAD_ABORT as needed for the architecture (e.g. see arch/arm//core/cortex_m/
Kconfig).

Device Drivers

The kernel requires very few hardware devices to function. In theory, the only required device is the interrupt con-
troller, since the kernel can run without a system clock. In practice, to get access to most, if not all, of the sanity check
test suite, a system clock is needed as well. Since these two are usually tied to the architecture, they are part of the
architecture port.

Interrupt Controllers

There can be significant differences between the interrupt controllers and the interrupt concepts across architectures.

For example, x86 has the concept of an IDT and different interrupt controllers. Although modern systems mostly
standardized on the APIC (Advanced Programmable Interrupt Controller), some small Quark-based systems use the
MVIC (Micro-controller Vectored Interrupt Controller). Also, the position of an interrupt in the IDT determines its
priority.

On the other hand, the ARM Cortex-M has the NVIC (Nested Vectored Interrupt Controller) as part of the architecture
definition. There is no need for an IDT-like table that is separate from the NVIC vector table. The position in the table
has nothing to do with priority of an IRQ: priorities are programmable per-entry.

The ARCv2 has its interrupt unit as part of the architecture definition, which is somewhat similar to the NVIC.
However, where ARC defines interrupts as having a one-to-one mapping between exception and interrupt numbers
(i.e. exception 1 is IRQ1, and device IRQs start at 16), ARM has IRQO being equivalent to exception 16 (and weirdly
enough, exception 1 can be seen as IRQ-15).

All these differences mean that very little, if anything, can be shared between architectures with regards to interrupt
controllers.

System Clock

x86 has APIC timers and the HPET as part of its architecture definition. ARM Cortex-M has the SYSTICK exception.
Finally, ARCv2 has the timer0/1 device.

1.6. Developer Guides 127

Zephyr Project Documentation, & 7ii 1.9.0

Kernel timeouts are handled in the context of the system clock timer driver’s interrupt handler.

Tickless Idle

The kernel has support for tickless idle. Tickless idle is the concept where no system clock timer interrupt is to be
delivered to the CPU when the kernel is about to go idle and the closest timeout expiry is passed a certain threshold.
When this condition happens, the system clock is reprogrammed far in the future instead of for a periodic tick. For
this to work, the system clock timer driver must support it.

Tickless idle is optional but strongly recommended to achieve low-power consumption.
The kernel has built-in support for going into tickless idle.
The system clock timer driver must implement some hooks to support tickless idle. See existing drivers for examples.

The interrupt entry stub (_interrupt_enter, _isr_wrapper) needs to be adapted to handle exiting tickless
idle. See examples in the code for existing architectures.

Console Over Serial Line

There is one other device that is almost a requirement for an architecture port, since it is so useful for debugging. It is
a simple polling, output-only, serial port driver on which to send the console (printk, print f) output.

It is not required, and a RAM console (CONFIG_RAM_CONSOLE) can be used to send all output to a circular buffer
that can be read by a debugger instead.

Utility Libraries

The kernel depends on a few functions that can be implemented with very few instructions or in a lock-less manner in
modern processors. Those are thus expected to be implemented as part of an architecture port.

* Atomic operators.

— If instructions do not exist for a given architecture, a generic version that wraps irqg_lock ()
or irg_unlock () around non-atomic operations exists. It is configured using the
CONFIG_ATOMIC_OPERATIONS_C Kconfig option.

* Find-least-significant-bit-set and find-most-significant-bit-set.

— If instructions do not exist for a given architecture, it is always possible to implement these functions as
generic C functions.

It is possible to use compiler built-ins to implement these, but be careful they use the required compiler barriers.

CPU Idling/Power Management

The kernel provides support for CPU power management with two functions: k_cpu_idle() and
k_cpu_atomic_idle ().

k_cpu_idle () can be as simple as calling the power saving instruction for the architecture with interrupts unlocked,
for example h1t onx86, wfi or wfe on ARM, sleep on ARC. This function can be called in a loop within a context
that does not care if it get interrupted or not by an interrupt before going to sleep. There are basically two scenarios
when it is correct to use this function:

* In a single-threaded system, in the only thread when the thread is not used for doing real work after initialization,
i.e. it is sitting in a loop doing nothing for the duration of the application.

128 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

¢ In the idle thread.

k_cpu_atomic_idle (), on the other hand, must be able to atomically re-enable interrupts and invoke the power
saving instruction. It can thus be used in real application code, again in single-threaded systems.

Normally, idling the CPU should be left to the idle thread, but in some very special scenarios, these APIs can be used
by applications.

Both functions must exist for a given architecture. However, the implementation can be simply the following steps, if
desired:

1. unlock interrupts
2. NOP

However, a real implementation is strongly recommended.

Fault Management

Each architecture provides two fatal error handlers:
* _NanoFatalErrorHandler, called by software for unrecoverable errors.

* _SysFatalErrorHandler, which makes the decision on how to handle the thread where the error is gen-
erated, most likely by terminating it.

See the current architecture implementations for examples.

Toolchain and Linking

Toolchain support has to be added to the build system.

Some architecture-specific definitions are needed in include/toolchain/gcc.h. See what exists in that file for
currently supported architectures.

Each architecture also needs its own linker script, even if most sections can be derived from the linker scripts of other
architectures. Some sections might be specific to the new architecture, for example the SCB section on ARM and the
IDT section on x86.

Board Porting Guide

When building an application you must specify the target hardware and the exact board or model. Specifying the board
name results in a binary that is suited for the target hardware by selecting the right Zephyr features and components
and setting the right Zephyr configuration for that specific target hardware.

A board is defined as a special configuration of an SoC with possible additional components. For example, a board
might have sensors and flash memory implemented as additional features on top of what the SoC provides. Such
additional hardware is configured and referenced in the Zephyr board configuration.

The board implements at least one SoC and thus inherits all of the features that are provided by the SoC. When porting
a board to Zephyr, you should first make sure the SoC is implemented in Zephyr.

Hardware Configuration Hierarchy

Hardware definitions in Zephyr follow a well-defined hierarchy of configurations and layers, below are the layers from
top to bottom:

1.6. Developer Guides 129

Zephyr Project Documentation, & 7ii 1.9.0

Board

SoC

SoC Series
SoC Family
CPU Core

Architecture

This design contributes to code reuse and implementation of device drivers and features at the bottom of the hierarchy
making a board configuration as simple as a selection of features that are implemented by the underlying layers. The
figures below shows this hierarchy with a few example of boards currently available in the source tree:

SoC1

SoC 2

SoC Series

SoC Family 1

CPU1

SoC3

SoC Series

SoC4

SoC Series

SoC Family 2

Architecture

SoC5

SoC Series

SoC Family 3

CPU 2

& 1.3: Configuration Hierarchy

SoC6

Hierarchy Example

Board FRDM K64F nRF52 nRF51XX Quark SE C1000 Arduino
NITROGEN Devboard 101

SOC MK64F12 nRF52832 nRF51XX Quark SE C1000 Curie
SOC Kinetis K6x Nordic NRF52 Nordic Quark SE Quark SE
Series Series NRF51
SOC NXP Kinetis Nordic NRF5 Nordic Quark Quark
Family NRF5
CPU Core | Cortex-M4 Cortex-M4 Cortex-M0+ | Lakemont Lakemont
Architec- ARM ARM ARM x86 x86
ture

130 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Architecture

If your CPU architecture is already supported by Zephyr, there is no architecture work involved in porting to your
board. If your CPU architecture is not supported by the Zephyr kernel, you can add support by following the instruc-
tions available at Architecture Porting Guide.

CPU Core

Some OS code depends on the CPU core that your board is using. For example, a given CPU core has a specific
assembly language instruction set, and may require special cross compiler or compiler settings to use the appropriate
instruction set.

If your CPU architecture is already supported by Zephyr, there is no CPU core work involved in porting to your
platform or board. You need only to select the appropriate CPU in your configuration and the rest will be taken care
of by the configuration system in Zephyr which will select the features implemented by the corresponding CPU.

Platform

This layer implements most of the features that need porting and is split into three layers to allow for code reuse when
dealing with implementations with slight differences.

SoC Family

This layer is a container of all SoCs of the same class that, for example implement one single type of CPU core but
differ in peripherals and features. The base hardware will in most cases be the same across all SoCs and MCUs of this
family.

SoC Series

Moving closer to the SoC, the series is derived from an SoC family. A series is defined by a feature set that serves the
purpose of distinguishing different SoCs belonging to the same family.

SoC

Finally, an SoC is actual hardware component that is physically available on a board.

Board

A board implements an SoC with all its features, together with peripherals available on the board that differentiates
the board with additional interfaces and features not available in the SoC.

While adding your board support, make sure to add it to the list of plat forms in the appropriate architecture . ini
filein scripts/sanity_chk/arches/.

1.6. Developer Guides 131

Zephyr Project Documentation, & 7ii 1.9.0

Legacy Applications Porting Guide

1EfE: This document is still work in progress.

This guide will help you move your applications from the nanokernel/microkernel model to the unified kernel. The
unified kernel was introduced with zephyr_1.6 which was released late 2016.

A list of the major changes that came with the unified kernel can be found in the section Changes from Version 1
Kernel.

API Changes

As described in the section Kernel APIs the kernel now has one unified and consistent API with new naming.

Same Arguments

In many cases, a simple search and replace is enough to move from the legacy to the new APIs, for example:
e task_abort () ->k_thread_abort ()

e task_sem_count_get () ->k_sem_count_get ()

Additional Arguments

The number of arguments to some APIs have changed,
* nano_sem_init () ->k_sem_init ()
This function now accepts 2 additional arguments:
— Initial semaphore count
— Permitted semaphore count

When porting your application, make sure you have set the right arguments. For example, calls to the old API:

’ nano_sem_init (sem)

depending on the usage becomes in most cases:

’ k_sem_init (sem, 0, UINT_MAX);

Return Codes

Many kernel APIs now return O to indicate success and a non-zero error code to indicate the reason for failure. You
should pay special attention to this change when checking for return codes from kernel APIs, for example:

* k_sem_take () now returns O on success, in the legacy APl nano_sem_take () returned 1 when a
semaphore is available.

132 Chapter 1. B3

20

21

22

23

24

25

26

27

28

29

31

32

34

35

37

38

40

41

42

43

44

45

46

47

48

49

50

51

Zephyr Project Documentation, & 7ii 1.9.0

Application Porting

The existing synchronization_sample from the Zephyr tree will be used to guide you with porting a legacy application
to the new kernel.

The code has been ported to the new kernel and is shown below:

#include <zephyr.h>
#include <misc/printk.h>

* The hello world demo has two threads that utilize semaphores and sleeping
* to take turns printing a greeting message at a controlled rate. The demo
* shows both the static and dynamic approaches for spawning a thread; a real
* world application would likely use the static approach for both threads.

/* size of stack area used by each thread */
#define STACKSIZE 1024

/+ scheduling priority used by each thread =/
#define PRIORITY 7

/* delay between greetings (in ms) */
#define SLEEPTIME 500

/%
* @param my_name thread identification string
* @param my_sem thread's own semaphore
* @param other_sem other thread's semaphore
*/

void helloLoop (const char »my_name,
struct k_sem xmy_sem, struct k_sem xother_sem)

while (1) {
/+ take my semaphore =/
k_sem_take (my_sem, K_FOREVER);

/#* say "hello" =/
printk ("$s: Hello World from %s!\n", my_name, CONFIG_ARCH);

/* wait a while, then let other thread have a turn =/

k_sleep (SLEEPTIME) ;
k_sem_give (other_sem);

/+ define semaphores #*/

K_SEM_DEFINE (threadA_sem, 1, 1); /* starts off "available" */
K_SEM_DEFINE (threadB_sem, 0, 1); /% starts off "not available" */
/+ threadB is a dynamic thread that is spawned by threadA =/

void threadB(void xdummyl, wvoid xdummy2, void xdummy3)

1.6. Developer Guides 133

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

Zephyr Project Documentation, & 7ii 1.9.0

ARG_UNUSED (dummyl) ;
ARG_UNUSED (dummy?2) ;
ARG_UNUSED (dummy3) ;

/* invoke routine to ping-pong hello messages with threadA =/
helloLoop(__func__, &threadB_sem, &threadA_sem);

char _ noinit _ stack threadB_stack_area[STACKSIZE];

/+ threadA is a static thread that is spawned automatically */

void threadA (void xdummyl, wvoid xdummy2, void xdummy3)
{

ARG_UNUSED (dummyl) ;

ARG_UNUSED (dummy?2) ;

ARG_UNUSED (dummy3) ;

/+ spawn threadB */
k_thread_spawn (threadB_stack_area, STACKSIZE, threadB, NULL, NULL, NULL,
PRIORITY, 0, K_NO_WAIT);

/* invoke routine to ping-pong hello messages with threadB =/

helloLoop(__func__, &threadA_sem, &threadB_sem);

K_THREAD_DEFINE (threadA_id, STACKSIZE, threadA, NULL, NULL, NULL,
PRIORITY, 0, K_NO_WAIT);

Porting a Nanokernel Application

Below is the code for the application using the legacy kernel:

#include <zephyr.h>
#include <misc/printk.h>

/%
* Nanokernel version of hello world demo has a task and a fiber that utilize
* semaphores and timers to take turns printing a greeting message at
* a controlled rate.
*/

/+ specify delay between greetings (in ms); compute equivalent in ticks #*/

#define SLEEPTIME 500
#define SLEEPTICKS (SLEEPTIME * sys_clock_ticks_per_sec / 1000)

#define STACKSIZE 2000
char _ stack fiberStack[STACKSIZE];

struct nano_sem nanoSemTask;

134 Chapter 1.

Hx

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

58

59

60

61

62

64

65

66

67

68

69

70

Zephyr Project Documentation, % #i 1.9.0

struct nano_sem nanoSemFiber;

void fiberEntry (void)

{
struct nano_timer timer;
u32_t datal[2] {0, 0};

nano_sem_init (&nanoSemFiber) ;
nano_timer_init (&¢timer, data);

while (1) {

/* wait for task to let us have a turn

nano_fiber_sem_take (&nanoSemFiber,

/* say "hello" x/
printk ("%s: Hello World!\n",

/+ wait a while,
nano_fiber_timer_start (&timer,
nano_fiber_timer_test (&timer,
nano_fiber_sem_give (&nanoSemTask) ;

void main (void)

{
struct nano_timer timer;
u32_t datal2] {0, 0%};

task_fiber_start (&¢fiberStack[0],
(nano_fiber_entry_t)

nano_sem_1init (&§nanoSemTask) ;
nano_timer_init (&timer, data);
while (1) {

/* say "hello" %/

printk ("$s: Hello World!\n",

/+ wait a while,
nano_task_timer_start (&timer,
nano_task_timer_test (&timer,

nano_task_sem_give (&nanoSemFiber) ;

/* now wait for fiber to let us have a turn
TICKS_UNLIMITED) ;

nano_task_sem_take (&nanoSemTask,

then let task have a turn
SLEEPTICKS) ;
TICKS_UNLIMITED) ;

STACKSIZE,
fiberEntry, 0, 0, 7,

then let fiber have a turn
SLEEPTICKS) ;
TICKS_UNLIMITED) ;

*/
TICKS_UNLIMITED) ;

_ func_);

*/

0);

_ func_);

*/

*/

Porting a Microkernel Application

The MDEF feature of the legacy kernel has been eliminated. Consequently, all kernel objects are now defined directly

in code.

Below is the code for the application using the legacy kernel:

1.6. Developer Guides

135

20

21

22

23

24

25

26

27

28

29

31

32

34

35

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Zephyr Project Documentation, & 7ii 1.9.0

#include <zephyr.h>
#include <misc/printk.h>

/%
* Microkernel version of hello world demo has two tasks that utilize
* semaphores and sleeps to take turns printing a greeting message at
* a controlled rate.

*/

/+ specify delay between greetings (in ms); compute equivalent in ticks #*/

#define SLEEPTIME 500
#define SLEEPTICKS (SLEEPTIME * sys_clock_ticks_per_sec / 1000)

/ *
*
* (@param taskname task identification string
* (@param mySem task's own semaphore
* @param otherSem other task's semaphore
*
*/

void helloLoop (const char xtaskname, ksem_t mySem, ksem_t otherSem)
{
while (1) {
task_sem_take (mySem, TICKS_UNLIMITED) ;

/#* say "hello" =/
printk ("$s: Hello World from %s!\n", taskname, CONFIG_ARCH);

/% walit a while, then let other task have a turn =/
task_sleep (SLEEPTICKS) ;
task_sem_give (otherSem) ;

void taskA (void)
{

/+ taskA gives its own semaphore, allowing it to say hello right away */
task_sem_give (TASKASEM) ;

/* invoke routine that allows task to ping-pong hello messages with taskB x/
helloLoop(__func__, TASKASEM, TASKBSEM);

void taskB (void)

{

/+ invoke routine that allows task to ping-pong hello messages with taskA x/
helloLoop(__func__, TASKBSEM, TASKASEM);

A microkernel application defines the used objects in an MDEF file, for this porting sample using the synchroniza-
tion_sample, the file is shown below:

% Application : Hello demo

X

% TASK NAME PRIO ENTRY STACK GROUPS

136 Chapter 1. B3

O S

Zephyr Project Documentation, % #i 1.9.0

TASK TASKA 7 taskA 1024 [EXE]
TASK TASKB 7 taskB 1024 [EXE]

o
0n
=
=
B
=
>
=
=

oe

SEMA TASKASEM
SEMA TASKBSEM

In the unified kernel the semaphore will be defined in the code as follows:

/+ define semaphores #*/

K_SEM_DEFINE (threadA_sem, 1, 1); /* starts off "available" */
K_SEM_DEFINE (threadB_sem, 0, 1); /* starts off "not available" x/

The threads (previously named tasks) are defined in the code as follows, for thread A:

K_THREAD_DEFINE (threadA_id, STACKSIZE, threadA, NULL, NULL, NULL,
PRIORITY, 0, K_NO_WAIT);

Thread B (taskB in the microkernel) will be spawned dynamically from thread A (See Thread Creation section):

/% spawn threadB +/
k_thread_spawn (threadB_stack_area, STACKSIZE, threadB, NULL, NULL, NULL,
PRIORITY, 0, K_NO_WAIT);

Migrating from Zephyr v1.6 IP Stack to v1.7

Zephyr v1.6 and earlier is using network IP stack that has its origin in ulP. The ulP stack was modified heavily to use
it in Zephyr. The ulP stack had limitations described below that required new and native IP stack to be developed.

This document is a high level description of the changes between these two major Zephyr releases. For individual
changes, the application developer can find more details in the network header file documentation in include/net/.

Because of this new native IP stack, the following changes are required to migrate applications using the older v1.6 IP
stack to the new v1.7 IP stack:

Dual IPv6 and IPv4 stack support. In Zephyr v1.6, applications could not use both IPv6 and IPv4 simultaneously.
This is changed in Zephyr v1.7 and the IP stack supports both IPv6 and IPv4 at the same time. In practice this
means that applications should be prepared to support both IPv6 and IPv4 in the code.

Multiple simultaneous network technologies support. In Zephyr v1.7 it is possible to have multiple network tech-
nologies enabled at the same time. This means that applications can utilize concurrently e.g., IEEE 802.15.4
and Bluetooth IP networking. The different network technologies are abstracted to network interfaces and there
can be multiple network interfaces in the system depending on configuration.

Network Kconfig options are changed. Most of the networking configuration options are renamed. Please check
the Networking documentation for the new names.

All ulP based APIs are gone. Those APIs were not public in v1.6 but applications could call them anyway. These
ulP APIs were mainly used to set IP address etc. management style operations. The new management APIs can
be found in net_if.h and net_mgmt.h in Zephyr v1.7.

Network buffer management is changed. In earlier Zephyr versions, there were big 1280 byte long buffers that
applications could utilize. In Zephyr v1.7 this is changed so that device memory is utilized more efficiently.
Now small buffer fragments are allocated to store the data, and these fragments can then be chained together
to store larger amount of data. For applications this means that the memory received from network or sent to

1.6. Developer Guides 137

Zephyr Project Documentation, & 7ii 1.9.0

network is not contiguous and application should use the helper functions found in nbuf.h when reading and
writing the network data.

Network context/socket API is changed. The new API found in net_context.h is more BSD-socket-like than the
earlier APIL. The new context API is not fully BSD socket compatible as it needs to support both synchronous
and asynchronous operations. Porting BSD socket application to use the net_context * API is easier than in
Zephyr v1.6.

CoAP library API is changed. The Zephyr v1.6 CoAP API is removed. The new Zephyr v1.7 APl is called ZoAP
and it can be found in zoap.h header file.

The TinyDTLS library is removed. The tinydtls crypto library was used only by CoAP in Zephyr v1.6 and it is
removed in Zephyr v1.7. It is replaced by mbedtls library.

Application Development Primer
Overview

The Zephyr Kernel’s build system is based on the Kbuild system used in the Linux kernel.

The build system is an application-centric system and requires an application build to initiate building the kernel source
tree. The application build drives the configuration and build process of both the application and kernel, compiling
them into a single binary.

The Zephyr Kernel’s base directory hosts the kernel source code, the configuration options, and the kernel build
definitions.

The files in the application directory links the kernel with the application. It hosts the definitions of the application,
for example, application-specific configuration options and the application’s source code.

An application in the simplest form has the following structure:

» Application source code files: An application typically provides one or more application-specific files, written
in C or assembly language. These files are usually located in a sub-directory called src.

* Kernel configuration files: An application typically provides a configuration file (. conf) that specifies values
for one or more kernel configuration options. If omitted, the application’s existing kernel configuration option
values are used; if no existing values are provided, the kernel’s default configuration values are used.

* Makefile: This file tells the build system where to find the files mentioned above, as well as the desired target
board configuration.

Once the application has been defined, it can be built with a single make call. The results of the build process are
located in a sub-directory called outdir/BOARD. This directory contains the files generated by the build process,
the most notable of which are listed below.

* The . config file that contains the configuration settings used to build the application.
» The various object files (. o files and . a files) containing custom-built kernel and application-specific code.

e The zephyr.elf file that contains the final combined application and kernel binary.

Application Structure
Create one directory for your application and a sub-directory for the application’s source code; this makes it easier to
organize directories and files in the structure that the kernel expects.

1. Create an application directory structure outside of the kernel’s installation directory tree. Often this is your
workspace directory.

138 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

2.
3.

4.

In a console terminal, navigate to a location where you want your application to reside.

Create the application’s directory, enter:

$ mkdir app

IEf#: This directory and the path to it, are referred to in the documentation as ~/app.

Create a source code directory in your ~/app, enter:

$ cd app
$ mkdir src

The source code directory ~/app/src is created.

- app
|-— src

Application Definition

An application is integrated into the build system by including the Makefile.inc file provided.

include $(ZEPHYR BASE)/Makefile.inc

The following predefined variables configure the development project:

ZEPHYR_BASE: Sets the path to the kernel’s base directory. This variable is usually set by the zephyr_env.
sh script. It can be used to get the kernel’s base directory, as used in the Makefile.inc inclusion above, or it can
be overridden to select an specific instance of the kernel.

PROJECT_BASE: Provides the developer’s application project directory path. It is set by the Makefile.inc
file.

SOURCE_DIR: Overrides the default value for the application’s source code directory. The developer source
code directory is set to $ (PROJECT_BASE) /src/ by default. This directory name should end with slash ¢/.

BOARD: Selects the board that the application’s build will use for the default configuration.

CONF_FILE: Indicates the name of a configuration fragment file. This file includes the kconfig configuration
values that override the default configuration values.

O: Optional. Indicates the output directory that Kconfig uses. The output directory stores all the files generated
during the build process. The default output directory is the $ (PROJECT_BASE) /outdir directory.

Makefiles

Overview

The build system defines a set of conventions for the correct use of Makefiles in the kernel source directories. The
correct use of Makefiles is driven by the concept of recursion.

In the recursion model, each Makefile within a directory includes the source code and any subdirectories to the build
process. Each subdirectory follows the same principle. Developers can focus exclusively in their own work. They
integrate their module with the build system by adding a very simple Makefile following the recursive model.

1.6.

Developer Guides 139

Zephyr Project Documentation, & 7ii 1.9.0

Makefile Conventions

The following conventions restrict how to add modules and Makefiles to the build system. These conventions ensure
the correct implementation of the recursive model.

Each source code directory must contain a single Makefile. Directories without a Makefile are not considered
source code directories.

The scope of every Makefile is restricted to the contents of that directory. A Makefile can only make a direct
reference to files and subdirectories on the same level or below.

Makefiles list the object files that are included in the link process. The build system finds the source file that
generates the object file by matching the object file name to the source file.

Parent directories add their child directories into the recursion model.

The root Makefile adds the directories in the kernel base directory into the recursion model.

Adding Source Files

The Makefile must refer the source build indirectly, specifying the object file that results from the source file using the
obj—y variable. For example, if the file that we want to add is a C file named <file>. c the following line should
be added in the Makefile:

obj-y += <file>.o

Ef#:

The same method applies for assembly files with the .S extension.

Source files can be added conditionally using configuration options. For example, if the option CONFIG_VAR is set
and it implies that a source file must be added in the compilation process, then the following line adds the source code
conditionally:

obj-$ (CONFIG_VAR) += <file>.o

Adding Directories

Add a subdirectory to the build system by editing the Makefile in its directory. The subdirectory is added using the
obj—y variable. The correct syntax to add a subdirectory into the build queue is:

obj-y += <directory_name>/

The backslash at the end of the directory name signals the build system that a directory, and not a file, is being added
to the build queue.

The conventions require us to add only one directory per line and never to mix source code with directory recursion
in a single obj-y line. This helps keep the readability of the Makefile by making it clear when an item adds an
additional lever of recursion.

Directories can also be conditionally added:

obj-y-$ (CONFIG_VAR) += <directory_name>/

The subdirectory must contain its own Makefile following the rules described in Makefile Conventions.

140

Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Application Makefile

Create an application Makefile to define basic information, such as the board configuration used by the application.
The build system uses the Makefile to build a zephyr.elf image that contains both the application and the kernel
libraries.

1. Open the Makefile and add the following mandatory entries using any standard text editor.

TEf%: Ensure that there is a space before and after each =.

2. Add the name of the default board configuration for your application on a new line:

’hﬁ:u; = board_configuration_name

The supported boards can be found in boards.

3. Add the name of the default kernel configuration file for your application on a new line:

’CDNFiFTTF ?= kernel_configuration_name

4. Include the mandatory Makefile on a new line:

include S$S{ZEPHYR BASE}/Makefile.inc

5. Save and close the Makefile.

Below is an example Makefile:

D = gemu_x86
CONE_FILE = prj.conf

include S${ZEPHYR BASE}/Makefile.inc

Application Configuration

The application’s kernel is configured using a set of configuration options that can be customized for application-
specific purposes. The Zephyr build system takes a configuration option’s value from the first source in which it is
specified.

The available sources are (in order):
1. The application’s current configuration. (i.e. The . config file.)
2. The application’s default configuration. (i.e. The . conf file.)
3. The board configuration used by the application. (i.e. The board’s . defconfig file.)
4. The kernel’s default configuration. (i.e. One of the kernel’s Kconfig files.)

For information on available kernel configuration options, including inter-dependencies between options, see the con-
figuration.

Default Board Configuration

An application’s . conf file defines its default kernel configuration. The settings in this file override or augment the
board configuration settings.

1.6. Developer Guides 141

Zephyr Project Documentation, & 7ii 1.9.0

The board configuration settings can be viewed LENGTHIWRONGEPHY
_BASE/boards/ARCHITECTURE/BOARD/BOARD_defconfig‘.

TEf#: When the default board configuration settings are sufficient for your application, a . conf file is not needed.
Skip ahead to Overriding Default Configuration.

1. Navigate to the app, and create the pr j. conf file. Enter:

$ vim prj.conf

The default name is prj.conf. The filename must match the CONF_FILE entry in the application
Makefile.

2. Edit the file and add the appropriate configuration entries.
(a) Add each configuration entry on a new line.
(b) Begin each entry with CONFIG_.
(c) Ensure that each entry contains no spaces (including on either side of the = sign).
(d) Use a # followed by a space to comment a line.

The example below shows a comment line and a board configuration override in the prj.conf.

Enable printk for debugging
CONFIG_PRINTK=y

3. Save and close the file.

Overriding Default Configuration

Override the default board and kernel configuration to temporarily alter the application’s configuration, perhaps to test
the effect of a change.

JEfE: If you want to permanently alter the configuration you should revise the . conf file.

Configure the kernel options using a menu-driven interface. While you can add entries manually, using the configura-
tion menu is a preferred method.

1. Run the make menuconfig rule to launch the menu-driven interface.
(a) In aterminal session, navigate to the application directory (~/app).

(b) Enter the following command:

$ make [BOARD=<type>] menuconfig

A question-based menu opens that allows you to set individual configuration options.

142 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Terminal File Edit View Search Terminal Help
.config - Zephyr Kernel Configuration

Zephyr Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search.
Legend: [*] built-in [] excluded <M> module < > module capable

| M Architecture (x86 architecture - - ->|
[] simple system fatal error handler (NEW)
%86 SoC Selectlun (Intel ATOM SoC) --->
x86 Options
Board Selection (MLnnowboard Max) --->
Board Options
General Kernel Options --->
Device Drivers --->
Compile and Link Features
pebugging Options --->
System Monitoring Options
Boot Options --->
cryptography
Cc Library ---»
File System --->
[] Bluetooth support (NEW)
pisk ->
Networklng --->
Logging Options
safe memory access --->
[] Enable system debugging information (NEW)
[] Enable GDB Server [EXPERIMENTAL] (NEW)
[] Enable console input handler [Experimental] (NEW)
External Sources --->
Testing --->

< Exit > < Help > < Save > < Load >

2. Set kernel configuration values using the following key commands:
» Use the arrow keys to navigate within any menu or list.
* Press Enter to select a menu item.
* Type an upper case Y or N in the square brackets [] to enable or disable a kernel configuration option.
* Type a numerical value in the round brackets ().

* Press Tab to navigate the command menu at the bottom of the display.

TEM#: When a non-default entry is selected for options that are non-numerical, an asterisk * appears
between the square brackets in the display. There is nothing added added the display when you select the
option’s default.

3. For information about any option, select the option and tab to <Help > and press Enter.
Press Enter to return to the menu.
4. After configuring the kernel options for your application, tab to < Save > and press Enter.

The following dialog opens with the < Ok > command selected:

Do you wish to save your new configuration?
(Press <ESC><ESC> to continue kernel configuration.)

Em < No =

1.6. Developer Guides 143

Zephyr Project Documentation, & 7ii 1.9.0

5. Press Enter to save the kernel configuration options to the default file name; alternatively, type a file name and
press Enter.

Typically, you will save to the default file name unless you are experimenting with various configuration scenar-
ios.

An outdir directory is created in the application directory. The outdir directory contains symbolic links to
files under SZEPHYR_BASE.

TEf%: At present, only a . config file can be built. If you have saved files with different file names and want
to build with one of these, change the file name to .config. To keep your original . config, rename it to
something other than .config.

Kernel configuration files, such as the .config file, are saved as hidden files in outdir. To list all your
kernel configuration files, enter 1s —a at the terminal prompt.

The following dialog opens, displaying the file name the configuration was saved to.

Enter a filename to which this configuration
should be saved as an alternate. Leave blank to
abort.

.configl] |

< 0k > < Help >

6. Press Enter to return to the options menu.
7. To load any saved kernel configuration file, tab to < Load > and press Enter.

The following dialog opens with the < Ok > command selected:

Enter the name of the configuration file you wish
to load. Accept the name shown to restore the
configuration you last retrieved. Leave blank to
abort.

.configl} |

< 0k > < Help >

8. To load the last saved kernel configuration file, press < Ok >, or to load another saved configuration file, type
the file name, then select < Ok >.

9. Press Enter to load the file and return to the main menu.
10. To exit the menu configuration, tab to < Exit > and press Enter.

The following confirmation dialog opens with the < Yes > command selected.

144 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

configuration written to .config

< (it >

11. Press Enter to retire the menu display and return to the console command line.

Application-Specific Code

Application-specific source code files are normally added to the application’s src directory. If the application adds a
large number of files the developer can group them into sub-directories under src, to whatever depth is needed. The
developer must supply a Makefile for the src directory, as well as for each sub-directory under src.

HEME: These Makefiles are distinct from the top-level application Makefile that appears in ~/app.

Application-specific source code should not use symbol name prefixes that have been reserved by the kernel for its
own use. For more information, see

Naming Conventions.
The following requirements apply to all Makefiles in the src directory, including any sub-directories it may have.

¢ During the build process, Kbuild identifies the source files to compile into object files by matching the file names
identified in the application’s Makefile(s).

HEE: A source file that is not referenced by any Makefile is not included when the application is built.

* A Makefile cannot directly reference source code. It can only reference object files (. o files) produced from
source code files.

* A Makefile can only reference files in its own directory or in the sub-directories of that directory.

¢ A Makefile may reference multiple files from a single-line entry. However, a separate line must be used to
reference each directory.

1. Create a directory structure for your source code in src and add your source code files to it.

2. Create a Makefile in the src directory. Then create an additional Make fi1le in each of the sub-directories
under the src directory, if any.

(a) Use the following syntax to add file references:

’95177 += filel.o file2.o0

(b) Use the following syntax to add directory references:

’Cujfy += directory_name/**

This example is taken from the dining-philosophers-sample. To examine this file in context, navigate to:
SZEPHYR_BASE/samples/philosophers/src.

’CO:* = main.o

1.6. Developer Guides 145

https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions

Zephyr Project Documentation, & 7ii 1.9.0

Support for building third-party library code

It is possible to build library code outside the application’s src directory but it is important that both application
and library code targets the same Application Binary Interface (ABI). On most architectures there are compiler flags
that control the ABI targeted, making it important that both libraries and applications have certain compiler flags in
common. It may also be useful for glue code to have access to Zephyr kernel header files.

To make it easier to integrate third-party components, the Zephyr build system includes a special build target,
outputexports, that takes a number of critical variables from the Zephyr build system and copies them into
Makefile.export. This allows the critical variables to be included by wrapper code for use in a third-party build
system.

The following variables are recommended for use within the third-party build (see Makefile.export for the
complete list of exported variables):

* CROSS_COMPILE, together with related convenience variables to call the cross-tools directly (including AR,
AS, CC, CXX, CPP and LD).

e ARCH and BOARD, together with several variables that identify the Zephyr kernel version.

* KBUILD_CFLAGS, NOSTDINC_FLAGS and ZEPHYRINCLUDE all of which should normally be added, in
that order, to CFLAGS (or CXXFLAGS).

¢ All kconfig variables, allowing features of the library code to be enabled/disabled automatically based on the
Zephyr kernel configuration.

samples/application_development/static_lib is a sample project that demonstrates some of these
features.

Build an Application
The Zephyr build system compiles and links all components of an application into a single application image that can
be run on simulated hardware or real hardware.

1. Navigate to the application directory ~/app.

2. Enter the following command to build the application’s zephyr.elf image using the configuration settings
for the board type specified in the application’s Makefile.

$ make

If desired, you can build the application using the configuration settings specified in an alternate .conf file
using the CONF_FILE parameter. These settings will override the settings in the application’s . config file
or its default . conf file. For example:

’s make CONF_FILE=prj.alternate.conf

If desired, you can build the application for a different board type than the one specified in the application’s
Makefile using the BOARD parameter. For example:

’s make BOARD=arduino_101

Both the CONF_FILE and BOARD parameters can be specified when building the application.

Rebuilding an Application

Application development is usually fastest when changes are continually tested. Frequently rebuilding your application
makes debugging less painful as the application becomes more complex. It’s usually a good idea to rebuild and test

146 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

after any major changes to the application’s source files, Makefiles, or configuration settings.

HEE: The Zephyr build system rebuilds only the parts of the application image potentially affected by the changes.
Consequently, rebuilding an application is often significantly faster than building it the first time.

Sometimes the build system doesn’t rebuild the application correctly because it fails to recompile one or more neces-
sary files. You can force the build system to rebuild the entire application from scratch with the following procedure:

1. Navigate to the application directory ~/app.

2. Enter the following command to delete the application’s generated files for the specified board type, except for
the . config file that contains the application’s current configuration information.

’s make [BOARD=<type>] clean

Alternatively, enter the following command to delete all generated files for all board types, including the .
config files that contain the application’s current configuration information for those board types.

’$ make pristine

3. Rebuild the application normally following the steps specified in Build an Application above.

Run an Application

An application image can be run on real or emulated hardware. The kernel has built-in emulator support for QEMU.
It allows you to run and test an application virtually, before (or in lieu of) loading and running it on actual target
hardware.

1. Open a terminal console and navigate to the application directory ~/app.

2. Enter the following command to build and run the application using a QEMU-supported board configuration,
such as gemu_cortex_m3 or gemu_x86.

$ make [BOARD=<type> ...] run

The Zephyr build system generates a zephyr.elf image file and then begins running it in the terminal con-
sole.

3. PressCtrl A, X to stop the application from running in QEMU.

The application stops running and the terminal console prompt redisplays.

Application Debugging
This section is a quick hands-on reference to start debugging your application with QEMU. Most content in this section
is already covered on QEMU and GNU_Debugger reference manuals.

In this quick reference you find shortcuts, specific environmental variables and parameters that can help you to quickly
set up your debugging environment.

The simplest way to debug an application running in QEMU is using the GNU Debugger and setting a local GDB
server in your development system through QEMU.

You will need an ELF binary image for debugging purposes. The build system generates the image in the output
directory. By default, the kernel binary name is zephyr.elf. The name can be changed using a Kconfig option.

1.6. Developer Guides 147

http://wiki.qemu.org/Main_Page
http://www.gnu.org/software/gdb

Zephyr Project Documentation, & 7ii 1.9.0

We will use the standard 1234 TCP port to open a GDB (GNU Debugger) server instance. This port number can be
changed for a port that best suits the development environment.

You can run Qemu to listen for a “gdb connection” before it starts executing any code to debug it.

gemu -s —-S <image>

will setup Qemu to listen on port 1234 and wait for a GDB connection to it.
The options used above have the following meaning:
¢ —S Do not start CPU at startup; rather, you must type ‘c’ in the monitor.
* —s Shorthand for ~gdb tcp::1234: open a GDB server on TCP port 1234.

To debug with QEMU and to start a GDB server and wait for a remote connect, run the following inside an application:

make BOARD=gemu_x86 debugserver

The build system will start a QEMU instance with the CPU halted at startup and with a GDB server instance listening
at the TCP port 1234.

Using a local GDB configuration . gdbinit can help initialize your GDB instance on every run. In this example, the
initialization file points to the GDB server instance. It configures a connection to a remote target at the local host on
the TCP port 1234. The initialization sets the kernel’s root directory as a reference.

The .gdbinit file contains the following lines:

target remote localhost:1234
dir ZEPHYR_BASE

Ff#: Substitute ZEPHYR_BASE for the current kernel’s root directory.

Execute the application to debug from the same directory that you chose for the gdbinit file. The command can
include the ——tui option to enable the use of a terminal user interface. The following commands connects to the
GDB server using gdb. The command loads the symbol table from the elf binary file. In this example, the elf binary
file name corresponds to zephyr.elf file:

$ gdb --tui zephyr.elf

1Ef#: The GDB version on the development system might not support the —tui option.

If you are not using a .gdbinit file, issue the following command inside GDB to connect to the remove GDB server on
port 1234:

(gdb) target remote localhost:1234

Finally, The command below connects to the GDB server using the Data Displayer Debugger (ddd). The command
loads the symbol table from the elf binary file, in this instance, the zephyr.elf file.

The DDD (Data Displayer Debugger) may not be installed in your development system by default. Follow your
system instructions to install it.

ddd --gdb --debugger "gdb zephyr.elf"

Both commands execute the GDB (GNU Debugger). The command name might change depending on the toolchain
you are using and your cross-development tools.

148 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

API Documentation

Welcome to the Zephyr Project’s API (Application Programing Interface) documentation.

This section contains the API documentation automatically extracted from the code. If you are looking for a specific
API, enter it on the search box. The search results display all sections containing information about that API.

The Zephyr APIs are used the same way on all SoCs and boards.

Kernel APIs

This section contains APIs for the kernel’s core services, as described in the Zephyr Kernel Primer.

FE: Unless otherwise noted these APIs can be used by threads, but not by ISRs.

Threads
» Workqueues
* Clocks

e Timers

Memory Slabs

Memory Pools

* Heap Memory Pool

Semaphores
* Mutexes

* Alerts

* Fifos

* Lifos

e Stacks

* Message Queues

Mailboxes

* Pipes

Interrupt Service Routines (ISRs)
e Atomic Services

* Floating Point Services

* Ring Buffers

Threads

A thread is an independently scheduled series of instructions that implements a portion of an application’s processing.
Threads are used to perform processing that is too lengthy or too complex to be performed by an ISR. (See Thread:s.)

1.6. Developer Guides 149

Zephyr Project Documentation, & 7ii 1.9.0

= 4. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Workqueues

A workqueue processes a series of work items by executing the associated functions in a dedicated thread. Workqueues
are typically used by an ISR or high-priority thread to offload non-urgent processing. (See Workqueue Threads.)

= doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Clocks

Kernel clocks enable threads and ISRs to measure the passage of time with either normal and high precision. (See
Kernel Clocks.)

8= doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Timers

Timers enable threads to measure the passage of time, and to optionally execute an action when the timer expires. (See
Timers.)

& 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Memory Slabs

Memory slabs enable the dynamic allocation and release of fixed-size memory blocks. (See Memory Slabs.)

- erp doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Memory Pools

Memory pools enable the dynamic allocation and release of variable-size memory blocks. (See Memory Pools.)

& 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

150 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Heap Memory Pool

The heap memory pools enable the dynamic allocation and release of memory in a malloc () -like manner. (See
Heap Memory Pool.)

g8 = doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Semaphores

Semaphores provide traditional counting semaphore capabilities. (See Semaphores.)

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mutexes

Mutexes provide traditional reentrant mutex capabilities with basic priority inheritance. (See Mutexes.)

= &5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Alerts

Alerts enable an application to perform asynchronous signaling, somewhat akin to Unix-style signals. (See Alerts.)

& 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Fifos

Fifos provide traditional first in, first out (FIFO) queuing of data items of any size. (See Fifos.)

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Lifos

Lifos provide traditional last in, first out (LIFO) queuing of data items of any size. (See Lifos.)

1.6. Developer Guides 151

Zephyr Project Documentation, & 7ii 1.9.0

= 4. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Stacks

Stacks provide traditional last in, first out (LIFO) queuing of 32-bit data items. (See Stacks.)

& 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Message Queues

Message queues provide a simple message queuing mechanism for fixed-size data items. (See Message Queues.)

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mailboxes

Mailboxes provide an enhanced message queuing mechanism for variable-size messages. (See Mailboxes.)

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Pipes

Pipes provide a traditional anonymous pipe mechanism for sending variable-size chunks of data, in whole or in part.
(See Pipes.)

& 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Interrupt Service Routines (ISRs)

An interrupt service routine is a series of instructions that is executed asynchronously in response to a hardware or
software interrupt. (See Interrupts.)

= 5. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

152 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Atomic Services

The atomic services enable multiple threads and ISRs to read and modify 32-bit variables in an uninterruptible manner.
(See Atomic Services.)

HEZE: All atomic services APIs can be used by both threads and ISRs.

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Floating Point Services

The floating point services enable threads to use a board’s floating point registers. (See Floating Point Services.)

= 5. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Ring Buffers

Ring buffers enable simple first in, first out (FIFO) queuing of variable-size data items. (See Ring Buffers.)

g8 = doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Device Driver Interface

e Device Model I

Device Model

B 4 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Bluetooth API

* Generic Access Profile (GAP)

* Connection Management

1.6. Developer Guides 153

Zephyr Project Documentation, & 7ii 1.9.0

Generic Attribute Profile (GATT)
Mesh Profile

Universal Unique Identifiers (UUIDs)

e Serial Port Emulation (RFCOMM)
* Data Buffers
* Persistent Storage

e HCI Drivers

e HCI RAW channel

Logical Link Control and Adaptation Protocol (L2ZCAP)

This is the full set of available Bluetooth APIs. It’s important to note that the set that will in practice be available for
the application depends on the exact Kconfig options that have been chosen, since most of the Bluetooth functionality
is build-time selectable. E.g. any connection-related APIs require CONFIG_BT_CONN and any BR/EDR (Bluetooth

Classic) APIs require CONFIG_BT_BREDR.

Generic Access Profile (GAP)

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Connection Management

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

E 5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Generic Attribute Profile (GATT)

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

E 5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Mesh Profile

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

3= doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

154

Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Universal Unique Identifiers (UUIDs)

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Logical Link Control and Adaptation Protocol (L2CAP)

= &5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Serial Port Emulation (RFCOMM)

=5 5. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Data Buffers

g8 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Persistent Storage

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HCI Drivers

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HCI RAW channel

HCI RAW channel API is intended to expose HCI interface to the remote entity. The local Bluetooth controller gets
owned by the remote entity and host Bluetooth stack is not used. RAW API provides direct access to packets which
are sent and received by the Bluetooth HCI driver.

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

1.6. Developer Guides 155

Zephyr Project Documentation, & 7ii 1.9.0

Networking API

* Network core helpers

Network buffers

Network packet management

IPv4/IPv6 primitives and helpers

Network interface

Network Management

Network layer 2 management

Network link address

Application network context

* BSD Sockets compatible API

Network offloading support
* Network statistics
* Trickle timer support

 UDP

Network technologies

Network and application libraries

This is the full set of networking public APIs. Their exposure depends on relevant Kconfig options. For instance IPv6
related APIs will not be present if CONFIG_NET_IPV6 has not been selected.

Network core helpers

3= doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network buffers

& 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network packet management

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

156 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

IPv4/IPv6 primitives and helpers

E 5 doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Network interface

& doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Network Management

=5 5. doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Network layer 2 management

& doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Network link address

E 5 doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Application network context

E 5 doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

BSD Sockets compatible API

& doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

1.6. Developer Guides

157

Zephyr Project Documentation, & 7ii 1.9.0

Network offloading support

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network statistics

= &5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Trickle timer support

=5 5. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

UDP

g8 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network technologies

Ethernet

& 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

IEEE 802.15.4

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Network and application libraries

158 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Network application

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

DHCPv4

= &5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

MQTT 3.1.1

=5 5. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

CoAP

g8 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

DNS Resolve

E & doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

HTTP

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Input / Output Driver APls

* ADC Interface
* GPIO Interface
* I2C Interface

* [2S Interface

1.6. Developer Guides 159

Zephyr Project Documentation, & 7ii 1.9.0

* [PM Interface

PWM Interface

* Pinmux Interface

SPI Interface
* Random Interface

* UART Interface

*» Sensor Interface

ADC Interface

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

= 5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

GPIO Interface

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

E 5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

12C Interface

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

E 5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

I12S Interface

The I2S (Inter-IC Sound) API provides support for the standard I2S interface as well as common non-standard exten-
sions such as PCM Short/Long Frame Sync and Left/Right Justified Data Formats.

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

3= doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

IPM Interface

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

g8 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

160

Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

PWM Interface

E 5 doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Pinmux Interface

& doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

SPI Interface

=5 5. doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Random Interface

= & doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

UART Interface

E 5 doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Sensor Interface

E 5 doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Power Management APIs

Power Management Hook Interface

E & doxygengroup: Cannot find file:
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

1.6. Developer Guides

161

Zephyr Project Documentation, & 7ii 1.9.0

Device Power Management APIs

=5

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

= 5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

File System APlIs

File System Functions

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

E & doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

File System Data Structures

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

E 5 doxygengroup: Cannot find file:

/home/docs/checkouts/readthedocs.org/user_builds/zephyr-

Device and Driver Support

Device Drivers and Device Model

Introduction

The Zephyr kernel supports a variety of device drivers. The specific set of device drivers available for an application’s
board configuration varies according to the associated hardware components and device driver software.

The Zephyr device model provides a consistent device model for configuring the drivers that are part of a system. The
device model is responsible for initializing all the drivers configured into the system.

Each type of driver (UART, SPI, 12C) is supported by a generic type APIL.

In this model the driver fills in the pointer to the structure containing the function pointers to its API functions during
driver initialization. These structures are placed into the RAM section in initialization level order.

Standard Drivers

Device drivers which are present on all supported board configurations are listed below.

* Interrupt controller: This device driver is used by the kernel’s interrupt management subsystem.

* Timer: This device driver is used by the kernel’s system clock and hardware clock subsystem.

* Serial communication: This device driver is used by the kernel’s system console subsystem.

* Random number generator: This device driver provides a source of random numbers.

B2 Certain implementations of this device driver do not generate sequences of values that are truly random.

162

Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

Synchronous Calls
Zephyr provides a set of device drivers for multiple boards. Each driver should support an interrupt-based implemen-
tation, rather than polling, unless the specific hardware does not provide any interrupt.

High-level calls accessed through device-specific APIs, such as i2c.h or spi.h, are usually intended as synchronous.
Thus, these calls should be blocking.

Driver APIs

The following APIs for device drivers are provided by device.h. The APIs are intended for use in device drivers
only and should not be used in applications.

DEVICE_INIT () create device object and set it up for boot time initialization.

DEVICE_AND_API_INIT() Create device object and set it up for boot time initialization. This also takes a pointer
to driver API struct for link time pointer assignment.

DEVICE_NAME_GET () Expands to the full name of a global device object.
DEVICE_GET () Obtain a pointer to a device object by name.

DEVICE_DECLARE () Declare a device object.

Driver Data Structures

The device initialization macros populate some data structures at build time which are split into read-only and runtime-
mutable parts. At a high level we have:

struct device {
struct device_config xconfig;
void xdriver_api;
void xdriver_data;

}i

The config member is for read-only configuration data set at build time. For example, base memory mapped 10
addresses, IRQ line numbers, or other fixed physical characteristics of the device. This is the config_info structure
passed to the DEVICE_+INIT () macros.

The driver_data struct is kept in RAM, and is used by the driver for per-instance runtime housekeeping. For
example, it may contain reference counts, semaphores, scratch buffers, etc.

The driver_api struct maps generic subsystem APIs to the device-specific implementations in the driver. It is
typically read-only and populated at build time. The next section describes this in more detail.

Subsystems and API Structures

Most drivers will be targeting a device-independent subsystem API. Applications can simply program to that generic
API, and application code is not specific to any particular driver implementation.

A subsystem API definition typically looks like this:

typedef int (xsubsystem_do_this_t) (struct device xdevice, int foo, int bar);
typedef void (xsubsystem_do_that_t) (struct device xdevice, woid +*baz);

struct subsystem_api {
subsystem_do_this_t do_this;

1.7. Device and Driver Support 163

Zephyr Project Documentation, & 7ii 1.9.0

subsystem_do_that_t do_that;
bi

static inline int subsystem_do_this (struct device xdevice, int foo, int Dbar)

{

struct subsystem_api *api;

api = (struct subsystem_api)device->driver_api;
return api->do_this(device, foo, bar);

static inline void subsystem_do_that (struct device xdevice, wvoid xbaz)

{

struct subsystem_api *api;

api = (struct subsystem_api *)device->driver_api;
api->do_that (device, foo, bar);

In general, it’s best to use __ASSERT () macros instead of propagating return values unless the failure is expected
to occur during the normal course of operation (such as a storage device full). Bad parameters, programming errors,
consistency checks, pathological/unrecoverable failures, etc., should be handled by assertions.

When it is appropriate to return error conditions for the caller to check, O should be returned on success and a POSIX
errno.h code returned on failure. See https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions#
return-codes for details about this.

A driver implementing a particular subsystem will define the real implementation of these APIs, and populate an
instance of subsystem_api structure:

static int my_driver_do_this (struct device xdevice, int foo, int bar)

{

static void my_driver_do_that (struct device xdevice, wvoid +baz)

{

static struct subsystem_api my_driver_api_funcs = {
.do_this = my_driver_do_this,
.do_that = my_driver_do_that

}i

The driver would then pass my_driver_api_funcs as the api argument to DEVICE_AND_API_INIT (), or
manually assign it to device->driver_api in the driver init function.

1Ef%: Since pointers to the API functions are referenced in the driver_api struct, they will always be included
in the binary even if unused; gc—sections linker option will always see at least one reference to them. Providing
for link-time size optimizations with driver APIs in most cases requires that the optional feature be controlled by a
Kconfig option.

164 Chapter 1. B3

https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions#return-codes
https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions#return-codes

Zephyr Project Documentation, % #i 1.9.0

Single Driver, Multiple Instances

Some drivers may be instantiated multiple times in a given system. For example there can be multiple GPIO banks, or
multiple UARTS. Each instance of the driver will have a different config_info struct and driver_data struct.

Configuring interrupts for multiple drivers instances is a special case. If each instance needs to configure a different
interrupt line, this can be accomplished through the use of per-instance configuration functions, since the parameters
to IRQ_CONNECT () need to be resolvable at build time.

For example, let’s say we need to configure two instances of my_driver, each with a different interrupt line. In
drivers/subsystem/subsystem_my_driver.h:

typedef void (*my_driver_config irqg t) (struct device xdevice);

struct my_driver_config {
u32_t base_addr;
my_driver_config_irg t config_func;

}i

In the implementation of the common init function:

void my_driver_isr (struct device xdevice)

{
/* Handle interrupt =/

int my_driver_init (struct device =xdevice)
{

const struct my_driver_config *config = device->config->config_info;

/% Do other initialization stuff =/

config->config_func (device);

return 0;

Then when the particular instance is declared:

#if CONFIG_MY DRIVER 0
DEVICE_DECLARE (my_driver_0);
static void my_driver_config_irqg 0
{

IRQ_CONNECT (MY_DRIVER_O0_IRQ, MY_DRIVER_O_PRI, my_driver_isr,
DEVICE_GET (my_driver_0), MY _DRIVER_O_FLAGS) ;

const static struct my_driver_config my_driver_config 0 = {
.base_addr = MY_DRIVER_0_BASE_ADDR;
.config_func = my_driver_config_irqg 0;

static struct my_driver_data_0;

DEVICE_AND_API_INIT (my_driver_0, MY_DRIVER_O_NAME, my_driver_init,

1.7. Device and Driver Support 165

Zephyr Project Documentation, & 7ii 1.9.0

&my_driver_data_0, &my_driver_config_ 0, SECONDARY,
MY_DRIVER_O_PRIORITY, &my_driver_api_funcs);

#endif /+ CONFIG_MY DRIVER 0 */

Note the use of DEVICE_DECLARE () to avoid a circular dependency on providing the IRQ handler argument and
the definition of the device itself.

Initialization Levels

Drivers may depend on other drivers being initialized first, or require the use of kernel services. The DEVICE_INIT()
APIs allow the user to specify at what time during the boot sequence the init function will be executed. Any driver
will specify one of five initialization levels:

PRE_KERNEL_ 1 Used for devices that have no dependencies, such as those that rely solely on hardware present in
the processor/SOC. These devices cannot use any kernel services during configuration, since the services are not
yet available. The interrupt subsystem will be configured however so it’s OK to set up interrupts. Init functions
at this level run on the interrupt stack.

PRE_KERNEL_2 Used for devices that rely on the initialization of devices initialized as part of the PRIMARY level.
These devices cannot use any kernel services during configuration, since the kernel services are not yet available.
Init functions at this level run on the interrupt stack.

POST_KERNEL Used for devices that require kernel services during configuration. Init functions at this level run in
context of the kernel main task.

APPLICATION Used for application components (i.e. non-kernel components) that need automatic configuration.
These devices can use all services provided by the kernel during configuration. Init functions at this level run
on the kernel main task.

Within each initialization level you may specify a priority level, relative to other devices in the same initialization
level. The priority level is specified as an integer value in the range 0 to 99; lower values indicate earlier ini-
tialization. The priority level must be a decimal integer literal without leading zeroes or sign (e.g. 32), or an
equivalent symbolic name (e.g. \#define MY INIT_PRIO 32); symbolic expressions are not permitted (e.g.
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT + 5).

System Drivers

In some cases you may just need to run a function at boot. Special SYS_INIT macros exist that map to
DEVICE_INIT () or DEVICE_INIT_PM() calls. For SYS_INIT () there are no config or runtime data struc-
tures and there isn’t a way to later get a device pointer by name. The same policies for initialization level and priority

apply.
For SYS_INIT_PM() you can obtain pointers by name, see power management section.

SYS_INIT()

SYS_INIT_PM()

Device Tree in Zephyr

Introduction to Device Tree

Device tree is a way of describing hardware and configuration information for boards. Device tree was adopted for
use in the Linux kernel for the PowerPC architecture. However, it is now in use for ARM and other architectures.

166 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

The device tree is a data structure for dynamically describing hardware using a Device Tree Source (DTS) data struc-
ture language, and compiled into a compact Device Tree Blob (DTB) using a Device Tree Compiler (DTC). Rather
than hard coding every detail of a board’s hardware into the operating system, the hardware-describing DTB is passed
to the operating system at boot time. This allows the same compiled Linux kernel to support different hardware con-
figurations within an architecture family (e.g., ARM, x86, PowerPC) and moves a significant part of the hardware
description out of the kernel binary itself.

Traditional usage of device tree involves storing of the Device Tree Blob. The DTB is then used during runtime for
configuration of device drivers. In Zephyr, the DTS information will be used only during compile time. Information
about the system is extracted from the compiled DTS and used to create the application image.

Device tree uses a specific format to describe the device nodes in a system. This format is described in EPAPR
document.

More device tree information can be found at the device tree repository.

System build requirements

The Zephyr device tree feature requires a device tree compiler (DTC) and Python YAML packages. Refer to the
installation guide for your specific host OS:

* Development Environment Setup on Windows
* Development Environment Setup on Linux

* Development Environment Setup on Mac OS

Zephyr and Device Tree

In Zephyr, device tree is used to not only describe hardware, but also to describe Zephyr-specific configuration infor-
mation. The Zephyr-specific information is intended to augment the device tree descriptions. The main reason for this
is to leverage existing device tree files that a SoC vendor may already have defined for a given platform.

Today, configuration in Zephyr comes from a number of different places. It can come from Kconfig files, CMSIS
header files, vendor header files, prj.conf files, and other miscellaneous sources. The intent of using device tree is
to replace or curtail the use of Kconfig files throughout the system, and instead use device tree files to describe the
configuration of device nodes. CMSIS and vendor header files can be used in conjunction with the device tree to fully
describe hardware. Device tree is not intended to replace CMSIS or vendor include files.

The device tree files are compiled using the device tree compiler. The compiler runs the .dts file through the C
preprocessor to resolve any macro or #defines utilized in the file. The output of the compile is another dts formatted
file.

After compilation, a python script extracts information from the compiled device tree file using a set of rules specified
in YAML files. The extracted information is placed in a header file that is used by the rest of the code as the project is
compiled.

A temporary fixup file is required for device tree support on most devices. This .fixup file resides in the dts architecture
directory and has the same name as the master .dts file. The only difference is the suffix is .fixup. This fixup file maps
the generated include information to the current driver/source usage.

Device tree file formats

Hardware and software is described inside of device tree files in clear text format. These files have the file suffix of
.dtsi or .dts. The .dtsi files are meant to be included by other files. Typically for a given board you have some number
of .dtsi include files that pull in common device descriptions that are used across a given SoC family.

1.7. Device and Driver Support 167

http://www.devicetree.org/specifications-pdf
http://www.devicetree.org/specifications-pdf
https://git.kernel.org/pub/scm/utils/dtc/dtc.git

Zephyr Project Documentation, & 7ii 1.9.0

Example: FRDM K64F Board and Hexiwear K64

Both of these boards are based on the same NXP Kinetis SoC family, the K6X. The following shows the include
hierarchy for both boards.

dts/arm/frdm_k64.dts includes the following two files:

dts/arm/nxp/nxp_k6x.dtsi
dts/arm/armv7-m.dtsi

dts/arm/hexiwear_k64.dts includes the same two files:

dts/arm/nxp/nxp_kéx.dtsi
dts/arm/armv7-m.dtsi

The board-specific .dts files enable nodes, define the Zephyr-specific items, and also adds board-specific changes like
gpio/pinmux assignments. These types of things will vary based on the board layout and application use.

Currently supported boards

Device tree is currently supported on all ARM targets. Support for all other architectures is to be completed by release
1.9.

Adding support for a board

Adding device tree support for a given board requires adding a number of files. These files will contain the DTS
information that describes a platform, the YAML descriptions that define the contents of a given Device Tree peripheral
node, and also any fixup files required to support the platform.

When writing Device Tree Source files, it is good to separate out common peripheral information that could be used
across multiple SoC families or boards. DTS files are identified by their file suffix. A .dtsi suffix denotes a DTS file
that is used as an include in another DTS file. A .dts suffix denotes the primary DTS file for a given board.

The primary DTS file will contain at a minimum a version line, optional includes, and the root node definition. The
root node will contain a model and compatible that denotes the unique board described by the .dts file.

Device Tree Source File Template

/dts-v1/

/A
model = "Model name for your board";
compatible = "compatible for your board";
/* rest of file x/

bi

One suggestion for starting from scratch on a platform/board is to examine other boards and their device tree source
files.

The following is a more precise list of required files:
* Base architecture support
— Add architecture-specific DTS directory, if not already present. Example: dts/arm for ARM.
— Add target to dts/<ARCH>/Makefile or create Makefile if not present

168 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

— Add target specific device tree files for base SoC. These should be .dtsi files to be included in the board-
specific device tree files.

— Add target specific YAML files in the dts/<ARCH>/yaml directory. Create the yaml directory if not
present.

* SoC family support

— Add one or more SoC family .dtsi files that describe the hardware for a set of devices. The file should
contain all the relevant nodes and base configuration that would be applicable to all boards utilizing that
SoC family.

— Add SoC family YAML files that describe the nodes present in the .dtsi file.
* Board specific support

— Add a board level .dts file that includes the SoC family .dtsi files and enables the nodes required for that
specific board.

— Board .dts file should specify the SRAM and FLASH devices, if present.

— Add board-specific YAML files, if required. This would occur if the board has additional hardware that is
not covered by the SoC family .dtsi/.yaml files.

* Fixup files

— Fixup files contain mappings from existing Kconfig options to the actual underlying DTS derived config-
uration #defines. Fixup files are temporary artifacts until additional DTS changes are made to make them
unnecessary.

Adding support for device tree in drivers

As drivers and other source code is converted over to make use of device tree generated information, these drivers may
require changes to match the generated #define information.

Source Tree Hierarchy

The device tree files are located in a couple of different directories. The directory split is done based on architecture,
and there is also a common directory where architecture agnostic device tree and yaml files are located.

Assuming the current working directory is the ZEPHYR_BASE, the directory hierarchy looks like the following:

dts/common/
dts/common/yaml
dts/<ARCH>/
dts/<ARCH>/yaml

The common directories contain a skeleton.dtsi include file that defines the address and size cells. The yaml subdirec-
tory contains common yaml files for Zephyr-specific nodes/properties and generic device properties common across
architectures.

Example: DTS/YAML files for NXP FRDM K64F:

dts/arm/armv7-m.dtsi
dts/arm/ké6x/nxp_ké6x.dtsi
dts/arm/frdm_k64f.dts
dts/arm/yaml/arm,v7m-nvic.yaml
dts/arm/yaml/ké64gpio.yaml
dts/arm/yaml/k64pinmux.yaml
dts/arm/yaml/k64uart.yaml

1.7. Device and Driver Support 169

Zephyr Project Documentation, & 7ii 1.9.0

YAML definitions for device nodes

Device tree can describe hardware and configuration, but it doesn’t tell the system which pieces of information are
useful, or how to generate configuration data from the device tree nodes. For this, we rely on YAML files to describe
the contents or definition of a device tree node.

A YAML description must be provided for every device node that is to be a source of information for the system.
This YAML description can be used for more than one purpose. It can be used in conjunction with the device tree
to generate include information. It can also be used to validate the device tree files themselves. A device tree file
can successfully compile and still not contain the necessary pieces required to build the rest of the software. YAML
provides a means to detect that issue.

YAML files reside in a subdirectory inside the common and architecture-specific device tree directories. A YAML
template file is provided to show the required format. This file is located at:

dts/common/yaml/device_node.yaml.template

YAML files must end in a .yaml suffix. YAML files are scanned during the information extraction phase and are
matched to device tree nodes via the compatible property.

Subsystems

This section contains information about subsystem and the API they expose to applications.

Bluetooth

Zephyr comes integrated with a feature-rich and highly configurable Bluetooth stack:
¢ Bluetooth 5.0 compliant (ESR10)
* Bluetooth Low Energy Controller support (LE Link Layer)
— BLE 5.0 compliant

Unlimited role and connection count, all roles supported

Concurrent multi-protocol support ready

Intelligent scheduling of roles to minimize overlap

Portable design to any open BLE radio, currently supports Nordic Semiconductor nRF51 and nRF52
* Generic Access Profile (GAP) with all possible LE roles

— Peripheral & Central

— Observer & Broadcaster

GATT (Generic Attribute Profile)

— Server (to be a sensor)
— Client (to connect to sensors)

* Pairing support, including the Secure Connections feature from Bluetooth 4.2

IPSP/6LoWPAN for IPv6 connectivity over Bluetooth LE

170 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

— IPSP node sample application in samples/bluetooth/ipsp
* Basic Bluetooth BR/EDR (Classic) support
Generic Access Profile (GAP)
Logical Link Control and Adaptation Protocol (L2ZCAP)
Serial Port emulation (RFCOMM protocol)

Service Discovery Protocol (SDP)

Clean HCI driver abstraction
- 3-Wire (H:5) & 5-Wire (H:4) UART
- SPI
— Local controller support as a virtual HCI driver
* Raw HCI interface to run Zephyr as a Controller instead of a full Host stack
— Possible to export HCI over a physical transport
— samples/bluetooth/hci_uart sample for HCI over UART
— samples/bluetooth/hci_usb sample for HCI over USB
* Verified with multiple popular controllers
* Highly configurable

— Features, buffer sizes/counts, stack sizes, etc.

Source tree layout

The stack is split up as follows in the source tree:

subsys/bluetooth/host The host stack. This is where the HCI command & event handling as well as connec-
tion tracking happens. The implementation of the core protocols such as L2CAP, ATT & SMP is also here.

subsys/bluetooth/controller Bluetooth Controller implementation. Implements the controller-side of
HCI, the Link Layer as well as access to the radio transceiver.

include/bluetooth/ Public API header files. These are the header files applications need to include in order to
use Bluetooth functionality.

drivers/bluetooth/ HCI transport drivers. Every HCI transport needs its own driver. E.g. the two common
types of UART transport protocols (3-Wire & 5-Wire) have their own drivers.

samples/bluetooth/ Sample Bluetooth code. This is a good reference to get started with Bluetooth application
development.

tests/bluetooth/ Test applications. These applications are used to verify the functionality of the Bluetooth
stack, but are not necessary the best source for sample code (see samples/bluetooth instead).

doc/subsystems/bluetooth/ Extra documentation, such as PICS documents.

Further reading

More information on the stack and its usage can be found here and in the following subsections:

1.8. Subsystems 171

20

21

22

23

24

25

26

27

28

29

30

40

41

42

43

Zephyr Project Documentation, & 7ii 1.9.0

Developing Bluetooth Applications

Initialization

The Bluetooth subsystem is initialized using the bt_enable () function. The caller should ensure that function
succeeds by checking the return code for errors. If a function pointer is passed to bt _enable (), the initialization

happens asynchronously, and the completion is notified through the given function.

Bluetooth Application Example

A simple Bluetooth beacon application is shown below. The application initializes the Bluetooth Subsystem and

enables non-connectable advertising, effectively acting as a Bluetooth Low Energy broadcaster.

/ *
* Set Advertisement data. Based on the Eddystone specification:
+ https://github.com/google/eddystone/blob/master/protocol-specification.md
* https://github.com/google/eddystone/tree/master/eddystone-url
*/
static const struct bt_data ad[] = {
BT _DATA BYTES (BT_DATA_ FLAGS, BT LE_AD_NO_BREDR),
BT_DATA_ BYTES (BT_DATA_UUID16_ALL, Oxaa, Oxfe),
BT_DATA_BYTES (BT_DATA_SVC_DATALG,
Oxaa, Oxfe, /+ Eddystone UUID */
0x10, /# Eddystone—-URL frame type x/
0x00, /# Calibrated Tx power at Om */
0x00, /#* URL Scheme Prefix http://www. */
'z', tel, pt, tht, Ty, oty
'o', 'r', 'o', 'j', 'e', 'c¢', 't',
0x08) /* .org =/
bi

/+ Set Scan Response data */
static const struct bt_data sd[] = {
BT_DATA (BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),

}i

static void bt_ready(int err)
{
if (err) {
printk ("Bluetooth init failed (err %d)\n", err);
return;

printk ("Bluetooth initialized\n");

/* Start advertising */
err = bt_le_adv_start (BT_LE_ADV_NCONN, ad, ARRAY_SIZE (ad),
sd, ARRAY_SIZE (sd));
if (err) {
printk ("Advertising failed to start (err %d)\n", err);
return;

printk ("Beacon started\n");

172 Chapter 1.

44

45

46

47

48

49

50

51

53

54

56

Zephyr Project Documentation, % #i 1.9.0

void main (void)
{

int err;
printk ("Starting Beacon Demo\n");

/+ Initialize the Bluetooth Subsystem */
err = bt_enable (bt_ready);
if (err) {
printk ("Bluetooth init failed (err %d)\n", err);

The key APIs employed by the beacon sample are bt_enable () that’s used to initialize Bluetooth and then
bt_le_adv_start () that’s used to start advertising a specific combination of advertising and scan response data.

Testing with QEMU

It’s possible to test Bluetooth applications using QEMU. In order to do so, a Bluetooth controller needs to be exported
from the host OS (Linux) to the emulator.

Using Host System Bluetooth Controller in QEMU

The host OS’s Bluetooth controller is connected to the second QEMU serial line using a UNIX socket. This socket
employs the QEMU option ~serial unix:/tmp/bt-server-bredr. This option is already added to QEMU
through QEMU_EXTRA_FLAGS in most Bluetooth sample Makefiles’ and made available through the ‘run’ make
target.

On the host side, BlueZ allows to export its Bluetooth controller through a so-called user channel for QEMU to use:
1. Make sure that the Bluetooth controller is down

2. Use the btproxy tool to open the listening UNIX socket, type:

$ sudo tools/btproxy -u
Listening on /tmp/bt-server-bredr

3. Choose one of the Bluetooth sample applications located in samples/bluetooth.

4. To run Bluetooth application in QEMU, type:

$ make run

Running QEMU now results in a connection with the second serial line to the bt -server-bredr UNIX socket,
letting the application access the Bluetooth controller.

Qualification Testing
PICS Features

The PICS features for each supported protocol & profile can be found in the following documents:

1.8. Subsystems 173

Zephyr Project Documentation, & 7ii 1.9.0

GAP PICS

PTS version: 6.4

* _ different than PTS defaults

A - field not available on PTS

M - mandatory

O - optional

Device Configuration

Parameter Name | Selected | Description
TSPC_GAP_0_1 False (*) | BR/EDR (C.1)
TSPC_GAP_0_2 True LE (C.2)
TSPC_GAP_0_3 False (*) | BR/EDR/LE (C.3)
Version Configuration
Parameter Name | Selected | Description
TSPC_GAP_0OA_1 | False (*) Core Specification Addendum 3 (CSA3) (C.1)
TSPC_GAP_0OA_2 | False (*) | Core Specification Addendum 4 (CSA4) (C.2)
TSPC_GAP_0A_3 | False (*) Core Spec version 4.1 (Core v4.1) (C.3)
TSPC_GAP_0A_4 | True Core Spec version 4.2 (Core v4.2) (C.4)
Modes
Parameter Name | Selected | Description
TSPC_GAP_1_1 False (*) | Non-discoverable mode (C.1)
TSPC_GAP_1_2 False (*) | Limited-discoverable Mode (O)
TSPC_GAP_1_3 False (*) | General-discoverable mode (O)
TSPC_GAP_1_4 False (*) | Non-connectable mode (O)
TSPC_GAP_1_5 False (*) | Connectable mode (M)
TSPC_GAP_1_6 False (*) | Non-bondable mode (O)
TSPC_GAP_1_7 False (*) | Bondable mode (C.2)
TSPC_GAP_1_8 False (*) | Non-Synchronizable Mode (C.3)
TSPC_GAP_1_ 9 False (*) Synchronizable Mode (C.4)
174 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Security Aspects

Parameter Name | Selected | Description

TSPC_GAP_2_1 False (*) Authentication procedure (C.1)
TSPC_GAP_2 2 False (*) | Support of LMP-Authentication (M)
TSPC_GAP_2_3 False (*) Initiate LMP-Authentication (C.5)
TSPC_GAP_2 4 False (*) | Security mode 1 (C.2)
TSPC_GAP_2_5 False (*) Security mode 2 (O)

TSPC_GAP_2_6 False (*) | Security mode 3 (C.7)
TSPC_GAP_2_7 False (*) Security mode 4 (C.4)
TSPC_GAP_2_8 False (*) | Support of Authenticated link key (C.6)
TSPC_GAP_2_9 False (*) Support of Unauthenticated link key (C.6)
TSPC_GAP_2_10 | False (*) | No security (C.6)

TSPC_GAP_2_11 | False (*) | Secure Connections Only Mode (C.8)

Idle Mode Procedures

Parameter Name | Selected | Description

TSPC_GAP_3_1 False (*) | Initiation of general inquiry (C.1)
TSPC_GAP_3_2 False (*) | Initiation of limited inquiry (C.1)
TSPC_GAP_3_3 False (*) Initiation of name discover (O)
TSPC_GAP_3_4 False (*) | Initiation of device discovery (O)
TSPC_GAP_3_5 False (*) | Initiation of general bonding (O)
TSPC_GAP_3_6 False (*) Initiation of dedicated bonding (O)

Establishment Procedures

Parameter Name | Selected | Description

TSPC_GAP_4_1 False (*) | Support link establishment as initiator (M)

TSPC_GAP_4_2 False (*) | Support link establishment as acceptor (M)

TSPC_GAP_4_3 False (*) | Support channel establishment as initiator (O)

TSPC_GAP_4_4 False (*) | Support channel establishment as acceptor (M)

TSPC_GAP_4_5 False (*) | Support connection establishment as initiator (O)

TSPC_GAP_4_6 False (*) Support connection establishment as acceptor (O)

TSPC_GAP_4 7 False (*) Support synchronization establishment as receiver (C.1)
LE Roles

Parameter Name | Selected | Description

TSPC_GAP_5_1 True Broadcaster (C.1)

TSPC_GAP_5_2 True Observer (C.1)

TSPC_GAP_5 3 True Peripheral (C.1)

TSPC_GAP_5_4 True Central (C.1)

1.8. Subsystems

175

Zephyr Project Documentation, & 7ii 1.9.0

Broadcaster Physical Layer

Parameter Name | Selected | Description

TSPC_GAP_6_1 True Transmitter (M)

TSPC_GAP 6 2 True Receiver (O)
Broadcaster Link Layer States

Parameter Name | Selected | Description

TSPC_GAP_7_1 True Standby (M)

TSPC_GAP_7_2 True Advertising (M)

Broadcaster Link Layer Advertising Event Types

Parameter Name | Selected | Description
TSPC_GAP_8_1 True Non-Connectable Undirected Event (M)
TSPC_GAP_8_2 True Scannable Undirected Event (O)

Broadcaster Link Layer Advertising Data Types

Parameter Name | Selected | Description

TSPC_GAP_8A_1 True AD Type-Service UUID (O)

TSPC_GAP_8A 2 True AD Type-Local Name (O)

TSPC_GAP_8A_3 True AD Type-Flags (C.2)

TSPC_GAP_8A 4 True AD Type-Manufacturer Specific Data (O)
TSPC_GAP_8A_5 False (*) | AD Type-TX Power Level (O)
TSPC_GAP_8A_6 | False (*) | AD Type-Security Manager Out of Band (OOB) (C.1)
TSPC_GAP_8A_7 False (*) | AD Type-Security manager TK Value (O)
TSPC_GAP_8A_S8 False (*) | AD Type-Slave Connection Interval Range (O)
TSPC_GAP_8A_9 False (*) | AD Type-Service Solicitation (O)
TSPC_GAP_8A_10 | True AD Type-Service Data (O)
TSPC_GAP_8A_11 | True AD Type-Appearance (O)

TSPC_GAP_8A_12 | False (*) | AD Type-Public Target Address (O)
TSPC_GAP_8A_13 | False (*) | AD Type-Random Target Address (O)
TSPC_GAP_8A_14 | False (*) AD Type-Advertising Interval (O)
TSPC_GAP_8A_15 | False (*) | AD Type-LE Bluetooth Device Address (O)
TSPC_GAP_8A_16 | False (*) | AD Type-LE Role (O)

TSPC_GAP_8A_17 | (M AD Type-URI (C.3)

Broadcaster Connection Modes and Procedures

Parameter Name | Selected | Description
TSPC_GAP_9_1 True Non-Connectable Mode (M)
176 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Broadcaster Broadcasting and Observing Features

Selected
True

Description
Broadcast Mode (M)

Parameter Name
TSPC_GAP_10_1

Broadcaster Privacy Feature

Parameter Name Selected
TSPC_GAP_11_1 | False (*)
TSPC_GAP_11_1A | False (*)
TSPC_GAP_11_IB | (N

TSPC_GAP_11_2 False (*)

Description

Privacy Feature v1.0 (C.2)

Privacy Feature v1.1 (C.3)

Privacy Feature v1.2 (C.5)

Resolvable Private Address Generation Procedure (C.1)

TSPC_GAP_11_3

False (*)

Non-Resolvable Private Address Generation Procedure (C.4)

Observer Physical Layer

Parameter Name | Selected | Description
TSPC_GAP_12_1 | True Receiver (M)
TSPC_GAP_12_2 | True Transmitter (O)

Observer Link Layer States

Parameter Name | Selected | Description
TSPC_GAP_13_1 | True Standby (M)
TSPC_GAP_13_2 | True Scanning (M)

Observer Link Layer Scanning Types

Parameter Name | Selected | Description
TSPC_GAP_14_1 | True Passive Scanning (M)
TSPC_GAP_14_2 | True Active Scanning (O)

Observer Connection Modes and Procedures

Parameter Name

Selected

Description

TSPC_GAP_15_1

True

Non-Connectable Mode (M)

Observer Broadcasting and Observing Features

Parameter Name

Selected

Description

TSPC_GAP_16_1

True

Observation Procedure (M)

1.8. Subsystems

177

Zephyr Project Documentation, & 7ii 1.9.0

Observer Privacy Feature

Parameter Name

Selected

Description

TSPC_GAP_17_1

False (*)

Privacy Feature v1.0 (C.4)

TSPC_GAP_17_1A | False (*) | Privacy Feature v1.1 (C.5)

TSPC_GAP_17_1B | (M) Privacy Feature v1.2 (C.6)

TSPC_GAP_17_2 False (*) | Non-Resolvable Private Address Generation Procedure (C.1)
TSPC_GAP_17_3 False (*) | Resolvable Private Address Resolution Procedure (C.2)
TSPC_GAP_17_4 False (*) | Resolvable Private Address Generation Procedure (C.3)

Peripheral Physical Layer

Parameter Name | Selected | Description
TSPC_GAP 18 1 | True Transmitter (M)
TSPC_GAP_18_2 | True Receiver (M)

Peripheral Link Layer States

Parameter Name | Selected | Description
TSPC_GAP_19_1 | True Standby (M)
TSPC_GAP_19_2 | True Advertising (M)
TSPC_GAP_19_3 | True Connection, Slave Role (C.1)

Peripheral Link Layer Advertising Event Types

Parameter Name | Selected | Description

TSPC_GAP_20_1 | True Connectable Undirected Event (C.1)
TSPC_GAP_20_2 | True Connectable Directed Event (C.2)
TSPC_GAP_20_3 | True Non-Connectable Undirected Event (O)
TSPC_GAP_20_4 | True Scannable Undirected Event (O)

178

Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Peripheral Link Layer Advertising Data Types

Parameter Name Selected | Description

TSPC_GAP_20A_1 True AD Type-Service UUID (C.1)

TSPC_GAP 20A_2 True AD Type-Local Name (C.1)
TSPC_GAP_20A_3 True AD Type-Flags (C.2)

TSPC_GAP_20A_4 True AD Type-Manufacturer Specific Data (C.1)
TSPC_GAP_20A_5 False (*) | AD Type-TX Power Level (C.1)
TSPC_GAP_20A_6 False (*) | AD Type-Security Manager Out of Band (OOB) (C.3)
TSPC_GAP_20A_7 False (*) | AD Type-Security manager TK Value (C.1)
TSPC_GAP_20A_8 False (*) | AD Type-Slave Connection Interval Range (C.1)
TSPC_GAP_20A_9 False (*) | AD Type-Service Solicitation (C.1)
TSPC_GAP_20A_10 | True AD Type-Service Data (C.1)
TSPC_GAP_20A_11 | True AD Type-Appearance (C.1)
TSPC_GAP_20A_12 | False (¥) AD Type-Public Target Address (C.1)
TSPC_GAP_20A_13 | False (*) | AD Type-Random Target Address (C.1)
TSPC_GAP_20A_14 | False (¥) AD Type-Advertising Interval (C.1)
TSPC_GAP_20A_15 | False (*) | AD Type-LE Bluetooth Device Address (C.1)
TSPC_GAP_20A_16 | False (¥) AD Type-LE Role (C.1)

TSPC_GAP_20A_17 | (M) AD Type-URI (C.4)

Peripheral Link Layer Control Procedures

Parameter Name | Selected | Description

TSPC_GAP_21_1 | True Connection Update Procedure (C.1)
TSPC_GAP_21_2 | True Channel Map Update Procedure (C.1)
TSPC_GAP_21_3 | True Encryption Procedure (C.2)

TSPC_GAP_21_4 | True Feature Exchange Procedure (C.1)
TSPC_GAP_21_5 | True Version Exchange Procedure (C.1)
TSPC_GAP_21_6 | True Termination Procedure (C.1)

TSPC_GAP_21_7 | False (*) | LE Ping Procedure (C.3)

TSPC_GAP_21_8 | True Slave Initiated Feature Exchange Procedure (C.4)
TSPC_GAP_21_9 | True Connection Parameter Request Procedure (C.5)

Peripheral Discovery Modes and Procedures

Parameter Name | Selected | Description

TSPC_GAP_22_1 | True Non-Discoverable Mode (C.1)
TSPC_GAP_22_2 | True Limited Discoverable Mode (C.2)
TSPC_GAP_22_3 | True General Discoverable Mode (C.3)
TSPC_GAP_22_4 | True Name Discovery Procedure (C.4)

1.8. Subsystems

179

Zephyr Project Documentation, & 7ii 1.9.0

Peripheral Connection Modes and Procedures

Parameter Name | Selected | Description

TSPC_GAP_23_1 | True Non-Connectable Mode (M)
TSPC_GAP_23_2 | False (*) | Directed Connectable Mode (C.1)
TSPC_GAP_23_3 | True Undirected Connectable Mode (C.2)
TSPC_GAP 23 4 | True Connection Parameter Update Procedure (C.2)
TSPC_GAP_23_5 | True Terminate Connection Procedure (C.2)

Peripheral Bonding Modes and Procedures

Parameter Name | Selected | Description
TSPC_GAP_24_1 | True Non-Bondable Mode (M)
TSPC_GAP 24 2 | True Bondable Mode (C.1)
TSPC_GAP_24_3 | True Bonding Procedure (C.1)
TSPC_GAP 24 4 | True Multiple Bonds (C.2)

Peripheral Security Aspects Features

Parameter Name | Selected | Description

TSPC_GAP_25_1 True Security Mode (C.2)

TSPC_GAP_25_2 True Security Mode 2 (C.2)

TSPC_GAP 25 3 True Authentication Procedure (C.2)

TSPC_GAP_25_4 False (*) | Authorization Procedure (C.2)

TSPC_GAP_25 5 True Connection Data Signing Procedure (C.2)
TSPC_GAP_25_6 True Authenticate Signed Data Procedure (C.2)
TSPC_GAP_25_7 True Authenticated Pairing (LE security mode 1 level 3) (C.1)
TSPC_GAP_25_8 True Unauthenticated Pairing (LE security mode 1 level 2) (C.1)

TSPC_GAP_25_9

™)

LE Security Mode 1 Level 4 (C.3)

TSPC_GAP_25_10

@)

Secure Connections Only Mode (C.4)

Peripheral Privacy Feature

Parameter Name

Selected

Description

TSPC_GAP_26_1

False (*)

Privacy Feature (C.5)

TSPC_GAP_26_1A | False (*) | Privacy Feature v1.1 (C.3)

TSPC_GAP_26_1B | (M) Privacy Feature v1.2 (C.6)

TSPC_GAP_26_2 False (*) | Non-Resolvable Private Address Generation Procedure (C.1)
TSPC_GAP_26_3 False (*) | Resolvable Private Address Generation Procedure (C.2)
TSPC_GAP_26_4 False (*) | Resolvable Private Address Generation Procedure (C.4)

180

Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Peripheral GAP Characteristics

Parameter Name | Selected | Description

TSPC_GAP_27_1 | True Device Name (M)

TSPC_GAP 27 2 | True Appearance (M)

TSPC_GAP_27_3 | False (¥) Peripheral Privacy Flag (C.1)

TSPC_GAP_27_4 | False (*) | Reconnection Address (C.2)

TSPC_GAP_27_5 | False (¥) Peripheral Preferred Connection Parameters (C.3)

TSPC_GAP_27 6 | True Writable Device Name (C.3)

TSPC_GAP_27_7 | True Writable Appearance (C.3)

TSPC_GAP_27_8 | False (*) | Writable Peripheral Privacy Flag (C.4)

Central Physical Layer

Parameter Name | Selected | Description

TSPC_GAP 28 1 | True Transmitter (M)

TSPC_GAP_28_2 | True Receiver (M)

Central Link Layer States

Parameter Name | Selected | Description
TSPC_GAP_29_1 | True Standby (M)
TSPC_GAP_29_2 | True Scanning (M)
TSPC_GAP_29_3 | True Initiating (M)
TSPC_GAP_29_4 | True Connection, Master Role (M)

Central Link Layer Scanning Types

Parameter Name | Selected | Description

TSPC_GAP_30_1 | True Passive Scanning (O)

TSPC_GAP_30_2 | True Active Scanning (C.1)

Central Link Layer Control Procedures

Parameter Name | Selected | Description

TSPC_GAP_31_1 | True Connection Update Procedure (M)
TSPC_GAP_31_2 | True Channel Map Update Procedure (M)
TSPC_GAP_31_3 | True Encryption Procedure (O)

TSPC_GAP_31_4 | True Feature Exchange Procedure (M)
TSPC_GAP_31_5 | True Version Exchange Procedure (M)

TSPC_GAP_31 6 | True Termination Procedure (M)

TSPC_GAP_31_7 | False (*) | LE Ping Procedure (C.1)

TSPC_GAP _31_8 | True Slave Initiated Feature Exchange Procedure (C.2)
TSPC_GAP_31_9 | False (¥) Connection Parameter Request Procedure (C.1)

1.8. Subsystems

181

Zephyr Project Documentation, & 7ii 1.9.0

Central Discovery Modes and Procedures

Parameter Name | Selected | Description

TSPC_GAP_32_1 | True Limited Discovery Procedure (C.2)
TSPC_GAP 32 2 | True General Discovery Procedure (C.1)
TSPC_GAP_32_3 | True Name Discovery Procedure (C.3)

Central Connection Modes and Procedures

Parameter Name | Selected | Description

TSPC_GAP_33_1 | True Auto Connection Establishment Procedure (C.3)
TSPC_GAP_33_2 | True General Connection Establishment Procedure (C.1)
TSPC_GAP_33_3 | False (¥) Selective Connection Establishment Procedure (C.3)
TSPC_GAP 33 4 | True Direct Connection Establishment Procedure (C.2)
TSPC_GAP_33_5 | True Connection Parameter Update Procedure (C.2)
TSPC_GAP_33 6 | True Terminate Connection Procedure (C.2)

Central Bonding Modes and Procedures

Parameter Name | Selected | Description
TSPC_GAP_34_1 | True Non-Bondable Mode (C.1)
TSPC_GAP_34_2 | True Bondable Mode (C.2)
TSPC_GAP 34 3 | True Bonding Procedure (C.2)

Central Security Features

Parameter Name | Selected | Description

TSPC_GAP_35_1 True Security Mode 1 (O)

TSPC_GAP_35_2 True Security Mode 2 (O)

TSPC_GAP_35_3 True Authentication Procedure (O)

TSPC_GAP_35_4 False (*) | Authorization Procedure (O)

TSPC_GAP 35 5 True Connection Data Signing Procedure (O)
TSPC_GAP_35_6 True Authenticate Signed Data Procedure (O)
TSPC_GAP_35_7 True Authenticated Pairing (LE security mode 1 level 3) (C.1)
TSPC_GAP_35_8 True Unauthenticated Pairing (LE security mode 1 level 2) (C.1)
TSPC_GAP_35_9 @) LE Security Mode 1 Level 4 (C.2)

TSPC_GAP_35_10 | (M) Secure Connections Only Mode (C.3)

Central Privacy Feature

Parameter Name | Selected | Description

TSPC_GAP_36_1 False (*) | Privacy Feature v1.0 (C.2)

TSPC_GAP_36_1A | False (*) | Privacy Feature v1.1 (C.4)

TSPC_GAP_36_1B | () Privacy Feature v1.2 (C.7)

TSPC_GAP_36_2 False (*) | Non-Resolvable Private Address Generation Procedure (C.1)
TSPC_GAP_36_3 False (*) | Resolvable Private Address Resolution Procedure (C.3)
TSPC_GAP_36_4 False (*) | Write to Privacy Characteristic (Enable/Disable Privacy) (C.5)
TSPC_GAP_36_5 False (*) | Resolvable Private Address Generation Procedure (C.6)

182 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Central GAP Characteristics

Parameter Name | Selected | Description

TSPC_GAP_37_1 | True Device Name (M)

TSPC_GAP 37 2 | True Appearance (M)

TSPC_GAP_37_3 | (M) Central Address Resolution (C.1)
BR/EDR/LE Roles

Parameter Name | Selected | Description

TSPC_GAP_38_1 | False (*) | Broadcaster (C.1)

TSPC_GAP_38_2 | False (*) Observer (C.1)

TSPC_GAP_38_3 | False (¥) Peripheral (C.1)

TSPC_GAP_38_4 | False (*) | Central (C.1)

Central BR/EDR/LE Modes

Parameter Name

Selected

Description

TSPC_GAP_39_1

False (*)

Non-Discoverable Mode (C.1)

TSPC_GAP_39_2

False (*)

Discoverable Mode (C.2)

TSPC_GAP_39_3

False (*)

Non-Connectable Mode (C.3)

TSPC_GAP_39_4

False (*)

Connectable Mode (M)

TSPC_GAP_39_5

False (*)

Non-Bondable Mode (C.4)

TSPC_GAP_39_6

False (*)

Bondable Mode (C.5)

Central BR/EDR/LE Idle Mode Procedures

Parameter Name

Selected

Description

TSPC_GAP_40_1

False (*)

General Discovery (C.1)

TSPC_GAP_40_2

False (*)

Limited Discovery (C.2)

TSPC_GAP_40_3

False (*)

Device Type Discovery (C.3)

TSPC_GAP_40_4

False (*)

Name Discovery (C.4)

TSPC_GAP_40_5

False (*)

Link Establishment (C.5)

Central BR/EDR/LE Security Aspects

Parameter Name

Selected

Description

TSPC_GAP_41_1

False (*)

Security Aspects (M)

TSPC_GAP_41_2

™)

Cross-Transport Key Derivation (C.1)

1.8. Subsystems

183

Zephyr Project Documentation, & 7ii 1.9.0

Peripheral BR/EDR/LE Modes

Parameter Name | Selected | Description
TSPC_GAP_42_1 | False (*) | Non-Discoverable Mode (C.1)
TSPC_GAP_42_2 | False (*) | Discoverable Mode (C.2)
TSPC_GAP_42_3 | False (*) | Non-Connectable Mode (C.3)
TSPC_GAP_42_4 | False (¥) Connectable Mode (M)
TSPC_GAP_42_5 | False (*) | Non-Bondable Mode (C.4)
TSPC_GAP_42_6 | False (*) | Bondable Mode (C.5)

Peripheral BR/EDR/LE Security Aspects

Parameter Name

Selected

Description

TSPC_GAP_43_1

False (*)

Peripheral BR/EDR/LE: Non-Discoverable Mode

TSPC_GAP_43_2

™)

Cross-Transport Key Derivation (C.1)

Central Simultaneous BR/EDR and LE Transports

Parameter Se- Description

Name lected

TSPC_GAP_44_1 | False (*) | Simultaneous BR/EDR and LE Transports - BR/EDR Slave to the same device
(C.1

TSPC_GAP_44_2 | False (*) | Simultaneous BR/EDR and LE Transports - BR/EDR Master to the same device
(C.1)

Peripheral Simultaneous BR/EDR and LE Transports

Parameter Se- Description

Name lected

TSPC_GAP_45_1 | False (*) | Simultaneous BR/EDR and LE Transports - BR/EDR Slave to the same device
(C.1

TSPC_GAP_45_2 | False (*) | Simultaneous BR/EDR and LE Transports - BR/EDR Master to the same device
(C.1)

Parameter Name | Selected | Description

TSPC_GATT _1_1 | True GATT Client Role (O)

TSPC_GATT_1_2 | True GATT Server Role (O)

TSPC_SM_1_1 True Master Role (Initiator)

TSPC_SM_1_2 True Slave Role (Responder)

TSPC_SM_2_4 False (*) OOB supported (O)

GATT PICS

PTS version: 6.4

* - different than PTS defaults
A - field not available on PTS

M - mandatory

184

Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

O - optional

Generic Attribute Profile Role

Parameter Name | Selected | Description

TSPC_GATT_1_1 True Generic Attribute Profile Client (C.1)
TSPC_GATT 1 2 True Generic Attribute Profile Server (C.2)
TSPC_GATT_1A_1 | False (*) | Complete GATT client (C.3)
TSPC_GATT_1A_2 | False (*) Complete GATT server (C.4)

ATT Bearer Transport

Parameter Se- Description

Name lected

TSPC_GATT_2_1 | False (*) | Attribute Protocol Supported over BR/EDR (L2CAP fixed channel support)
(C.1)

TSPC_GATT 2 2 | True Attribute Protocol Supported over LE (C.2)

Generic Attribute Profile Support

Parameter Name | Selected | Description

TSPC_GATT _3_1 True Client: Exchange MTU (C.1)

TSPC_GATT_3_2 False (*) Client: Discover All Primary Services (C.1)
TSPC_GATT 3 3 True Client: Discover Primary Services Service UUID (C.1)
TSPC_GATT_3_4 True Client: Find Included Services (C.1)

TSPC_GATT 3 5 True Client: Discover All characteristics of a Service (C.1)
TSPC_GATT_3_6 True Client: Discover Characteristics by UUID (C.1)
TSPC_GATT 3 7 True Client: Discover All Characteristic Descriptors (C.1)
TSPC_GATT_3_8 True Client: Read Characteristic Value (C.1)
TSPC_GATT _3_9 False (*) | Client: Read using Characteristic UUID (C.1)
TSPC_GATT_3_10 | True Client: Read Long Characteristic Values (C.1)
TSPC_GATT 3 11 | True Client: Read Multiple Characteristic Values (C.1)
TSPC_GATT_3_12 | True Client: Write without Response (C.1)
TSPC_GATT 3 _13 | True Client: Signed Write Without Response (C.1)
TSPC_GATT_3_14 | True Client: Write Characteristic Value (C.1)
TSPC_GATT _3_15 | True Client: Write Long Characteristic Values (C.1)
TSPC_GATT_3_16 | False (*) Client: Characteristic Value Reliable Writes (C.1)
TSPC_GATT 3 17 | True Client: Notifications (C.1)

TSPC_GATT_3_18 | True Client: Indications (M)

TSPC_GATT_3_19 | True Client: Read Characteristic Descriptors (C.1)
TSPC_GATT 3 20 | True Client: Read long Characteristic Descriptors (C.1)
TSPC_GATT_3_21 | True Client: Write Characteristic Descriptors (C.1)
TSPC_GATT 3 22 | True Client: Write Long Characteristic Descriptors (C.1)
TSPC_GATT_3_23 | True Client: Service Changed Characteristic (M)

Profile Attribute Types and Formats, by client

1.8. Subsystems

185

Zephyr Project Documentation, & 7ii 1.9.0

Parameter Name Selected | Description

TSPC_GATT 3B_1 False (*) Client: Primary Service Declaration (M)

TSPC_GATT _3B_2 False (*) | Client: Secondary Service Declaration (M)
TSPC_GATT_3B_3 False (*) Client: Include Declaration (M)

TSPC_GATT _3B_4 False (*) | Client: Characteristic Declaration (M)
TSPC_GATT_3B_5 False (*) | Client: Characteristic Value Declaration (M)
TSPC_GATT_3B_6 False (*) | Client: Characteristic Extended Properties (M)
TSPC_GATT _3B_7 | False (*) | Client: Characteristic User Description Descriptor (M)
TSPC_GATT_3B_8 False (*) | Client: Client Characteristic Configuration Descriptor (M)
TSPC_GATT _3B_9 | False (*) | Client: Server Characteristic Configuration Descriptor (M)
TSPC_GATT_3B_10 | False (*) | Client: Characteristic Format Descriptor (M)
TSPC_GATT _3B_11 | False (*) | Client: Characteristic Aggregate Format Descriptor (M)
TSPC_GATT_3B_12 | False (*) | Client: Characteristic Format: Boolean (M)
TSPC_GATT_3B_13 | False (*) | Client: Characteristic Format: 2Bit (M)
TSPC_GATT_3B_14 | False (*) | Client: Characteristic Format: nibble (M)
TSPC_GATT_3B_15 | False (*) | Client: Characteristic Format: Uint8 (M)
TSPC_GATT_3B_16 | False (*) | Client: Characteristic Format: Uint12 (M)
TSPC_GATT_3B_17 | False (*) | Client: Characteristic Format: Uint16 (M)
TSPC_GATT_3B_18 | False (*) Client: Characteristic Format: Uint24 (M)
TSPC_GATT_3B_19 | False (*) | Client: Characteristic Format: Uint32 (M)
TSPC_GATT_3B_20 | False (*) Client: Characteristic Format: Uint48 (M)
TSPC_GATT _3B_21 | False (*) | Client: Characteristic Format: Uint64 (M)
TSPC_GATT_3B_22 | False (*) Client: Characteristic Format: Uint128 (M)
TSPC_GATT _3B_23 | False (*) | Client: Characteristic Format: Sint8 (M)
TSPC_GATT_3B_24 | False (*) | Client: Characteristic Format: Sint12 (M)
TSPC_GATT _3B_25 | False (*) | Client: Characteristic Format: Sint16 (M)
TSPC_GATT_3B_26 | False (*) | Client: Characteristic Format: Sint24 (M)
TSPC_GATT_3B_27 | False (*) | Client: Characteristic Format: Sint32 (M)
TSPC_GATT_3B_28 | False (*) | Client: Characteristic Format: Sint48 (M)
TSPC_GATT_3B_29 | False (*) | Client: Characteristic Format: Sint64 (M)
TSPC_GATT _3B_30 | False (*) | Client: Characteristic Format: Sint128 (M)
TSPC_GATT_3B_31 | False (*) | Client: Characteristic Format: Float32 (M)
TSPC_GATT_3B_32 | False (*) | Client: Characteristic Format: Float64 (M)
TSPC_GATT_3B_33 | False (*) | Client: Characteristic Format: SFLOAT (M)
TSPC_GATT_3B_34 | False (*) | Client: Characteristic Format: FLOAT (M)
TSPC_GATT_3B_35 | False (*) | Client: Characteristic Format: Duint16 (M)
TSPC_GATT_3B_36 | False (*) | Client: Characteristic Format: utf8s (M)
TSPC_GATT_3B_37 | False (*) | Client: Characteristic Format: utf16s (M)
TSPC_GATT _3B_38 | False (*) | Client: Characteristic Format: struct (M)

186

Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

Attribute Profile Support, by Server

Parameter Name | Selected | Description

TSPC_GATT_4_1 True Server: Exchange MTU (C.4)

TSPC_GATT 4 2 True Server: Discover All Primary Services (M)
TSPC_GATT_4_3 True Server: Discover Primary Services Service UUID (M)
TSPC_GATT 4 4 True Server: Find Included Services (M)
TSPC_GATT_4_5 True Server: Discover All characteristics of a Service (M)
TSPC_GATT 4 6 True Server: Discover Characteristics by UUID (M)
TSPC_GATT_4_7 True Server: Discover All Characteristic Descriptors (M)
TSPC_GATT 4 8 True Server: Read Characteristic Value (M)
TSPC_GATT_4_9 True Server: Read using Characteristic UUID (M)
TSPC_GATT 4 10 | True Server: Read Long Characteristic Values (C.4)
TSPC_GATT_4_11 | True Server: Read Multiple Characteristic Values (C.4)
TSPC_GATT 4_12 | True Server: Write without Response (C.2)
TSPC_GATT_4_13 | True Server: Signed Write Without Response (C.4)
TSPC_GATT 4_14 | True Server: Write Characteristic Value (C.3)
TSPC_GATT_4_15 | True Server: Write Long Characteristic Values (C.4)
TSPC_GATT 4 _16 | True Server: Characteristic Value Reliable Writes (C.4)
TSPC_GATT_4_17 | True Server: Notifications (C.4)

TSPC_GATT_4_18 | False (*) Server: Indications (C.1)

TSPC_GATT_4_19 | True Server: Read Characteristic Descriptors (C.4)
TSPC_GATT_4_20 | True Server: Read long Characteristic Descriptors (C.4)
TSPC_GATT 4 21 | True Server: Write Characteristic Descriptors (C.4)
TSPC_GATT_4_22 | True Server: Write Long Characteristic Descriptors (C.4)
TSPC_GATT_4_23 | False (*) | Server: Service Changed Characteristic (C.1)

Profile Attribute Types and Characteristic Formats

Parameter Name Selected | Description
TSPC_GATT 4B _1 True Server: Primary Service Declaration (M)
TSPC_GATT_4B_2 True Server: Secondary Service Declaration (M)
TSPC_GATT 4B _3 True Server: Include Declaration (M)
TSPC_GATT_4B_4 True Server: Characteristic Declaration (M)
TSPC_GATT 4B_5 True Server: Characteristic Value Declaration (M)
TSPC_GATT_4B_6 True Server: Characteristic Extended Properties (M)
TSPC_GATT 4B_7 True Server: Characteristic User Description Descriptor (M)
TSPC_GATT_4B_8 True Server: Client Characteristic Configuration Descriptor (M)
TSPC_GATT_4B_9 | True Server: Server Characteristic Configuration Descriptor (M)
TSPC_GATT _4B_10 | True Server: Characteristic Format Descriptor (M)
TSPC_GATT_4B_11 | True Server: Characteristic Aggregate Format Descriptor (M)
TSPC_GATT 4B 12 | True Server: Characteristic Format: Boolean (M)
TSPC_GATT 4B_13 | True Server: Characteristic Format: 2Bit (M)
TSPC_GATT 4B_14 | True Server: Characteristic Format: nibble (M)
TSPC_GATT _4B_15 | True Server: Characteristic Format: Uint8 (M)
TSPC_GATT 4B_16 | True Server: Characteristic Format: Uint12 (M)
TSPC_GATT_4B_17 | True Server: Characteristic Format: Uint16 (M)
TSPC_GATT 4B_18 | True Server: Characteristic Format: Uint24 (M)
TSPC_GATT_4B_19 | True Server: Characteristic Format: Uint32 (M)

I DUARZE

1.8. Subsystems 187

Zephyr Project Documentation, & 7ii 1.9.0

F1.2-8LT
Parameter Name Selected | Description
TSPC_GATT 4B_20 | True Server: Characteristic Format: Uint48 (M)
TSPC_GATT_4B_21 | True Server: Characteristic Format: Uint64 (M)
TSPC_GATT 4B_22 | True Server: Characteristic Format: Uint128 (M)
TSPC_GATT_4B_23 | True Server: Characteristic Format: Sint8 (M)
TSPC_GATT _4B_24 | True Server: Characteristic Format: Sint12 (M)
TSPC_GATT_4B_25 | True Server: Characteristic Format: Sint16 (M)
TSPC_GATT 4B_26 | True Server: Characteristic Format: Sint24 (M)
TSPC_GATT 4B 27 | True Server: Characteristic Format: Sint32 (M)
TSPC_GATT_4B_28 | True Server: Characteristic Format: Sint48 (M)
TSPC_GATT_4B_29 | True Server: Characteristic Format: Sint64 (M)
TSPC_GATT_4B_30 | True Server: Characteristic Format: Sint128 (M)
TSPC_GATT 4B_31 | True Server: Characteristic Format: Float32 (M)
TSPC_GATT_4B_32 | True Server: Characteristic Format: Float64 (M)
TSPC_GATT 4B_33 | True Server: Characteristic Format: SFLOAT (M)
TSPC_GATT_4B_34 | True Server: Characteristic Format: FLOAT (M)
TSPC_GATT 4B_35 | True Server: Characteristic Format: Duint16 (M)
TSPC_GATT_4B_36 | True Server: Characteristic Format: utf8s (M)
TSPC_GATT 4B_37 | True Server: Characteristic Format: utf16s (M)
TSPC_GATT_4B_38 | True Server: Characteristic Format: struct (M)

Generic Attribute Profile Service - SDP Interoperability

Parameter Name | Selected | Description
TSPC_GATT_6_2 | False (*) | Discover GATT Services using Service Discovery Profile (C.1)
TSPC_GATT_6_3 | False (*) | Publish SDP record for GATT services support via BR/EDR (C.2)

Attribute Protocol Transport Security

Parameter Name | Selected | Description

TSPC_GATT_7_1 | False (¥) Security Mode 4 (C.1)

TSPC_GATT_7 2 | True LE Security Mode 1 (C.2)
TSPC_GATT_7_3 | True LE Security Mode 2 (C.2)
TSPC_GATT 7 4 | True LE Authentication Procedure (C.2)
TSPC_GATT_7_5 | False (*) | LE connection data signing procedure (C.2)
TSPC_GATT_7_6 | False (*) | LE Authenticate signed data procedure (C.2)
TSPC_GATT_7_7 | True LE Authorization Procedure (C.2)

188

Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

Attribute Protocol Client Messages

Parameter Name | Selected | Description

TSPC_ATT _3_1 False (*) Attribute Error Response (M)
TSPC_ATT_3_2 False (*) | Exchange MTU Request (O)
TSPC_ATT 3_4 False (*) | Find Information Request (O)
TSPC_ATT_3_6 False (*) | Find by Type Value Request (O)
TSPC_ATT_3_8 False (*) | Read by Type Request (O)
TSPC_ATT_3_10 | False (*) | Read Request (O)
TSPC_ATT_3_12 | False (¥) Read Blob Request (O)
TSPC_ATT_3_14 | False (*) | Read Multiple Request (O)
TSPC_ATT_3_16 | False (*) | Read by Group Type Request (O)
TSPC_ATT_3_17 | False (*) | Read by Group Type Response (C.6)
TSPC_ATT_3_18 | False (*) | Write Request (O)
TSPC_ATT_3_20 | False (*) | Write Command (O)
TSPC_ATT_3_21 False (*) Signed Write Command (O)
TSPC_ATT_3_22 False (*) Prepare Write Request (O)
TSPC_ATT_3_24 | False (*) | Execute Write Request (C.8)
TSPC_ATT_3_26 False (*) Handle Value Notification (M)
TSPC_ATT_3_28 | False (*) Handle Value Confirmation (M)

Attribute Protocol Server Messages

Parameter Name | Selected | Description

TSPC_ATT _4_1 True Attribute Error Response (M)
TSPC_ATT 4 2 True Exchange MTU Request (M)
TSPC_ATT_4_3 True Exchange MTU Response (M)
TSPC_ATT 4 5 True Find Information Response (M)
TSPC_ATT_4_7 True Find by Type Value Response (M)
TSPC_ATT_4_8 True Read by Type Request (M)
TSPC_ATT_4_9 False (*) | Read by Type Response (M)
TSPC_ATT 4_11 True Read Response (M)
TSPC_ATT_4_13 | False (*) | Read Blob Response (C.1)
TSPC_ATT_4_15 | False (¥) Read Multiple Response (C.2)
TSPC_ATT_4_17 | True Read by Group Type Response (M)
TSPC_ATT_4_19 | False (*) | Write Response (C.3)
TSPC_ATT_4_20 | False (*) | Write Command (O)

TSPC_ATT 4 _21 False (*) | Signed Write Command (O)
TSPC_ATT_4_23 | False (*) | Prepare Write Response (C.4)
TSPC_ATT_4_25 | False (*) | Execute Write Response (C.4)
TSPC_ATT_4_26 | False (*) | Handle Value Notification (O)
TSPC_ATT_4_27 | False (*) | Handle Value Indication (O)

Attribute Protocol Transport

Parameter Name | Selected | Description

TSPC_ATT_5_2 True LE Security Mode 1 (C.2)
TSPC_ATT_ 5 4 True LE Authentication Procedure (C.2)
TSPC_ATT_5_7 True LE Authorization Procedure (C.2)

1.8. Subsystems

189

Zephyr Project Documentation, & 7ii 1.9.0

Device Configuration

Parameter Name | Selected | Description
TSPC_GAP_0_2 True LE (C.2)

L2CAP PICS

PTS version: 6.4
o — different than PTS defaults

Device Configuration

Parameter Name | Selected | Description
TSPC_L2CAP_0_1 | False (*) | BR/EDR

TSPC_L2CAP_0 2 | True Bluetooth low energy only
TSPC_L2CAP_0_3 | False (*) | BR/EDR/Bluetooth low energy

Roles
Parameter Name | Selected | Description
TSPC_L2CAP_1_1 | False (*) | Data Channel Initiator
TSPC_L2CAP_1_2 | False (*) Data Channel Acceptor
TSPC_L2CAP_1_3 | True LE Master
TSPC_L2CAP_1_4 | True LE Slave
TSPC_L2CAP_1_5 | True LE Data Channel Initiator
TSPC_1L2CAP_1 6 | True LE Data Channel Acceptor

General Operation

Parameter Name Selected | Description

TSPC_L2CAP_2_1 False (*) | Support of L2ZCAP signaling channel

TSPC_L2CAP_2 2 | False (*) | Support of configuration process

TSPC_L2CAP_2_3 False (*) Support of connection oriented data channel

TSPC_L2CAP_2_4 | False (*) | Support of command echo request

TSPC_L2CAP_2_5 False (*) Support of command echo response

TSPC _1.2CAP 2 6 False (*) Support of command information request

TSPC_L2CAP_2_7 False (*) | Support of command information response

TSPC_L2CAP_2_8 False (*) | Support of a channel group

TSPC_L2CAP_2_9 | False (*) | Support of packet for connectionless channel

TSPC_L2CAP_2_10 | False (*) Support retransmission mode

TSPC_L2CAP_2_11 | False (*) | Support flow control mode

TSPC_L2CAP_2_12 | False (*) Enhanced Retransmission Mode

TSPC_L2CAP_2_13 | False (¥) Streaming Mode

TSPC_L2CAP_2_14 | False (*) | FCS Option

TSPC_L2CAP_2_15 | False (¥) Generate Local Busy Condition

TSPC_L2CAP_2_16 | False (*) Send Reject

190

Chapter 1. H3X

Zephyr Project Documentation, % #i 1.9.0

FT13-% LT

Parameter Name Selected | Description

TSPC_L2CAP_2_17 | False (*) Send Selective Reject

TSPC_L2CAP_2_18 | False (*) Mandatory use of ERTM

TSPC_L2CAP_2_19 | False (*) Mandatory use of Streaming Mode

TSPC_L2CAP_2_20 | False (*) Optional use of ERTM

TSPC_L2CAP_2_21 | False (*) Optional use of Streaming Mode

TSPC_L2CAP_2_22 | False (*) Send data using SAR in ERTM

TSPC_L2CAP_2_23 | False (*) | Send data using SAR in Streaming Mode

TSPC_L2CAP_2_24 | False (*) | Actively request Basic Mode for a PSM that supports the use of ERTM or Streaming Mode
TSPC_L2CAP_2_25 | False (*) Supports performing L2CAP channel mode configuration fallback from SM to ERTM
TSPC_L2CAP_2_26 | False (*) | Supports sending more than one unacknowledged I-Frame when operating in ERTM
TSPC_L2CAP_2_27 | False (*) Supports sending more than three unacknowledged I-Frame when operating in ERTM
TSPC_L2CAP_2_28 | False (*) | Supports configuring the peer TxWindow greater than 1

TSPC_L2CAP_2_29 | False (*) | AMP Support

TSPC_L2CAP_2_30 | False (*) Fixed Channel Support

TSPC_L2CAP_2_31 | False (*) | AMP Manager Support

TSPC_L2CAP_2_32 | False (*) | ERTM over AMP

TSPC_L2CAP_2_33 | False (*) | Streaming Mode Source over AMP Support

TSPC_L2CAP_2_34 | False (*) Streaming Mode Sink over AMP Support

TSPC_L2CAP_2_35 | False (*) | Unicast Connectionless Data, Reception

TSPC_L2CAP_2_36 | False (*) | Ability to transmit an unencrypted packet over a Unicast connectionless L2ZCAP channel
TSPC_L2CAP_2_37 | False (*) | Ability to transmit an encrypted packet over a Unicast connectionless L2ZCAP channel
TSPC_L2CAP_2_38 | False (*) Extended Flow Specification for BR/EDR

TSPC_L2CAP_2_39 | False (*) Extended Window Size

TSPC_L2CAP_2_40 | True Support of Low Energy signaling channel

TSPC_L2CAP_2_41 | True Support of command reject

TSPC_L2CAP_2_42 | True Send Connection Parameter Update Request

TSPC_L2CAP 2 43 | True Send Connection Parameter Update Response

TSPC_L2CAP_2_44 | False (*) Extended Flow Specification for AMP

TSPC_L2CAP_2 45 | True Send disconnect request command

TSCP_L2CAP_2_46 | True Support LE Credit Based Flow Control Mode

TSCP_L2CAP_2 47 | True Support for LE Data Channel

1.8. Subsystems

191

Zephyr Project Documentation, & 7ii 1.9.0

Configurable Parameters

Parameter Name | Se- Description
lected

TSPC_L2CAP_3_1 | True Support of RTX timer

TSPC_L2CAP_3_2 | False (*) | Support of ERTX timer

TSPC_L2CAP_3_3 | False (*) | Support minimum MTU size 48 octets

TSPC_L2CAP_3_4 | False (*) | Support MTU size larger than 48 octets

TSPC_L2CAP_3_5 | False (*) | Support of flush timeout value for reliable channel

TSPC_L2CAP_3_6 | False (*) | Support of flush timeout value for unreliable channel

TSPC_L2CAP_3_7 | False (*) | Support of bi-directional quality of service (QoS) option field

TSPC_L2CAP_3_8 | False (*) | Negotiate QoS service type

TSPC_L2CAP_3_9 | False (*) | Negotiate and support service type ‘No traffic’

TSPC_L2CAP_3_10| False (*) | Negotiate and support service type ‘Best effort’

TSPC_L2CAP_3_11| False (*) | Negotiate and support service type ‘Guaranteed’

TSPC_L2CAP_3_12| True Support minimum MTU size 23 octets

TSPC_L2CAP_3_13| False (*) | Negotiate and support service type ‘No traffic’ for Extended Flow
Specification

TSPC_L2CAP_3_14| False (*) | Negotiate and support service type ‘Best Effort’ for Extended Flow
Specification

TSPC_L2CAP_3_15| False (*) | Negotiate and support service type ‘Guaranteed’ for Extended Flow
Specification

TSPC _1L2CAP_3 16| True Support Multiple Simultaneous LE Data Channels

SM PICS

PTS version: 6.4

* - different than PTS defaults
A - field not available on PTS

M - mandatory

O - optional

Connection Roles

Parameter Name | Selected | Description
TSPC_SM_1_1 True Master Role (Initiator) (C.1)
TSPC_SM_1_2 True Slave Role (Responder) (C.2)

Security Properties

Parameter Name | Selected | Description
TSPC_SM_2_1 True Authenticated MITM protection (O)
TSPC_SM 2 2 True Unauthenticated no MITM protection (C.1)
TSPC_SM_2 3 True No security requirements (M)
TSPC_SM 2 4 False OOB supported (O)
TSPC_SM_2_5 @) LE Secure Connections (C.2)
192 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

Encryption Key Size

Parameter Name | Selected | Description
TSPC_SM_3_1 True Encryption Key Size Negotiation (M)
Pairing Method
Parameter Name | Selected | Description
TSPC_SM 4 1 True Just Works (O)
TSPC_SM_4_2 True Passkey Entry (C.1)
TSPC_SM_4_3 False (*) Out of Band (C.1)
Security Initiation
Parameter Name | Selected | Description
TSPC_SM_5_1 True Encryption Setup using STK (C.3)
TSPC_SM_5_2 True Encryption Setup using LTK (O)
TSPC_SM_5 3 True Slave Initiated Security (C.1)
TSPC_SM_5_4 True Slave Initiated Security - Master response(C.2)
Signing Algorithm
Parameter Name | Selected | Description
TSPC_SM_6_1 True Signing Algorithm - Generation (O)
TSPC_SM_6_2 True Signing Algorithm - Resolving (O)
Key Distribution
Parameter Name | Selected | Description
TSPC_SM_7_1 True Encryption Key (C.1)
TSPC_SM_7_2 False (*) Identity Key (C.2)
TSPC_SM_7 3 True Signing Key (C.3)
RFCOMM PICS
PTS version: 6.4
» - different than PTS defaults
Protocol Version
Parameter Name Selected | Description

TSPC_RFCOMM_0_1

False

RFCOMM 1.1 with TS 07.10

TSPC_RFCOMM_0_2

True (*)

RFCOMM 1.2 with TS 07.10

1.8. Subsystems

193

Zephyr Project Documentation, & 7ii 1.9.0

Supported Procedures

Parameter Name Selected | Description

TSPC_RFCOMM_1_1 True (*) Initialize RFCOMM Session

TSPC_RFCOMM _1 2 True (*) Respond to Initialization of an RFCOMM Session
TSPC_RFCOMM_1_3 True Shutdown RFCOMM Session
TSPC_RFCOMM_1 4 True Respond to a Shutdown of an RFCOMM Session
TSPC_RFCOMM_1_5 True (*) Establish DLC

TSPC_RFCOMM_1 6 True (*) Respond to Establishment of a DLC
TSPC_RFCOMM_1_7 True Disconnect DLC

TSPC_RFCOMM_1_8 True Respond to Disconnection of a DLC
TSPC_RFCOMM_1_9 True Respond to and send MSC Command
TSPC_RFCOMM_1_10 | True Initiate Transfer Information
TSPC_RFCOMM_1_11 | True Respond to Test Command
TSPC_RFCOMM_1_12 | False Send Test Command

TSPC_RFCOMM_1_13 | True React to Aggregate Flow Control
TSPC_RFCOMM_1_14 | True Respond to RLS Command
TSPC_RFCOMM_1_15 | False Send RLS Command

TSPC_RFCOMM_1_16 | True Respond to PN Command
TSPC_RFCOMM_1_17 | True (*) Send PN Command

TSPC_RFCOMM_1_18 | True (*) Send Non-Supported Command (NSC) response
TSPC_RFCOMM_1_19 | True Respond to RPN Command
TSPC_RFCOMM_1_20 | False Send RPN Command

TSPC_RFCOMM_1_21 | True (*) Closing Multiplexer by First Sending a DISC Command
TSPC_RFCOMM_1_22 | True Support of Credit Based Flow Control

Standard C Library

The kernel currently provides only the minimal subset of the standard C library required to meet the kernel’s own
needs, primarily in the areas of string manipulation and display.

Applications that require a more extensive C library can either submit contributions that enhance the existing library
or substitute with a replacement library.

The Zephyr SDK and other supported toolchains comes with a bare-metal C library based on newlib that can be
used with Zephyr by selecting the CONFIG_NEWLIB_LIBC in the application configuration file. Part of the support
for newlib is a set of hooks available under 1ib/libc/newlib/1libc—hooks.c which integrates the c library
with basic kernel services.

Logging
System Logging
The system log API provides a common interface to process messages issued by developers. These messages are

currently printed on the terminal but the API is defined in a generic way.

This API can be deactivated through the Kconfig options, see Global Kconfig Options. This approach prevents im-
pacting image size and execution time when the system log is not needed.

Each of the four SYS_LOG_X macros correspond to a different logging level, The logging macros activate when their
logging level or higher is set.

194 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

There are two configuration categories: configurations per module and global configurations. When logging is enabled
globally, it works for modules. However, modules can disable logging locally. Every module can specify its own
logging level. The module must define the SYS_LOG_LEVEL macro before including the include/logging/
sys_log.h header file to do so. Unless a global override is set, the module logging level will be honored. The
global override can only increase the logging level. It cannot be used to lower module logging levels that were
previously set higher.

You can set a local domain to differentiate messages. When no domain is set, then the [general] domain appears
before the message. Define the SYS_LOG_DOMAIN macro before including the include/logging/sys_log.h
header file to set the domain.

When several macros are active, the printed messages can be differentiated in two ways: by a tag printed before the
message or by ANSI colors. See the CONFIG_SYS_LOG_SHOW_TAGS and CONFIG_SYS_LOG_SHOW_COLOR
Kconfig options for more information.

Define the SYS_LOG_NO_NEWLINE macro before including the include/logging/sys_log.h header file to
prevent macros appending a new line at the end of the logging message.

Global Kconfig Options

These options can be found in the following path subsys/logging/Kconfig.
CONFIG_SYS_LOG: Global switch, turns on/off all system logging.

CONFIG_SYS_LOG_DEFAULT_LEVEL: Default level, sets the logging level used by modules that are not setting
their own logging level.

CONFIG_SYS_LOG_SHOW_TAGS: Globally sets whether level tags will be shown on log or not.
CONFIG_SYS_LOG_SHOW_COLOR: Globally sets whether ANSI colors will be used by the system log.

CONFIG_SYS_LOG_OVERRIDE_LEVEL: It overrides module logging level when it is not set or set lower than the
override value.

Example

The following macro:

’ SYS_LOG_WRN ("hi!™"); ‘

Will produce:

’[general] [WRN] main: Hi! ‘

For the above example to work at least one of the following settings must be true:
e The CONFIG_SYS_LOG_DEFAULT_LEVEL is set to 2 or above and module configuration is not set.
* The module configuration is set to 2 or above.

* The CONFIG_SYS_LOG_OVERRIDE_LEVEL is set to 2 or above.

1.8. Subsystems 195

Zephyr Project Documentation, & 7ii 1.9.0

APIs

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Kernel Event Logger

The kernel event logger records the occurrence of certain types of kernel events, allowing them to be subsequently
extracted and reviewed. This capability can be helpful in profiling the operation of an application, either for debugging
purposes or for optimizing the performance the application.

* Concepts
— Event Formats
— Timestamps
* Implementation
— Retrieving An Event
— Adding a Custom Event Type
* Configuration Options
* Related Functions
* APIs
— Event Logger

— Kernel Event Logger

Concepts

The kernel event logger does not exist unless it is configured for an application. The capacity of the kernel event logger
is also configurable. By default, it has a ring buffer that can hold up to 128 32-bit words of event information.

The kernel event logger is capable of recording the following predefined event types:
* Interrupts.
 Context switching of threads.
» Kernel sleep events (i.e. entering and exiting a low power state).

The kernel event logger only records the predefined event types it has been configured to record. Each event type can
be enabled independently.

An application can also define and record custom event types. The information recorded for a custom event, and the
times at which it is recorded, must be implemented by the application.

All events recorded by the kernel event logger remain in its ring buffer until they are retrieved by the application for
review and analysis. The retrieval and analysis logic must be implemented by the application.

FE®: An application must retrieve the events recorded by the kernel event logger in a timely manner, otherwise
new events will be dropped once the event logger’s ring buffer becomes full. A recommended approach is to use a

196 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

cooperative thread to retrieve the events, either on a periodic basis or as its sole responsibility.

By default, the kernel event logger records all occurrences of all event types that have been enabled. However, it can
also be configured to allow an application to dynamically start or stop the recording of events at any time, and to
control which event types are being recorded. This permits the application to capture only the events that occur during
times of particular interest, thereby reducing the work needed to analyze them.

TEf#: The kernel event logger can also be instructed to ignore context switches involving a single specified thread.
This can be used to avoid recording context switch events involving the thread that retrieves the events from the kernel
event logger.

Event Formats

Each event recorded by the kernel event logger consists of one or more 32-bit words of data that describe the event.

An interrupt event has the following format:

struct {
u32_t timestamp; /+* time of interrupt #*/
u32_t interrupt_id; /* ID of interrupt */

}i

A context-switch event has the following format:

struct {
u32_t timestamp; /+* time of context switch x/
u32_t context_id; /+ ID of thread that was switched out =/

}i

A sleep event has the following format:

struct {
u32_t sleep_timestamp; /* time when CPU entered sleep mode #*/
u32_t wake_timestamp; /* time when CPU exited sleep mode */
u32_t interrupt_id; /* ID of interrupt that woke CPU */

}i

A custom event must have a type ID that does not conflict with any existing predefined event type ID. The format of
a custom event is application-defined, but must contain at least one 32-bit data word. A custom event may utilize a
variable size, to allow different events of a single type to record differing amounts of information.

Timestamps

By default, the timestamp recorded with each predefined event is obtained from the kernel’s hardware clock. This
32-bit clock counts up extremely rapidly, which means the timestamp value wraps around frequently. (For example,
the Lakemont APIC timer for Quark SE wraps every 134 seconds.) This wraparound must be accounted for when
analyzing kernel event logger data. In addition, care must be taken when tickless idle is enabled, in case a sleep
duration exceeds 2”32 clock cycles.

If desired, the kernel event logger can be configured to record a custom timestamp, rather than the default timestamp.
The application registers the callback function that generates the custom 32-bit timestamp at run-time by calling
sys_k_event_logger_set_timer ().

1.8. Subsystems 197

Zephyr Project Documentation, & 7ii 1.9.0

Implementation
Retrieving An Event

An event can be retrieved from the kernel event logger in a blocking or non-blocking manner using the following APIs:
* sys_k_event_logger_get ()
* sys_k_event_logger_get_wait ()
* sys_k_event_logger_get_wait_timeout ()

In each case, the API also returns the type and size of the event, as well as the event information itself. The API also
indicates how many events were dropped between the occurrence of the previous event and the retrieved event.

The following code illustrates how a thread can retrieve the events recorded by the kernel event logger.

ul6e_t event_id;

u8_t dropped_count;
u32_t datal[3];

u8_t data_size;

while (1) {
/* retrieve an event #*/
data_size = SIZE32_OF (data);
res = sys_k_event_logger_get_wait (&event_id, &dropped_count, data,
&data_size);

if (dropped_count > 0) {
/* ... Process the dropped events count ... x/

if (res > 0) {
/# process the event */
switch (event_id) {
case KERNEL_ EVENT LOGGER_CONTEXT SWITCH_EVENT_ID:

/% ... Process the context switch event ... */
break;
case KERNEL_EVENT_LOGGER_INTERRUPT_EVENT_ ID:
/% ... Process the interrupt event ... #*/
break;
case KERNEL_EVENT_LOGGER_SLEEP_EVENT_ ID:
/% ... Process the sleep event ... */
break;
default:
printf ("unrecognized event id %d\n", event_id);
}
} else if (res == -EMSGSIZE) {
/* ... Data array 1s too small to hold the event! ... #*/

Adding a Custom Event Type

A custom event type must use an integer type ID that does not duplicate an existing type ID. The type IDs for the
predefined events can be found in include/logging/kernel_event_logger.h. If dynamic recording of
events is enabled, the event type ID must not exceed 32.

198 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Custom events can be written to the kernel event logger using the following APIs:
* sys_k_event_logger_put ()
e sys_k_event_logger_put_timed()

Both of these APIs record an event as long as there is room in the kernel event logger’s ring buffer. To enable dynamic
recording of a custom event type, the application must first call sys_k_must_log_event () to determine if event
recording is currently active for that event type.

The following code illustrates how an application can write a custom event consisting of two 32-bit words to the kernel
event logger.

#define MY_CUSTOM_EVENT _ID 8

/+ record custom event only if recording is currently wanted =/
if (sys_k_must_log_event (MY_CUSTOM_EVENT_ID)) {
u32_t datal2];

data[0] custom_data_1;
data[l] = custom_data_2;

sys_k_event_logger_put (MY_CUSTOM_EVENT_ID, data, ARRAY_SIZE (data));

The following code illustrates how an application can write a custom event that records just a timestamp using a single
32-bit word.

#define MY CUSTOM_TIME _ONLY EVENT _ID 9

if (sys_k_must_log_event (MY_CUSTOM_TIME_ONLY_EVENT_ID)) {
sys_k_event_logger_put_timed (MY_CUSTOM_TIME_ONLY_EVENT_ID);

Configuration Options

Related configuration options:
¢ CONFIG_KERNEL_EVENT_LOGGER
e CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH
¢ CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
¢ CONFIG_KERNEL_EVENT_LOGGER_SLEEP
e CONFIG_KERNEL_EVENT_LOGGER_BUFFER_SIZE
¢ CONFIG_KERNEL_EVENT_LOGGER_DYNAMIC

¢ CONFIG_KERNEL_EVENT_LOGGER_CUSTOM_TIMESTAMP

Related Functions

The following kernel event logger APIs are provided by kernel_event_logger.h:
e sys_k_event_logger_register_as_collector()

* sys_k_event_logger_get ()

1.8. Subsystems 199

Zephyr Project Documentation, & 7ii 1.9.0

* sys_k_event_logger_get_wait ()

e sys_k_event_logger_get_wait_timeout ()
e sys_k_must_log_event ()

* sys_k_event_logger_put ()

* sys_k_event_logger_put_timed()

* sys_k_event_logger_get_mask ()

* sys_k_event_logger_set_mask ()

* sys_k_event_logger_set_timer ()

APIs

Event Logger

An event logger is an object that can record the occurrence of significant events, which can be subsequently extracted
and reviewed.

3= doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Kernel Event Logger

The kernel event logger records the occurrence of significant kernel events, which can be subsequently extracted and
reviewed. (See Kernel Event Logger.)

= &5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Networking

The networking section contains information regarding the network stack of the Zephyr kernel. Use the information
to understand the principles behind the operation of the stacks and how they were implemented.

Overview

Supported Features

The networking IP stack is modular and highly configurable via build-time configuration options. You can minimize
system memory consumption by enabling only those network features required by your application. Almost all features
can be disabled if not needed.

* IPv6 The support for IPv6 is enabled by default. Various IPv6 sub-options can be enabled or disabled depending
on networking needs.

— Developer can set the number of unicast and multicast IPv6 addresses that are active at the same time.

200 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

— The IPv6 address for the device can be set either statically or dynamically using SLAAC (Stateless Address
Auto Configuration) (RFC 4862).

— The system also supports multiple IPv6 prefixes and the maximum IPv6 prefix count can be configured at
build time.

— The IPv6 neighbor cache can be disabled if not needed, and its size can be configured at build time.
— The IPv6 neighbor discovery support (RFC 4861) is enabled by default.
— Multicast Listener Discovery v2 support (RFC 3810) is enabled by default.

— IPv6 header compression (6l0) is available for IPv6 connectivity for Bluetooth IPSP (RFC 7668) and IEEE
802.15.4 networks (RFC 4944).

IPv4 The legacy IPv4 is supported by the networking stack. It cannot be used by IEEE 802.15.4 or Bluetooth
IPSP as those network technologies support only IPv6. IPv4 can be used in ethernet based networks. By default
IPv4 support is disabled.

— DHCP (Dynamic Host Configuration Protocol) client is supported (RFC 2131).
— The IPv4 address can also be configured manually. Static IPv4 addresses are supported by default.

Dual stack support. The networking stack allows a developer to configure the system to use both IPv6 and
IPv4 at the same time.

UDP User Datagram Protocol (RFC 768) is supported. The developer can send UDP datagrams (client side
support) or create a listener to receive UDP packets destined to certain port (server side support).

TCP Transmission Control Protocol (RFC 793) is supported. Both server and client roles can be used the the
application. The amount of TCP sockets that are available to applications can be configured at build time.

BSD Sockets API Experimental support for a subset of a BSD Sockets compatible API is implemented. Both
blocking and non-blocking DGRAM (UDP) amd STREAM (TCP) sockets are supported.

HTTP Hypertext Transfer Protocol (RFC 2116) is supported. A simple library is provided that applications
can use. Sample applications are implemented for http-client-sample and http-server-sample. Both http-client-
sample and http-server-sample can use TLS (Transport Layer Security) v1.2 (RFC 5246) or SSL (Secure Sockets
Layer) v3.0 (RFC 6101) functionality to encrypt the network traffic. The secured connections are provided by
mbed library.

MQTT Message Queue Telemetry Transport (ISO/IEC PRF 20922) is supported. A sample mqtt-publisher-
sample client application for MQTT v3.1.1 is implemented.

CoAP Constrained Application Protocol (RFC 7252) is supported. Both Both zoap-client-sample and zoap-
server-sample sample applications are implemented. A coap-client-sample and coap-server-sample using DTLS
(Datagram Transport Layer Security) (RFC 6347) are also implemented.

LWM2M OMA Lightweight Machine-to-Machine Protocol (V1.0 Feb 2017) is supported via the “Register
Device” API (Register, De-Register and Update) and has template implementations for Securty, Server, Device
Management and Firmware objects. DTLS and Bootstrap support are currently not supported. lwm2m-client-
sample implements the library as an example.

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks (RFC 6550) is supported. RPL is an IPv6
based mesh routing protocol.

DNS Domain Name Service (RFC 1035) client functionality is supported. Applications can use an API to query
domain name information or IP addresses from the DNS server. Both IPv4 (A) and IPv6 (AAAA) records can
be queried.

Network Management API. Applications can use network management API to listen management events
generated by core stack when for example IP address is added to the device, or network interface is coming up
etc.

1.8.

Subsystems 201

Zephyr Project Documentation, & 7ii 1.9.0

* Multiple Network Technologies. The Zephyr OS can be configured to support multiple network technologies
at the same time simply by enabling them in Kconfig: for example, Ethernet and 802.15.4 support. Note that no
automatic IP routing functionality is provided between these technologies. Applications can send data according
to their needs to desired network interface.

e Minimal Copy Network Buffer Management. It is possible to have minimal copy network data path. This
means that the system tries to avoid copying application data when it is sent to the network. For some technolo-
gies it is even possible to have zero-copy data path from application to device driver.

Additionally these network technologies (link layers) are supported in Zephyr OS v1.7 and later:
¢ IEEE 802.15.4
* Bluetooth
* Ethernet

o SLIP (IP over serial line). Used for testing with QEMU. It provides ethernet interface to host system (like Linux)
and test applications can be run in Linux host and send network data to Zephyr OS device.

Source Tree Layout

The IP stack source code tree is organized as follows:
subsys/net/ip/ This is where the IP stack code is located.

subsys/net/1ib/ Application-level protocols (DNS, MQTT, etc.) and additional stack components (BSD Sock-
ets, etc.).

include/net/ Public API header files. These are the header files applications need to include to use IP networking
functionality.

samples/net/ Sample networking code. This is a good reference to get started with network application develop-
ment.

tests/net/ Test applications. These applications are used to verify the functionality of the IP stack, but are not
the best source for sample code (see samples/net instead).

IP Stack Architecture

High level overview of the IP stack

1.4: Network stack overview

The IP stack is layered and it consists of the following parts:

* Networking Application. This application uses the connectivity API to manipulate a network connection, and
management API to set network related parameters such as starting a scan (when applicable), setting IP address
to a network interface, etc.

* Core IP stack. This provides implementations for various protocols such as IPv6, IPv4, UDP, TCP, ICMPv4
and ICMPv6.

* Network interface abstraction layer. This provides functionality that is common in all the network interfaces,
such as acquiring an IP address, etc.

* Generic L2 layer. This provides common API for sending and receiving data to and from an actual network
device.

202 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

¢ L2 network technology component. These components include Ethernet, IEEE 802.15.4, Bluetooth, etc.
Some of these technologies support IPv6 header compression (6LoWPAN), which is done in its own layer. For
example ARP for IPv4 is done in the Ethernet component.

* Network device driver. The actual low-level device driver handles the physical sending or receiving of a
network packet.

Network data flow

1.5: Network data flow

The application typically consists of one or more tasks or threads that execute the application logic. When using the
network connectivity APIs, following things will happen.

Data receiving (RX):
1. A network data packet is received by a device driver.

2. The device driver allocates enough network buffers to store the received data. The network buffers are then
passed to the RX FIFO for further processing. The RX FIFO is used as a way to separate the data processing
pipeline (bottom-half) as the device driver is running in interrupt context and it must do its processing very fast.

3. The RX thread reads the RX FIFO and passes the data to the correct L2 driver. After the L2 driver has checked
the packet, the packet is passed to L3 processing. The L3 layer checks if the packet is a proper IPv6 or IPv4
packet. If the packet contains UDP or TCP data, it is then sent to correct application via a function callback.
This also means that the application data processing in that callback is run in thread context even if the actual
application is running in task context. The data processing in the application callback should be done fast in
order not to block the system too long. There is only one RX thread in the system. The stack size of the RX
thread can be tweaked via Kconfig option but it should be kept as small as possible. This also means that stack
utilization in the data processing callback should be minimized in order to avoid stack overflow.

4. The application will then receive the data, which is stored inside a chain of net_bufs. The application now
owns the data. After it has finished working with it, the application should release the net_bufs data by calling
net_pkt_unref ().

Data sending (TX):

1. The application should use the connectivity API when the application is ready to send data. The sent data is
checked by the correct L2 layer module and if everything is ok, the data is placed into the network interface TX
queue. The network interface is typically selected to be the same interface for reply data packets or the interface
is selected according to the routing algorithm. The application should not free the data packet if it was correctly
placed into TX queue; the network driver will release the packet after it is sent. If the connectivity API sending
function returns an error to the application, that means the packet was not sent correctly and the application
needs to free the packet.

2. Each network interface has a dedicated TX queue used to send data to that interface. A TX thread in the system
reads all the TX queues and passes that data to the correct L2 driver, for sending via the device driver.

3. If the device driver is able to inject the network packet into the network, then it will release the packet. Typically
there are no retransmits at this lower level so usually the packet is released even if not sent correctly. This
depends on the technology being used.

Network Connectivity API

Applications can use the connectivity API defined in net_context . h to create a connection, send or receive data,
and close a connection. The same API can be used when working with UDP or TCP data.

1.8. Subsystems 203

20

21

22

23

24

25

26

27

28

29

39

40

41

42

43

44

45

46

47

48

49

Zephyr Project Documentation, & 7ii 1.9.0

The net_context API is similar to the BSD socket API and mapping between these two is possible. The main differ-
ence between net_context API and BSD socket API is that the net_context API uses the fragmented network buffers

(net_buf) defined in include/net/buf.h and BSD socket API uses linear memory buffers.

This example creates a simple server that listens to incoming UDP connections and sends the received data back. You

can download the example application source file here connectivity-example-app.c

This example application begins with some initialization. (Use this as an example; you may need to do things differ-

ently in your own application.)

#define SYS_LOG_DOMAIN "example-app"
#define SYS_LOG_LEVEL SYS_LOG_LEVEL DEBUG
#define NET_DEBUG 1

#include <zephyr.h>

#include <net/net_pkt.h>
#include <net/net_core.h>
#include <net/net_context.h>

#define MY IP6ADDR { { { 0x20, 0x01, 0x0d, 0xb8, 0, 0, O,
o, o, 0, 0, 0, 0, 0, Ox1 } } }
#define MY _PORT 4242

struct in6_addr in6addr_my = MY_IP6ADDR;
struct sockaddr_in6 my_addr6 = { 0 };
struct net_context xcontext;

int ret;

struct nano_sem quit_lock;
static inline void quit (void)

{

nano_sem_give (&quit_lock);

static inline void init_app (void)
{

nano_sem_init (&quit_lock);

/+ Add our address to the network interface #*/

net_1if_ipv6_addr_add(net_if_ get_default (), &in6addr_my,

NET_ADDR_MANUAL, O);

void main (void)
{
NET_INFO ("Run sample application");
init_app();
create_context ();
bind_address () ;

receive_data();

nano_sem_take (&quit_lock, TICKS_UNLIMITED),;

0,

\

204

Chapter 1.

https://raw.githubusercontent.com/zephyrproject-rtos/zephyr/master/doc/subsystems/networking/connectivity-example-app.c

57

58

60

61

62

63

64

65

66

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Zephyr Project Documentation, % #i 1.9.0

close_context () ;

NET_INFO ("Stopping sample application");

After initialization, first thing application needs to create a context. Context is similar to a socket.

static int create_context (void)
{
ret = net_context_get (AF_INET6, SOCK_DGRAM, IPPROTO_UDP, &context);
if (!'ret) {
NET_ERR ("Cannot get context (%d)", ret);
return ret;

return 0;

Then you need to define the local end point for a connection.

static int bind_address (void)

{
net_ipaddr_copy (&émy_addr6.sin6_addr, &in6addr_my);
my_addr6.sin6_family = AF_INET6;
my_addr6.sin6_port = htons (MY_PORT) ;

ret = net_context_bind(context, (struct sockaddr «)é&my_addre6);
if (ret < 0) |
NET_ERR("Cannot bind IPv6 UDP port %d (%d)",
ntohs (my_addr6.sin6_port), ret);
return ret;

return 0;

‘Wait until the connection data is received.

#define MAX_DBG_PRINT 64
static struct net_buf *udp_recv (const char xname,
struct net_context xcontext,

struct net_buf *buf)

struct net_buf xreply_buf, xfrag, *tmp;
int header_len, recv_len, reply_len;

NET_INFO ("%s received %u bytes", name,
net_pkt_appdatalen (buf));

reply_buf = net_pkt_get_tx(context, K_FOREVER);
NET_ASSERT (reply_buf);
recv_len = net_buf_frags_len(buf->frags);

tmp = buf->frags;

1.8. Subsystems 205

Zephyr Project Documentation, & 7ii 1.9.0

106 /* First fragment will contain IP header so move the data
107 * down in order to get rid of 1it.

108 */

109 header_len = net_pkt_appdata (buf) - tmp->data;

110
m NET_ASSERT (header_len < CONFIG_NET BUF_DATA_SIZE);

112

113 net_buf_pull (tmp, header_len);

114

115 while (tmp) {

116 frag = net_pkt_get_data (context, K_FOREVER);
117

18 memcpy (net_buf_add(frag, tmp->len), tmp->data, tmp->len);
119

120 net_buf_frag add(reply_buf, frag);

121

122 net_buf_frag_del (buf, tmp);

123

124 tmp = buf->frags;

125 }

126

127 reply_len = net_buf_frags_len(reply_buf->frags);

128

129 NET_ASSERT_INFO (recv_len != reply_len,

130 "Received %d bytes, sending %d bytes",
131 recv_len, reply_len);

132

133 return reply_buf;

134 }
135
136 | static inline wvoid udp_sent (struct net_context xcontext,

137 int status,

138 void =xtoken,

139 void xuser_data)

140 {

141 if (!status) {

142 NET_INFO ("Sent %d bytes", POINTER_TO_UINT (token));

143 }
144 |}

145
46 |static inline void set_dst_addr(sa_family_t family,

147 struct net_buf xbuf,

148 struct sockaddr *dst_addr)

149 {

150 if (family == AF_INET6) {

151 net_ipaddr_copy (&net_sin6 (dst_addr)->sin6_addr,

152 &NET_IPV6_HDR (buf)->src);

153 net_sin6 (dst_addr)->sin6_family = AF_INET6;

154 net_sin6 (dst_addr)->sin6é_port = NET_UDP_HDR (buf)->src_port;

155 }
156 }

157
158 | static void udp_received (struct net_context *context,

159 struct net_buf xbuf,
160 int status,

161 void xuser_data)

162 {

163 struct net_buf xreply_buf;

206 Chapter 1. B3

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

201

202

Zephyr Project Documentation, % #i 1.9.0

struct sockaddr dst_addr;

sa_family_t family = net_pkt_family (buf);
static char dbg[MAX_DBG_PRINT + 1];

int ret;

snprintf (dbg, MAX_DBG_PRINT, "UDP IPv%c",
family == AF_INET6 ? '6' : '"4'");

set_dst_addr (family, buf, &dst_addr);

reply_buf = udp_recv(dbg, context, buf);

net_pkt_unref (buf);

ret = net_context_sendto(reply_buf, &dst_addr, udp_sent, O,
UINT_TO_POINTER (net_buf_frags_len(reply_buf)),
user_data);

if (ret < 0) |

NET_ERR ("Cannot send data to peer (%d)", ret);

net_pkt_unref (reply_buf);

quit ();

static int receive_data (void)

{
ret = net_context_recv (context, udp_received, 0, NULL);
if (ret < 0) |
NET_ERR ("Cannot receive IPv6 UDP packets");
quit () ;

return ret;

return 0O;

Close the context when finished.

/* Context close =*/
static int close_context (void)
{
ret = net_context_put (context);
if (ret < 0) {
NET_ERR ("Cannot close IPv6 UDP context");
return ret;

return 0;

1.8. Subsystems 207

Zephyr Project Documentation, & 7ii 1.9.0

BSD Sockets compatible API

Zephyr offers an implementation of a subset of the BSD Sockets API (a part of the POSIX standard). This API allows
to reuse existing programming experience and port existing simple networking applications to Zephyr.

Here are the key requirements and concepts which governed BSD Sockets compatible API implementation for Zephyr:
 Should have minimal overhead, similar to the requirement for other Zephyr subsystems.
* Should be implemented on top of native networking API to keep modular design.

 Should be namespaced by default, to avoid name conflicts with well-known names like close (), which may
be part of libc or other POSIX compatibility libraries. If enabled, should also expose native POSIX names.

BSD Sockets compatible API is enabled using CONFIG_NET_SOCKETS config option and implements the following
operations: socket (),close (), recv (), send (), connect (),bind (), listen (), fcntl () (to setnon-
blocking mode), poll ().

Based on the namespacing requirements above, these operations are by default exposed as func-
tions with zsock_ prefix, e.g. zsock_socket () and zsock_close(). If the config option
CONFIG_NET_SOCKETS_POSIX_NAMES is defined, all the functions will be also exposed as aliases without the
prefix. This includes the functions like close () and fcntl () (which may conflict with functions in libc or other
libraries, for example, with the filesystem libraries).

The native BSD Sockets API uses file descriptors to represent sockets. File descriptors are small integers, consecutively
assigned from zero. Internally, there is usually a table mapping file descriptors to internal object pointers. For memory
efficiency reasons, the Zephyr BSD Sockets compatible API is devoid of such a table. Instead, net_context
pointers, cast to an int, are used to represent sockets. Thus, socket identifiers aren’t really small integers, so the
select () operation is not available, as it depends on the “small int” property of file descriptors. Instead of using
select () then, use the poll () operation, which is generally more efficient.

The BSD Sockets API (and the POSIX API in general) also treat negative file descriptors values in a special way (such
values usually mean an error). As the Zephyr API uses a pointer value cast to an int for file descriptors, it means that
the pointer should not have the highest bit set, in other words, pointers should not refer to the second (highest) part of
the address space. For many CPU architectures and SoCs Zephyr supports, user RAM is located in the lower half, so
the above condition is satisfied. If you face an issue with some SoC because of this, please report it to the Zephyr bug
tracker or mailing list. The decision to use pointers to represent sockets might be reworked in the future.

The final entailment of the design requirements above is that the Zephyr API aggressively employs the short-read/short-
write property of the POSIX API whenever possible (to minimize complexity and overheads). POSIX allows for calls
like recv () and send () to actually process (receive or send) less data than requested by the user (on STREAM
type sockets). For example, a call recv (sock, 1000, 0) may return 100, meaning that only 100 bytes were read
(short read), and the application needs to retry call(s) to read the remaining 900 bytes.

L2 Stack and Drivers

The L2 stack is designed to hide the whole networking link-layer part and the related device drivers from the higher
IP stack. This is made through a unique object known as the “network interface object”: struct net_1if declared
in include/net/net_if.h.

The IP layer is unaware of implementation details beyond the net_if object and the generic API provided by the 1.2
layerin include/net/net_12.has struct net_12.

Only the L2 layer can talk to the device driver, linked to the net_if object. The L2 layer dictates the API provided by
the device driver, specific for that device, and optimized for working together.

Currently, there are L2 layers for Ethernet, IEEE 802.15.4 Soft-MAC, Bluetooth IPSP, and a dummy one, which is a
generic layer example that can be used as a template for writing a new one.

208 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

L2 layer API

In order to create an L2 layer, or even a driver for a specific L2 layer, one needs to understand how the IP layer interacts
with it and how the L2 layer is supposed to behave. The generic L2 API has 3 functions:

 recv: All device drivers, once they receive a packet which they put into a struct net_pkt, will push this
buffer to the IP core stack via net__recv_data (). At this point, the IP core stack does not know what to do
with it. Instead, it passes the buffer along to the L2 stack’s recv() function for handling. The L2 stack does what
it needs to do with the packet, for example, parsing the link layer header, or handling link-layer only packets.
The recv() function will return NET_DROP in case of an erroneous packet, NET_OK if the packet was fully
consumed by the L2, or NET_CONTINUE if the IP stack should then handle it as an IP packet.

* reserve: Prior to creating any network buffer content, the Zephyr core stack needs to know how much dedicated
buffer space is needed for the L2 layer (for example, space for the link layer header). This reserve function
returns the number of bytes needed.

 send: Similar to recv, the IP core stack will call this function to actually send a packet. All relevant link-layer
content will be generated and added by this function. As for recv, send returns a verdict and can decide to drop
the packet via NET_DROP if something wrong happened, or will return NET_OK.

Network Device drivers

Network device drivers fully follows Zephyr device driver model as a basis. Please refer to Device Drivers and Device
Model.

There are, however, two differences:
* the driver_api pointer must point to a valid struct net_if_api pointer.

e The network device driver must use NET_DEVICE_INIT_INSTANCE (). This macro will call the DE-
VICE_AND_API_INIT() macro, and also instantiate a unique struct net_if related to the created device
driver instance.

Implementing a network device driver depends on the L2 stack it belongs to: Ethernet, IEEE 802.15.4, etc. In the next
section, we will describe how a device driver should behave when receiving or sending a packet. The rest is really
hardware dependent and thus does not need to be detailed here.

Ethernet device driver

On reception, it is up to the device driver to fill-in the buffer with as many data fragments as required. The
buffer itself is a st ruct net_pkt and should be allocated through net_pkt_get_reserve_rx (0) (). Then
all fragments will be allocated through net_pkt_get_reserve_data (0) (). Of course the amount of re-
quired fragments depends on the size of the received packet and on the size of a fragment, which is given by
CONFIG_NET_BUF_DATA_SIZE

Note that it is not up to the device driver to decide on the link-layer space to be reserved in the buffer. Hence the 0
given as parameter here. The Ethernet L2 layer will update such information once the packet’s Ethernet header has
been successfully parsed.

In case net_recv_data () call fails, it will be up to the device driver to unreference the buffer via
net_pkt_unref ().

On sending, it is up to the device driver to send the buffer all at once, with all the fragments.

In case of a fully successful packet transmission only, the device driver must unreference the buffer via
net_pkt_unref ().

Each Ethernet device driver will need, in the end, to call NET_DEVICE_INIT_INSTANCE () like this:

1.8. Subsystems 209

Zephyr Project Documentation, & 7ii 1.9.0

NET_DEVICE_INIT_INSTANCE (...,
CONFIG_ETH_INIT_PRIORITY
&the_valid_net_if_api_instance,
ETHERNET 1.2,
NET_L2_GET_CTX_TYPE (ETHERNET_L2), 1500);

IEEE 802.15.4 device driver

Device drivers for IEEE 802.15.4 L2 work basically the same as for Ethernet. What has been described above,
especially for recv, applies here as well. There are two specific differences however:

* It requires a dedicated device driver API: struct ieee802154_radio_api, which overloads struct
net_1if_api. Thisis because 802.15.4 L2 needs more from the device driver than just send and recv functions.
This dedicated API is declared in include/net/ieee802154_radio.h. Each and every IEEE 802.15.4
device driver must provide a valid pointer on such relevantly filled-in API structure.

» Sending a packet is slightly particular. IEEE 802.15.4 sends relatively small frames, 127 bytes all inclusive:
frame header, payload and frame checksum. Buffer fragments are meant to fit such frame size limitation.
But a buffer containing an IPv6/UDP packet might have more than one fragment. In the Ethernet device
driver, it is up to the driver to handle all fragments. IEEE 802.15.4 drivers handle only one fragment at a
time. This is why the struct ieee802154_radio_api requires a tx function pointer which differs
from the struct net_if_api send function pointer. Instead, the IEEE 802.15.4 L2, provides a generic
ieee802154_radio_send () meant to be given as struct net_if send function. It turn, the imple-
mentation of ieee802154_radio_send () will ensure the same behavior: sending one fragment at a time
through struct ieee802154_radio_api tx function, and unreferencing the buffer only when all the
transmission were successful.

Each IEEE 802.15.4 device driver, in the end, will need to call NET_DEVICE_INIT_INSTANCE () that way:

NET_DEVICE_INIT_INSTANCE (...,
the_device_init_prio,
&the_valid_ieee802154_radio_api_instance,
IEEE802154_12,
NET_L2_GET_CTX_TYPE (IEEE802154_L2), 125);

Network Management API

The Network Management APIs allow applications, as well as network layer code itself, to call defined network
routines at any level in the IP stack, or receive notifications on relevant network events. For example, by using these
APIs, code can request a scan be done on a WiFi- or Bluetooth-based network interface, or request notification if a
network interface IP address changes.

The Network Management API implementation is designed to save memory by eliminating code at build time for man-
agement routines that are not used. Distinct and statically defined APIs for network management procedures are not
used. Instead, defined procedure handlers are registered by using a NET_MGMT_REGISTER_REQUEST_HANDLER
macro. Procedure requests are done through a single net_mgmt () API that invokes the registered handler for the
corresponding request.

The current implementation is experimental and may change and improve in future releases.

210 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Requesting a defined procedure

All network management requests are of the form net_mgmt (mgmt_request, ...). The mgmt_request
parameter is a bit mask that tells which stack layer is targeted, if a net_if object is implied, and the specific man-
agement procedure being requested. The available procedure requests depend on what has been implemented in the
stack.

To avoid extra cost, all net_mgmt () calls are direct. Though this may change in a future release, it will not affect
the users of this function.

Listening to network event

You can receive notifications on network events by registering a callback function and specifying an event mask used
to match one or more events that are relevant.

Two functions are available, net_mgmt_add_event_callback () for registering the callback function, and
net_mgmt_del_event_callback () for unregistering. A helper function, net_mgmt_init_event_cb (),
can be used to ease the initialization of the callback structure.

When an event is raised that matches a registered event mask, the associated callback function is invoked with the
actual event code. This makes it possible for different events to be handled by the same callback function, if desired.

See an example of registering callback functions and using the network management API in test/net/mgmt/
src/mgmt . c.

Defining a network management procedure

You can provide additional management procedures specific to your stack implementation by defining a handler and
registering it with an associated mgmt_request code.

Management request code are defined in relevant places depending on the targeted layer or eventually, if 12 is the layer,
on the technology as well. For instance, all IP layer management request code will be found in the include/net/
net_mgmt . h header file. But in case of an L2 technology, let’s say Ethernet, these would be found in include/
net/ethernet.h

You define your handler modeled with this signature:

static int your_handler (u32_t mgmt_event, struct net_if xiface,
void +data, size t len);

and then register it with an associated mgmt_request code:

’NET_MGMT_REGISTER_REQUEST_HANDLER(<mgmt_request code>, your_handler);

This new management procedure could then be called by using:

’net_mgmt(<mgmt_request code>, ...);

Signaling a network event

You can signal a specific network event using the net_mgmt_notify () function and provide the network event
code. See include/net/net_mgmt .h for details. As for the management request code, event code can be also
found on specific L2 technology headers, for example include/net/ieee802154.h would be the right place if
802.15.4 L2 is the technology one wants to listen to events.

1.8. Subsystems 211

Zephyr Project Documentation, & 7ii 1.9.0

Network Application API

The Network Application (net-app) API allows applications to:

Initialize The application for networking use. This means, for example, that if the application needs to have an IPv4
address, and if DHCPv4 is enabled, then the net-app API will make sure that the device will get an IPv4 address
before the application is started.

Set Various options for the networking subsystem. This means that if the user has set options like IP addresses, IEEE
802.15.4 channel etc. in the project configuration file, then those settings are applied to the system before the
application starts.

Create A simple TCP/UDP server or client application. The net-app API has functions that make it easy to create
a simple TCP or UDP based network application. The net-app API also provides transparent TLS and DTLS
support for the application.

The net-app API functionality is enabled by CONFIG_NET_APP option. The current net-app API implementation is
still experimental and may change and improve in future releases.

Initialization

The net-app API provides a net_app_init () function that can configure the networking subsystem for the appli-
cation. The following configuration options control this configuration:

CONFIG_NET_ APP_AUTO_INIT automatically configures the system according to other configuration options.
The user does not need to call net_app_init () in this case as that function will be automatically called
when the system boots. This option is enabled by default.

CONFIG_NET_APP_INIT_TIMEOUT specifies how long to wait for the network configuration during the system
boot. For example, if DHCPv4 is enabled, and if the IPv4 address discovery takes too long or the DHCPv4
server is not found, the system will resume booting after this number of seconds.

CONFIG_NET_ APP_NEED_IPV6 specifies that the application needs IPv6 connectivity. The net_app_init ()
function will wait until it is able to setup an IPv6 address for the system before continuing. This means that the
IPv6 duplicate address detection (DAD) has finished and the system has properly setup the IPv6 address.

CONFIG_NET_ APP_NEED_IPV6_ROUTER specifies that the application needs IPv6 router connectivity; i.e., it
needs access to external networks (such as the Internet). The net_app_init () function will wait until it
receives a router advertisement (RA) message from the IPv6 router before continuing.

CONFIG_NET_APP_NEED_IPV4 specifies that the application needs IPv4 connectivity. The net_app_init ()
function will wait, unless a static IP address is configured, until it is able to setup an IPv4 address for the network
subsystem.

Setup

Various system level network configuration options can be added to the project configuration file. These settings are
enabled by the CONFIG_NET_APP_SETTINGS configuration option. This option is disabled by default, and other
net-app options may also be disabled by default if generic support for the networking feature is disabled. For example,
the IPv6 net-app options are only available if generic IPv6 support is enabled.

CONFIG_NET_APP_MY IPV6_ADDR This option sets a static [Pv6 address for the system. This is typically only
useful in device testing as normally the system should use SLAAC (IPv6 Stateless Address Auto Configuration),
which is enabled by default in the system. The system can be configured to use multiple IPv6 addresses; this is
controlled by the CONFIG_NET_IF_UNICAST_IPV6_ADDR_COUNT configuration option.

212 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

CONFIG_NET_ APP_PEER_IPV6_ADDR This option specifies what is the peer device IPv6 address. This is only
useful when testing client/server type applications. This peer address is typically used as a parameter when
calling net_app_connect ().

CONFIG_NET_APP_MY IPV4_ADDR This option sets a static [Pv4 address for the system. This is typically useful
only in device testing as normally the system should use DHCPv4 to discover the IPv4 address.

CONFIG_NET_ APP_PEER_IPV4_ADDR This option specifies what is the peer device IPv4 address. This is only
useful when testing client/server type applications. This peer address is typically used as a parameter when
connecting to other device.

The following options are only available if IEEE 802.15.4 wireless network technology support is enabled.
CONFIG_NET_ APP_IEEE802154_DEV_NAME This option specifies the name of the IEEE 802.15.4 device.

CONFIG_NET_APP_IEEE802154_PAN_ID This option specifies the used PAN identifier. Note that the PAN id
can be changed at runtime if needed.

CONFIG_NET_APP_IEEE802154_CHANNEL This option specifies the used radio channel. Note that the used
channel can be changed at runtime if needed.

CONFIG_NET_ APP_IEEE802154_RADIO_TX POWER This option specifies the initial radio TX power level.
The TX power level can be changed at runtime if needed.

CONFIG_NET_APP_IEEE802154_SECURITY_ KEY This option specifies the initially used security key. The
security key can be changed at runtime if needed.

CONFIG_NET_ APP_IEEE802154_SECURITY_ KEY MODE This option specifies the initially used security key
mode. The security key mode can be changed at runtime if needed.

CONFIG_NET_APP_IEEE802154_SECURITY_ LEVEL This option specifies the initially used security level. The
used security level can be changed at runtime if needed.

Client / Server Applications

The net-app API provides functions that enable the application to create client / server applications easily. If needed,
the applications can have the communication secured by TLS (for TCP connections) or DTLS (for UDP connections)
automatically.

A simple TCP server application would make the following net-app API function calls:
* net_app_init_tcp_server () to configure a local address and TCP port.
* net_app_set_cb () to configure callback functions to invoke in response to events, such as data reception.

* net_app_server_tls () will optionally setup the system for secured connections. To enable the TLS
server, also call the net_app_server_tls_enable () function.

* net_app_listen () will start listening for new client connections.
Creating a UDP server is also very easy:
* net_app_init_udp_server () to configure a local address and UDP port.
* net_app_set_cb () to configure callback functions to invoke in response to events, such as data reception.

* net_app_server_tls () will optionally setup the system for secured connections. To enable the DTLS
server, also call the net_app_server_tls_enable () function.

* net_app_listen () will start listening for new client connections.

If the server wants to stop listening for connections, it can call net_app_release (). After this, if the application
wants to start listening for incoming connections again, it must call the server initialization functions.

1.8. Subsystems 213

Zephyr Project Documentation, & 7ii 1.9.0

For TLS/DTLS connections, the server can be disabled by a call to net_app_server_tls_disable (). There
are separate enable/disable functions for TLS support because we need a separate crypto thread for calling mbedtls
crypto API functions. The enable/disable TLS functions will either create the TLS thread or kill it.

A simple TCP client application would make the following net-app API function calls:

* net_app_init_tcp_client () to configure a local address, peer address and TCP port. If the DNS
resolver support is enabled in the project configuration file, then the peer address can be given as a hostname,
and the API tries to resolve it to IP address before connecting.

* net_app_set_cb () to configure callback functions to invoke in response to events, such as data reception.

* net_app_client_tls () will optionally setup the system for secured connections. The TLS crypto thread
will be automatically created when the application calls net_app_connect () function.

* net_app_connect () will initiate a new connection to the peer host.
Creating a UDP client is also very easy:

* net_app_init_udp_client () to configure a local address, peer address and UDP port. If peer name is
a hostname, then it will be automatically resolved to IP address if DNS resolver is enabled.

* net_app_set_cb () to configure callback functions to invoke in response to events, such as data reception.

* net_app_client_tls () will optionally setup the system for secured connections. The DTLS crypto thread
will be automatically created when the application calls net_app_connect () function.

* net_app_connect () will initiate a new connection to the peer host. As the UDP is connectionless protocol,
this function is very simple and it will just call the connected callback if that is defined.

Asboththe echo_server and echo_client applications use net-app API functions, please see those applications
for more detailed usage examples.

The net-tools project has information how to test the system if TLS and DTLS support is enabled. See the README
file in that project for more information.

Network Buffers

Network buffers are a core concept of how the networking stack (as well as the Bluetooth stack) pass data around. The
API for them is defined in include/net/buf.h.

Creating buffers

Network buffers are created by first defining a pool of them:

’NET_BUF_POOL_DEFINE(pool_name, buf_count, buf_size, user_data_size, NULL);

The pool is a static variable, so if it’s needed to be exported to another module a separate pointer is needed.

Once the pool has been defined, buffers can be allocated from it with:

’buf = net_buf_alloc (&pool_name, timeout);

There is no explicit initialization function for the pool or its buffers, rather this is done implicitly as
net_buf_alloc () gets called.

If there is a need to reserve space in the buffer for protocol headers to be prepended later, it’s possible to reserve this
headroom with:

214 Chapter 1. B3

https://github.com/zephyrproject-rtos/net-tools

Zephyr Project Documentation, % #i 1.9.0

net_buf_reserve (buf, headroom);

In addition to actual protocol data and generic parsing context, network buffers may also contain protocol-specific
context, known as user data. Both the maximum data and user data capacity of the buffers is compile-time defined
when declaring the buffer pool.

The buffers have native support for being passed through k_fifo kernel objects. This is a very practical feature when
the buffers need to be passed from one thread to another. However, since a net_buf may have a fragment chain
attached to it, instead of using the k_fifo_put () and k_fifo_get () APIs, special net_buf_put () and
net_buf_get () APIs must be used when passing buffers through FIFOs. These APIs ensure that the buffer chains
stay intact.

Common Operations

The network buffer API provides some useful helpers for encoding and decoding data in the buffers. To fully under-
stand these helpers it’s good to understand the basic names of operations used with them:

Add Add data to the end of the buffer. Modifies the data length value while leaving the actual data pointer intact.
Requires that there is enough tailroom in the buffer. Some examples of APIs for adding data:

void *net_buf_add(struct net_buf *buf, size_t len);

u8_t *net_buf_add_u8(struct net_buf +buf, u8_t wvalue);
void net_buf_add_lel6 (struct net_buf +buf, ul6_t value);
void net_buf_add_le32 (struct net_buf *buf, u32_t value);

Push Prepend data to the beginning of the buffer. Modifies both the data length value as well as the data pointer.
Requires that there is enough headroom in the buffer. Some examples of APIs for pushing data:

void xnet_buf_push (struct net_buf xbuf, size_t len);
void net_buf_push_u8 (struct net_buf *buf, u8_t value);
void net_buf_push_lel6 (struct net_buf xbuf, ulé6_t value);

Pull Remove data from the beginning of the buffer. Modifies both the data length value as well as the data pointer.
Some examples of APIs for pulling data:

void xnet_buf_pull (struct net_buf xbuf, size_t len);
u8_t net_buf_pull_u8(struct net_buf xbuf);

ul6_t net_buf_pull_lel6 (struct net_buf xbuf);

u32_t net_buf_pull_le32(struct net_buf xbuf);

The Add and Push operations are used when encoding data into the buffer, whereas Pull is used when decoding data
from a buffer.

Reference Counting

Each network buffer is reference counted. The buffer is initially acquired from a free buffers pool by calling
net_buf_alloc (), resulting in a buffer with reference count 1. The reference count can be incremented with
net_buf_ref () or decremented with net_buf_unref (). When the count drops to zero the buffer is automati-
cally placed back to the free buffers pool.

Networking with QEMU

This page describes how to set up a “virtual” networking between a (Linux) host and a Zephyr application running
in a QEMU virtual machine (built for Zephyr targets like gemu_x86, gemu_cortex_m3, etc.) In this example, the

1.8. Subsystems 215

Zephyr Project Documentation, & 7ii 1.9.0

echo_server sample application from Zephyr source distribution is run in QEMU. The QEMU instance is con-
nected to Linux host using serial port and SLIP is used to transfer data between Zephyr and Linux (over a chain of
virtual connections).

Prerequisites

On the Linux Host you need to fetch Zephyr net-tools project, which is located in a separate git repository:

$ git clone https://github.com/zephyrproject-rtos/net-tools
$ cd net-tools
$ make

HEM#: If you get error about AX_CHECK_COMPILE_FLAG, install package autoconf-archive package on De-
bian/Ubuntu.

Basic Setup

For the steps below, you will need at least 4 terminal windows:
e Terminal #1 is your usual Zephyr development terminal, with Zephyr environment initialized.

e Terminals #2, #3, #4 - fresh terminal windows with net-tools being the current directory (“cd net-tools™)

Step 1 - Create helper socket

Before starting QEMU with network emulation, a Unix socket for the emulation should be created.

In terminal #2, type:

$./loop-socat.sh

Step 2 - Start TAP device routing daemon

In terminal #3, type:

$ sudo ./loop-slip-tap.sh

Step 3 - Start app in QEMU

Build and start the echo_server sample application.

In terminal #1, type:

$ cd samples/net/echo_server
$ make pristine && make run

If you see error from QEMU about unix:/tmp/slip.sock, it means you missed Step 1 above.

216 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Step 4 - Run apps on host

Now in terminal #4, you can run various tools to communicate with the application running in QEMU.

You can start with pings:

$ ping 192.0.2.1
$ ping6 2001:db8::1

For example, using netcat (“nc”) utility, connecting using UDP:

$ echo foobar | nc -6 —-u 2001:db8::1 4242
foobar

$ echo foobar | nc —-u 192.0.2.1 4242
foobar

If echo_server is compiled with TCP support (now enabled by default for echo_server sample, CON-
FIG_NET_TCP=y):

$ echo foobar | nc -6 —g2 2001:db8::1 4242
foobar

HEf#: You will need to Ctrl+C manually.

You can also use the telnet command to achieve the above.

Step 5 - Stop supporting daemons

When you are finished with network testing using QEMU, you should stop any daemons or helpers started in the initial
steps, to avoid possible networking or routing problems such as address conflicts in local network interfaces. For
example, you definitely need to stop them if you switch from testing networking with QEMU to using real hardware.
For example, there was a report of an airport WiFi connection not working during travel due to an address conflict.

To stop the daemons, just press Ctrl+C in the corresponding terminal windows (you need to stop both
loop-slip-tap.shand loop-socat.sh).

Setting up NAT/masquerading to access Internet

To access Internet from a custom application running in a QEMU, NAT (masquerading) should be set up for QEMU’s
source address. Assuming 192.0.2.1 is used, the following command should be run as root:

$ iptables -t nat —-A POSTROUTING -3j MASQUERADE -s 192.0.2.1

Additionally, IPv4 forwarding should be enabled on host, and you may need to check that other firewall (iptables)
rules don’t interfere with masquerading.

Network connection between two QEMU VMs

Unlike VM-Host setup described above, VM-VM setup is automatic - for sample applications which support such
mode such as the echo_server and echo_client samples, you will need 2 terminal windows, set up for Zephyr develop-
ment.

1.8. Subsystems 217

Zephyr Project Documentation, & 7ii 1.9.0

Terminal #1:

$ cd samples/net/echo_server
$ make server

This will start QEMU, waiting for connection from a client QEMU.

Terminal #2:

$ cd samples/net/echo_client
$ make client

This will start 2nd QEMU instance, and you should see logging of data sent and received in both.

Running multiple QEMU VMs of the same sample

If you find yourself needing to run multiple instances of the same Zephyr sample application, which do not need to be
able to talk to each other, the QEMU_INSTANCE argument is what you need.

Start socat and tunslip6 manually (avoiding loop-x.sh scripts) for as many instances as you want. Use the following as
a guide, replacing MAIN or OTHER.

Terminal #1:

$ socat PTY,link=/tmp/slip.devMAIN UNIX-LISTEN:/tmp/slip.sockMAIN

$ SZEPHYR_BASE/../net-tools/tunslip6 -t tapMAIN -T -s /tmp/slip.devMAIN \
2001:db8::1/64

Now run Zephyr

$ make run OEMU INSTANCE=MAIN

Terminal #2:

$ socat PTY,link=/tmp/slip.devOTHER UNIX-LISTEN:/tmp/slip.sockOTHER

$ SZEPHYR_BASE/../net-tools/tunslip6 -t tapOTHER -T -s /tmp/slip.devOTHER \
2001:db8::1/64
$ make run QEMU_ INSTANCE=0THER

Power Management

Zephyr RTOS power management subsystem provides several means for a system integrator to implement power
management support that can take full advantage of the power saving features of SOCs.

Terminology

SOC interface This is a general term for the components that have knowledge of the SOC and provide interfaces to
the hardware features. It will abstract the SOC specific implementations to the applications and the OS.

218 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

CPU LPS (Low Power State) Refers to any one of the low power states supported by the CPU. The CPU is usually
powered on while the clocks are power gated.

Active State The CPU and clocks are powered on. This is the normal operating state when the system is running.

Deep Sleep State The CPU is power gated and loses context. Most peripherals would also be power gated. RAM is
selectively retained.

SOC Power State SOC Power State describes processor and device power states implemented at the SOC level. Deep
Sleep State is an example of SOC Power State.

Idle Thread A system thread that runs when there are no other threads ready to run.

Power gating Power gating reduces power consumption by shutting off current to blocks of the integrated circuit that
are not in use.

Overview

The interfaces and APIs provided by the power management subsystem are designed to be architecture and SOC
independent. This enables power management implementations to be easily adapted to different SOCs and architec-
tures. The kernel does not implement any power schemes of its own, giving the system integrator the flexibility of
implementing custom power schemes.

The architecture and SOC independence is achieved by separating the core infrastructure and the SOC specific imple-
mentations. The SOC specific implementations are abstracted to the application and the OS using hardware abstraction
layers.

The power management features are classified into the following categories.
* Tickless Idle
* System Power Management

* Device Power Management

Tickless Idle

This is the name used to identify the event-based idling mechanism of the Zephyr RTOS kernel scheduler. The kernel
scheduler can run in two modes. During normal operation, when at least one thread is active, it sets up the system
timer in periodic mode and runs in an interval-based scheduling mode. The interval-based mode allows it to time
slice between tasks. Many times, the threads would be waiting on semaphores, timeouts or for events. When there
are no threads running, it is inefficient for the kernel scheduler to run in interval-based mode. This is because, in this
mode the timer would trigger an interrupt at fixed intervals causing the scheduler to be invoked at each interval. The
scheduler checks if any thread is ready to run. If no thread is ready to run then it is a waste of power because of the
unnecessary CPU processing. This is avoided by the kernel switching to event-based idling mode whenever there is
no thread ready to run.

The kernel holds an ordered list of thread timeouts in the system. These are the amount of time each thread has
requested to wait. When the last active thread goes to wait, the idle thread is scheduled. The idle thread programs
the timer to one-shot mode and programs the count to the earliest timeout from the ordered thread timeout list. When
the timer expires, a timer event is generated. The ISR of this event will invoke the scheduler, which would schedule
the thread associated with the timeout. Before scheduling the thread, the scheduler would switch the timer again to
periodic mode. This method saves power because the CPU is removed from the wait only when there is a thread ready
to run or if an external event occurred.

1.8. Subsystems 219

Zephyr Project Documentation, & 7ii 1.9.0

System Power Management
This consists of the hook functions that the power management subsystem calls when the kernel enters and exits the

idle state, in other words, when the kernel has nothing to schedule. This section provides a general overview of the
hook functions. Refer to Power Management APIs for the detailed description of the APIs.

Suspend Hook function

int _sys_soc_suspend(s32_t ticks);

When the kernel is about to go idle, the power management subsystem calls the _sys_soc_suspend () function,
notifying the SOC interface that the kernel is ready to enter the idle state.

At this point, the kernel has disabled interrupts and computed the maximum time the system can remain idle. The
function passes the time that the system can remain idle. The SOC interface performs power operations that can be
done in the available time. The power management operation must halt execution on a CPU or SOC low power state.
Before entering the low power state, the SOC interface must setup a wake event.

The power management subsystem expects the _sys_soc_suspend () to return one of the following values based
on the power management operations the SOC interface executed:

SYS_PM_NOT_HANDLED

Indicates that no power management operations were performed.
SYS_PM_LOW_POWER_STATE

Indicates that the CPU was put in a low power state.
SYS_PM_DEEP_SLEEP

Indicates that the SOC was put in a deep sleep state.

Resume Hook function

void _sys_soc_resume (void) ;

The power management subsystem optionally calls this hook function when exiting kernel idling if power man-
agement operations were performed in _sys_soc_suspend (). Any necessary recovery operations can be per-
formed in this function before the kernel scheduler schedules another thread. Some power states may not need
this notification. It can be disabled by calling _sys_soc_pm_idle_exit_notification_disable () from
_sys_soc_suspend().

Resume From Deep Sleep Hook function

void _sys_soc_resume_from_deep_sleep (void) ;

This function is optionally called when exiting from deep sleep if the SOC interface does not have bootloader support
to handle resume from deep sleep. This function should restore context to the point where system entered the deep
sleep state.

EM#: Since the hook functions are called with the interrupts disabled, the SOC interface should ensure that its
operations are completed quickly. Thus, the SOC interface ensures that the kernel’s scheduling performance is not

220 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

disrupted.

Power Schemes

When the power management subsystem notifies the SOC interface that the kernel is about to enter a system idle
state, it specifies the period of time the system intends to stay idle. The SOC interface can perform various power
management operations during this time. For example, put the processor or the SOC in a low power state, turn off
some or all of the peripherals or power gate device clocks.

Different levels of power savings and different wake latencies characterize these power schemes. In general, operations
that save more power have a higher wake latency. When making decisions, the SOC interface chooses the scheme that
saves the most power. At the same time, the scheme’s total execution time must fit within the idle time allotted by the
power management subsystem.

The power management subsystem classifies power management schemes into two categories based on whether the
CPU loses execution context during the power state transition.

* SYS_PM_LOW_POWER_STATE
* SYS_PM_DEEP_SLEEP

SYS_PM_LOW_POWER_STATE

CPU does not lose execution context. Devices also do not lose power while entering power states in this category. The
wake latencies of power states in this category are relatively low.

SYS_PM_DEEP_SLEEP

CPU is power gated and loses execution context. Execution will resume at OS startup code or at a resume point
determined by a bootloader that supports deep sleep resume. Depending on the SOC’s implementation of the power
saving feature, it may turn off power to most devices. RAM may be retained by some implementations, while oth-
ers may remove power from RAM saving considerable power. Power states in this category save more power than
SYS_PM_LOW_POWER_STATE and would have higher wake latencies.

Device Power Management Infrastructure

The device power management infrastructure consists of interfaces to the Zephyr RTOS device model. These APIs
send control commands to the device driver to update its power state or to get its current power state. Refer to Power
Management APIs for detailed descriptions of the APIs.

Zephyr RTOS supports two methods of doing device power management.
¢ Distributed method

¢ Central method

Distributed method

In this method, the application or any component that deals with devices directly and has the best knowledge of their
use does the device power management. This saves power if some devices that are not in use can be turned off or
put in power saving mode. This method allows saving power even when the CPU is active. The components that
use the devices need to be power aware and should be able to make decisions related to managing device power. In

1.8. Subsystems 221

Zephyr Project Documentation, & 7ii 1.9.0

this method, the SOC interface can enter CPU or SOC low power states quickly when _sys_soc_suspend () gets
called. This is because it does not need to spend time doing device power management if the devices are already put
in the appropriate low power state by the application or component managing the devices.

Central method

In this method device power management is mostly done inside _sys_soc_suspend () along with entering a CPU
or SOC low power state.

If a decision to enter deep sleep is made, the implementation would enter it only after checking if the devices are not
in the middle of a hardware transaction that cannot be interrupted. This method can be used in implementations where
the applications and components using devices are not expected to be power aware and do not implement device power
management.

This method can also be used to emulate a hardware feature supported by some SOCs which cause automatic entry to
deep sleep when all devices are idle. Refer to Busy Status Indication to see how to indicate whether a device is busy
or idle.

Device Power Management States

The Zephyr RTOS power management subsystem defines four device states. These states are classified based on the
degree of device context that gets lost in those states, kind of operations done to save power, and the impact on the
device behavior due to the state transition. Device context includes device registers, clocks, memory etc.

The four device power states:
DEVICE_PM_ACTIVE_STATE
Normal operation of the device. All device context is retained.
DEVICE_PM LOW_POWER_STATE
Device context is preserved by the HW and need not be restored by the driver.
DEVICE_PM_SUSPEND_STATE

Most device context is lost by the hardware. Device drivers must save and restore or reinitialize any
context lost by the hardware.

DEVICE_PM_ OFF_STATE

Power has been fully removed from the device. The device context is lost when this state is entered. Need
to reinitialize the device when powering it back on.

Device Power Management Operations

Zephyr RTOS power management subsystem provides a control function interface to device drivers to indicate power
management operations to perform. The supported PM control commands are:

e DEVICE_PM_SET_POWER_STATE

e DEVICE_PM_GET_POWER_STATE
Each device driver defines:

» The device’s supported power states.

» The device’s supported transitions between power states.

222 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

* The device’s necessary operations to handle the transition between power states.
The following are some examples of operations that the device driver may perform in transition between power states:
* Save/Restore device states.
* Gate/Un-gate clocks.
* Gate/Un-gate power.

* Mask/Un-mask interrupts.

Device Model with Power Management Support

Drivers initialize the devices using macros. See Device Drivers and Device Model for details on how these macros are
used. Use the DEVICE_DEFINE macro to initialize drivers providing power management support via the PM control
function. One of the macro parameters is the pointer to the device_pm_control handler function.

Default Initializer Function

int device_pm_control_nop (struct device *unused_device, u32_t unused_ctrl_command,
—void runused_context);

If the driver doesn’t implement any power control operations, the driver can initialize the corresponding pointer with
this default nop function. This default nop function does nothing and should be used instead of implementing a dummy
function to avoid wasting code memory in the driver.

Device Power Management API

The SOC interface and application use these APIs to perform power management operations on the devices.

Get Device List

void device_list_get (struct device *xdevice_list, int xdevice_count);

The Zephyr RTOS kernel internally maintains a list of all devices in the system. The SOC interface uses this API to
get the device list. The SOC interface can use the list to identify the devices on which to execute power management
operations.

HEf#: Ensure that the SOC interface does not alter the original list. Since the kernel uses the original list, it must
remain unchanged.

Device Set Power State

int device_set_power_state (struct device +device, u32_t device_power_state);

Calls the device_pm_control () handler function implemented by the device driver with DE-
VICE_PM_SET_POWER_STATE command.

1.8. Subsystems 223

Zephyr Project Documentation, & 7ii 1.9.0

Device Get Power State

int device_get_power_state (struct device xdevice, u32_t » device_power_state);

Calls the device_pm_control () handler function implemented by the device driver with DE-
VICE_PM_GET_POWER_STATE command.

Busy Status Indication

The SOC interface executes some power policies that can turn off power to devices, causing them to lose their state. If
the devices are in the middle of some hardware transaction, like writing to flash memory when the power is turned off,
then such transactions would be left in an inconsistent state. This infrastructure guards such transactions by indicating
to the SOC interface that the device is in the middle of a hardware transaction.

When the _sys_soc_suspend () is called, the SOC interface checks if any device is busy. The SOC interface can
then decide to execute a power management scheme other than deep sleep or to defer power management operations
until the next call of _sys_soc_suspend ().

An alternative to using the busy status mechanism is to use the distributed method of device power management.
In such a method where the device power management is handled in a distributed manner rather than centrally in
_sys_soc_suspend (), the decision to enter deep sleep can be made based on whether all devices are already
turned off.

This feature can be also used to emulate a hardware feature found in some SOCs that causes the system to automatically
enter deep sleep when all devices are idle. In such an usage, the busy status can be set by default and cleared as each
device becomes idle. When _sys_soc_suspend () is called, deep sleep can be entered if no device is found to be
busy.

Here are the APIs used to set, clear, and check the busy status of devices.

Indicate Busy Status API

void device_busy_set (struct device xbusy_dev);

Sets a bit corresponding to the device, in a data structure maintained by the kernel, to indicate whether or not it is in
the middle of a transaction.

Clear Busy Status API

void device_busy_clear (struct device xbusy_dev);

Clears the bit corresponding to the device in a data structure maintained by the kernel to indicate that the device is not
in the middle of a transaction.

Check Busy Status of Single Device API

int device_busy_check (struct device xchk_dev);

Checks whether a device is busy. The API returns 0 if the device is not busy.

224 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Check Busy Status of All Devices API

int device_any_busy_check (void) ;

Checks if any device is busy. The API returns 0 if no device in the system is busy.

Power Management Configuration Flags

The Power Management features can be individually enabled and disabled using the following configuration flags.
CONFIG_SYS_POWER_MANAGEMENT

This flag enables the power management subsystem.
CONFIG_TICKLESS_IDLE

This flag enables the tickless idle power saving feature.
CONFIG_SYS_POWER_LOW_POWER_STATE

The SOC interface enables this flag to use the SYS_PM_LOW_POWER_STATE policy.
CONFIG_SYS_POWER_DEEP_SLEEP

This flag enables support for the SYS_PM_DEEP_SLEEP policy.
CONFIG_DEVICE_POWER_MANAGEMENT

This flag is enabled if the SOC interface and the devices support device power management.

Sensor Drivers

The sensor subsystem exposes an API to uniformly access sensor devices. Common operations are: reading data and
executing code when specific conditions are met.

Basic Operation

Channels

Fundamentally, a channel is a quantity that a sensor device can measure.

Sensors can have multiple channels, either to represent different axes of the same physical property (e.g. acceleration);
or because they can measure different properties altogether (ambient temperature, pressure and humidity). Complex
sensors cover both cases, so a single device can expose three acceleration channels and a temperature one.

It is imperative that all sensors that support a given channel express results in the same unit of measurement. The
following is a list of all supported channels, along with their description and units of measurement:

= 5. doxygenenum: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

1.8. Subsystems 225

Zephyr Project Documentation, & 7ii 1.9.0

Values

Sensor devices return results as struct sensor_value. This representation avoids use of floating point values
as they may not be supported on certain setups.

= 5 doxygenstruct: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

=

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Fetching Values

Getting a reading from a sensor requires two operations. First, an application instructs the driver to fetch a sample of
all its channels. Then, individual channels may be read. In the case of channels with multiple axes, they can be read in
a single operation by supplying the corresponding _XYZ channel type and a buffer of 3 struct sensor_value
objects. This approach ensures consistency of channels between reads and efficiency of communication by issuing a
single transaction on the underlying bus.

Below is an example illustrating the usage of the BME280 sensor, which measures ambient temperature and atmo-
spheric pressure. Note that sensor_sample_fetch () is only called once, as it reads and compensates data for
both channels.

void main (void)

{
struct device xdev = device_get_binding ("BME280");

printf ("dev %p name %$s\n", dev, dev->config->name);

while (1) {
struct sensor_value temp, press, humidity;

sensor_sample_fetch (dev);

sensor_channel_get (dev, SENSOR_CHAN_TEMP, &temp);
sensor_channel_get (dev, SENSOR_CHAN_PRESS, &press);
sensor_channel_get (dev, SENSOR_CHAN_HUMIDITY, &humidity);

printf ("temp: %d.%06d; press: %d.%06d; humidity: %d.%06d\n",
temp.vall, temp.val2, press.vall, press.val2,

humidity.vall, humidity.val2);

k_sleep(1000);

The example assumes that the returned values have type st ruct sensor_value, which is the case for BME280.
A real application supporting multiple sensors should inspect the t ype field of the temp and press values and use
the other fields of the structure accordingly.

Configuration and Attributes

Setting the communication bus and address is considered the most basic configuration for sensor devices. This setting
is done at compile time, via the configuration menu. If the sensor supports interrupts, the interrupt lines and triggering
parameters described below are also configured at compile time.

226 Chapter 1. B3

20

21

22

23

24

25

26

27

28

29

Zephyr Project Documentation, % #i 1.9.0

Alongside these communication parameters, sensor chips typically expose multiple parameters that control the accu-
racy and frequency of measurement. In compliance with Zephyr’s design goals, most of these values are statically
configured at compile time.

However, certain parameters could require runtime configuration, for example, threshold values for interrupts. These
values are configured via attributes. The example in the following section showcases a sensor with an interrupt line
that is triggered when the temperature crosses a threshold. The threshold is configured at runtime using an attribute.

Triggers

Triggers in Zephyr refer to the interrupt lines of the sensor chips. Many sensor chips support one or more triggers.
Some examples of triggers include: new data is ready for reading, a channel value has crossed a threshold, or the
device has sensed motion.

To configure a trigger, an application needs to supply a struct sensor_trigger and a handler function. The
structure contains the trigger type and the channel on which the trigger must be configured.

Because most sensors are connected via SPI or I2C busses, it is not possible to communicate with them from the
interrupt execution context. The execution of the trigger handler is deferred to a fiber, so that data fetching operations
are possible. A driver can spawn its own fiber to fetch data, thus ensuring minimum latency. Alternatively, multiple
sensor drivers can share a system-wide fiber. The shared fiber approach increases the latency of handling interrupts
but uses less memory. You can configure which approach to follow for each driver. Most drivers can entirely disable
triggers resulting in a smaller footprint.

The following example contains a trigger fired whenever temperature crosses the 26 degree Celsius threshold. It also
samples the temperature every second. A real application would ideally disable periodic sampling in the interest of
saving power. Since the application has direct access to the kernel config symbols, no trigger is registered when
triggering was disabled by the driver’s configuration.

#ifdef CONFIG_MCP9808_ TRIGGER
static void trigger_handler (struct device xdev, struct sensor_trigger *trig)

{

struct sensor_value temp;

sensor_sample_fetch (dev);
sensor_channel_get (dev, SENSOR_CHAN_TEMP, &temp);

printf ("trigger fired, temp %d.%06d\n", temp.vall, temp.val2);

}
#endif

void main (void)

{
struct device xdev = device_get_binding ("MCP9808");

if (dev == NULL) {
printf ("device not found. aborting test.\n");
return;

#1ifdef DEBUG

printf ("dev %p\n", dev);

printf ("dev %p name %s\n", dev, dev->config->name);
#endif

#ifdef CONFIG_MCP9808 TRIGGER
struct sensor_value val;
struct sensor_trigger trig;

1.8. Subsystems 227

39

40

41

42

43

44

45

46

47

48

49

51

52

54

55

57

58

60

61

62

63

Zephyr Project Documentation, & 7ii 1.9.0

val.vall = 26;
val.val2 0;

sensor_attr_set (dev, SENSOR_CHAN_TEMP,
SENSOR_ATTR_UPPER_THRESH, s&val);

trig.type SENSOR_TRIG_THRESHOLD;
trig.chan = SENSOR_CHAN_TEMP;

sensor_trigger_set (dev, &trig, trigger_handler);

#endif
while (1) {
struct sensor_value temp;
int rc;
rc = sensor_sample_fetch (dev);
if (rc != 0) {
printf ("sensor_sample_fetch error: %d\n", rc);
break;
}
rc = sensor_channel_get (dev, SENSOR_CHAN_TEMP, &temp);
if (rc != 0) {
printf ("sensor_channel_get error: %d\n", rc);
break;
}
printf ("temp: %d.%06d\n", temp.vall, temp.val2);
k_sleep(2000);
}
}
Shell
Overview

The Shell enables multiple subsystem to use and expose their shell interface simultaneously.

Each subsystem can support shell functionality dynamically by its Kconfig file, which enables or disables the shell
usage for the subsystem.

Using shell commands

Use one of the following formats:

Specific module’s commands

A shell interface exposing subsystem features is a shell module, multiple modules can be available at the same time.

MODULE_NAME COMMAND One of the available modules is “KERNEL”, for the Kernel module. More information
can be found in SHELL_REGISTER.

228 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

Help commands

help Prints the list of available modules.
help MODULE_NAME Prints the names of the available commands for the module.

help MODULE_NAME COMMAND Prints help for the module’s command (the help should show function goal and
required parameters).

Select module commands

select MODULE_NAME Use this command when using the shell only for one module. After entering this com-
mand, you will not need to enter module name in further commands. If the selected module has set a default
shell prompt during its initialization, the prompt will be changed to that one. Otherwise, the prompt will be
changed to the selected module’s name to reflect the current module in use.

select Clears selected module. Restores prompt as well.

Shell configuration

There are two levels of configuration: Infrastructure level and Module level.

Infrastructure level

The option CONFIG_CONSOLE_SHELL enables the shell subsystem and enable the default features of the shell
subsystem.

Module/Subsystem level

Each subsystem using the shell service should add a unique flag in its Kconfig file.
Example:
CONFIG_NET_SHELL=y

In the subsystem’s code, the shell usage depends on this config parameter. This subsystem specific flag should also
depend on CONFIG_CONSOLE_SHELL flag.

Configuration steps to add shell functionality to a module

1. Check that CONFIG_CONSOLE_SHELL is set to yes.

2. Add the subsystem unique flag to its Kconfig file.

Writing a shell module

In order to support shell in your subsystem, the application must do the following:

1. Module configuration flag: Declare a new flag in your subsystem Kconfig file. It should depend on
CONFIG_CONSOLE_SHELL ﬂag.

2. Module registration to shell: Add your shell identifier and register its callback functions in the shell database
using SHELL_REGISTER.

1.8. Subsystems 229

Zephyr Project Documentation, & 7ii 1.9.0

Optionally, you can use one of the following API functions to override default behavior and settings:
* shell_register_default_module ()
e shell_register_prompt_handler ()

In case of a sample applications as well as test environment, user can choose to set a default module in code level. In
this case, the function shell_register_default_module should be called after calling SHELL._REGISTER in application
level. If the function shell_register_prompt_handler was called as well, the prompt will be changed to that one.
Otherwise, the prompt will be changed to the selected module’s name, in order to reflect the current module in use.

Ef#: Even if a default module was set in code level, it can be overwritten by “select” shell command.

You canuse shell_register_default_module () in the following cases:

» Use this command in case of using the shell only for one module. After entering this command, no need to enter
module name in further commands.

¢ Use this function for shell backward compatibility.

More details on those optional functions can be found in Shell API Functions.

Shell API Functions

4. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Testing
Test Framework

The Zephyr Test Framework (Ztest) provides a simple testing framework intended to be used during development. It
provides basic assertion macros and a generic test structure.

The framework can be used in two ways, either as a generic framework for integration testing, or for unit testing
specific modules.

Quick start - Integration testing

A simple working base is located at samples/testing/integration. Just copy the files to tests/ and edit
them for your needs. The test will then be automatically built and run by the sanitycheck script. If you are testing the
bar component of foo, you should copy the sample folder to tests/foo/bar. It can then be tested with:

./scripts/sanitycheck -s tests/foo/bar/test

The sample contains the following files:

Makefile

CONF_FILE ?= prj.conf

include $(ZEPHYR BASE)/Makefile.inc

230 Chapter 1. B3

20

21

22

23

24

25

26

Zephyr Project Documentation, % #i 1.9.0

sample.yaml

sample:
description: TBD
name: TBD
tests:
- test:
tags: my_tags

prj.conf

CONFIG_ZTEST=y

src/Makefile

obj-y = main.o

include S (ZEPHYR BASE)/tests/Makefile.test

src/main.c

/%
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License—Identifier: Apache-2.0
*/

#include <ztest.h>

static void assert_tests (void)

{
zassert_true(l, "1 was false");
zassert_false (0, "0 was true");
zassert_is_null (NULL, "NULL was not NULL");
zassert_not_null ("foo", "\"foo\" was NULL");
zassert_equal(l, 1, "1 was not equal to 1");
zassert_equal_ptr (NULL, NULL, "NULL was not equal to NULL");

void test_main (void)

{
ztest_test_suite (framework_tests,
ztest_unit_test (assert_tests)

)

ztest_run_test_suite (framework_tests);

Quick start - Unit testing

Ztest can be used for unit testing. This means that rather than including the entire Zephyr OS for testing a single
function, you can focus the testing efforts into the specific module in question. This will speed up testing since only
the module will have to be compiled in, and the tested functions will be called directly.

Since you won’t be including basic kernel data structures that most code depends on, you have to provide function
stubs in the test. Ztest provides some helpers for mocking functions, as demonstrated below.

1.8. Subsystems 231

20

21

22

23

24

25

26

27

Zephyr Project Documentation, & 7ii 1.9.0

In a unit test, mock objects can simulate the behavior of complex real objects and are used to decide whether a test
failed or passed by verifying whether an interaction with an object occurred, and if required, to assert the order of that
interaction.

The samples/testing/unit folder contains an example for testing the net-buf api of Zephyr.

Makefile

INCLUDE += subsys

include S (ZEPHYR BASE)/tests/unit/Makefile.unittest

sample.yaml

sample:
description: TBD
name: TBD

tests:
- test:
tags: buf
type: unit
main.c
/%

* Copyright (c) 2016 Intel Corporation
*

* SPDX-License-Identifier: Apache-2.0
*/

#include <ztest.h>
#include <net/buf.h>

struct net_buf_pool _net_buf_pool_list[l];

unsigned int irqg lock (void)

{

return 0O;

void irg unlock (unsigned int key)
{
}

#include <net/buf.c>

void k_queue_init (struct k_qgqueue xfifo) {}
void k_qgueue_append_list (struct k_queue +fifo, void xhead, wvoid =xtail) {}

int k_is_in_isr (void)
{

return 0O;

void xk_queue_get (struct k_queue xfifo, s32_t timeout)

{
return NULL;

232 Chapter 1. B3

39

40

41

42

43

44

45

46

47

48

49

51

52

54

55

57

58

60

61

62

63

64

65

66

67

68

69

Zephyr Project Documentation, % #i 1.9.0

void k_qgueue_append(struct k_queue xfifo, wvoid =xdata)
{
}

void k_qgueue_prepend(struct k_queue »fifo, woid xdata)
{
}

#define TEST BUF_COUNT 1
#define TEST BUF_SIZE 74

NET_BUF_POOL_DEFINE (bufs_pool, TEST_BUF_COUNT, TEST_BUF_SIZE,
sizeof (int), NULL);

static void test_get_single_buffer (void)

{
struct net_buf xbuf;

buf = net_buf_alloc(&¢bufs_pool, K_NO_WAIT);

zassert_equal (buf->ref, 1, "Invalid refcount");
zassert_equal (buf->len, 0, "Invalid length");
zassert_equal (buf->flags, 0, "Invalid flags");
zassert_equal_ptr (buf->frags, NULL, "Frags not NULL");

void test_main (void)
{
ztest_test_suite (net_buf_test,
ztest_unit_test (test_get_single_buffer)
)i

ztest_run_test_suite (net_buf_test);

API reference

Running tests

4. doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-

doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Assertions

These macros will instantly fail the test if the related assertion fails. When an assertion fails, it will print the
current file, line and function, alongside a reason for the failure and an optional message. If the config op-
tion: CONFIG_ZTEST_ASSERT_VERBOSE is 0, the assertions will only print the file and line numbers, reducing
the binary size of the test.

Example output for a failed macro from zassert_equal (buf->ref, 2, "Invalid refcount"):

1.8. Subsystems 233

20

21

22

23

24

25

26

27

28

29

Zephyr Project Documentation, & 7ii 1.9.0

Assertion failed at main.c:62: test_get_single_buffer: Invalid refcount (buf->ref not,
—equal to 2)
Aborted at unit test function

= &5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Mocking

These functions allow abstracting callbacks and related functions and controlling them from specific tests. You can
enable the mocking framework by setting CONFIG_ZTEST_MOCKING to “y” in the configuration file of the test. The
amount of concurrent return values and expected parameters is limited by CONFIG_ZTEST_PARAMETER_COUNT.

Here is an example for configuring the function expect_two_parameters to expect the values a=2 and b=3,
and telling returns_int to return 5:

#include <ztest.h>

static void expect_two_parameters (int a, int b)

{
ztest_check_expected_value (a);
ztest_check_expected_value (b);

static void parameter_tests (void)

{
ztest_expect_value (expect_two_parameters, a, 2);
ztest_expect_value (expect_two_parameters, b, 3);
expect_two_parameters (2, 3);

static int returns_int (void)

return ztest_get_return_value();

static void return_value_tests (void)

ztest_returns_value (returns_int, 5);
zassert_equal (returns_int (), 5, NULL);

void test_main (void)
{
ztest_test_suite (mock_framework_tests,
ztest_unit_test (parameter_test),
ztest_unit_test (return_value_test)

)

ztest_run_test_suite (mock_framework_tests);

234 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

= 5 doxygengroup: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/zephyr-
doc/checkouts/v1.9.0/doc/doxygen/xml/index.xml

Zephyr Sanity Tests

This script scans for the set of unit test applications in the git repository and attempts to execute them. By default, it
tries to build each test case boards set to be default in the board definition file.

The default options will build the majority of the tests on a defined set of boards and will run in emulated environments
(QEMU) if available for the architecture or configuration being tested.

In general, the sanitycheck is used to verify that local changes did not break anything in the tree and would run basic
kernel tests inside QEMU. Sanitycheck does guarantee that everything would work in the final environment and has
limited coverage (test execution), however, the script builds samples and tests for different boards using different
configurations and helps keeping the code buildable at all times.

To run the script in the local tree, follow the steps below:

$ source zephyr-env.sh
$./scripts/sanitycheck

If you have a system with a large number of cores, you can try and build/run all possible tests using the following
options:

$./scripts/sanitycheck --all —--enable-slow

This will build for all available boards and would run all possible tests in a simulated environment if applicable.
The sanitycheck script accepts the following optional arguments:
-h, --help show this help message and exit

-p PLATFORM, --platform PLATFORM Platform filter for testing. This option may be
used multiple times. Testcases will only be built/run on the platforms
specified. If this option is not used, then platforms marked as default
in the platform metadata file will be chosen to build and test.

-LL N, --platform-limit N Controls what platforms are tested if —platform or —all are not
used. For each architecture specified by —arch (defaults to all of
them), choose the first N platforms to test in the arch-specific .yaml
file ‘platforms’ list. Defaults to 1.

-a ARCH, --arch ARCH Arch filter for testing. Takes precedence over —platform. If un-
specified, test all arches. Multiple invocations are treated as a logical
‘or’ relationship

-t TAG, --tag TAG Specify tags to restrict which tests to run by tag value. Default is to
not do any tag filtering. Multiple invocations are treated as a logical
‘or’ relationship

-e EXCLUDE_TAG, --exclude-tag EXCLUDE_TAG Specify tags of tests that should
not run. Default is to run all tests with all tags.

-f, --only-failed Run only those tests that failed the previous sanity check invocation.

-¢ CONFIG, --config CONFIG Specify platform configuration values filtering. This can
be specified two ways: <config>=<value> or just <config>. The de-
fconfig for all platforms will be checked. For the <config>=<value>

1.8. Subsystems 235

Zephyr Project Documentation, & 7ii 1.9.0

case, only match defconfig that have that value defined. For the
<config> case, match defconfig that have that value assigned to any
value. Prepend a ‘!’ to invert the match.

-s TEST, --test TEST Run only the specified test cases. These are named by <path to test
project relative to —testcase- root>/<testcase.yaml section name>

-1, --all Build/test on all platforms. Any —platform arguments ignored.

-0 TESTCASE_REPORT, --testcase-report TESTCASE_REPORT Output a CSV
spreadsheet containing results of the test run

-d DISCARD_REPORT, --discard-report DISCARD_REPORT Output a CSV
spreadsheet showing tests that were skipped and why

--compare-report COMPARE_REPORT Use this report file for size comparison
--ccache Enable the use of ccache when building

-B SUBSET, --subset SUBSET Only run a subset of the tests, 1/4 for running the first
25%, 3/5 means run the 3rd fifth of the total. This option is useful
when running a large number of tests on different hosts to speed up
execution time.

-y, --dry-run Create the filtered list of test cases, but don’t actually run them. Use-
ful if you’re just interested in —discard-report

-1, --release Update the benchmark database with the results of this test run.
Intended to be run by CI when tagging an official release. This
database is used as a basis for comparison when looking for deltas in
metrics such as footprint

-w, --warnings-as-errors Treat warning conditions as errors

-v, --verbose Emit debugging information, call multiple times to increase ver-
bosity

-i, --inline-logs Upon test failure, print relevant log data to stdout instead of just a
path to it

--log-file FILENAME log also to file

-m, --last-metrics Instead of comparing metrics from the last —release, compare with
the results of the previous sanity check invocation

-u, --no-update do not update the results of the last run of the sanity checks
-b, --build-only Only build the code, do not execute any of it in QEMU

-j JOBS, --jobs JOBS Number of cores to use when building, defaults to number of CPUs
*2

-H FOOTPRINT_THRESHOLD, --footprint-threshold FOOTPRINT_THRESHOLD
When checking test case footprint sizes, warn the user if the new app

size is greater then the specified percentage from the last release.
Default is 5. 0 to warn on any increase on app size

-D, --all-deltas Show all footprint deltas, positive or negative. Implies —footprint-
threshold=0

-O OUTDIR, --outdir OUTDIR Output directory for logs and binaries.

-n, --no-clean Do not delete the outdir before building. Will result in faster compi-
lation since builds will be incremental

236 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

-T TESTCASE_ROOT, --testcase-root TESTCASE_ROOQOT Base directory to recur-
sively search for test cases. All testcase.yaml files under here will
be processed. May be called multiple times. Defaults to the ‘sam-
ples’ and ‘tests’ directories in the Zephyr tree.

-A ARCH_ROOT, --arch-root ARCH_ROOT Directory to search for arch configura-
tion files. All .yaml files in the directory will be processed.

-z SIZE, --size SIZE Don’t run sanity checks. Instead, produce a report to stdout detailing
RAM/ROM sizes on the specified filenames. All other command line
arguments ignored.

-S, --enable-slow Execute time-consuming test cases that have been marked as ‘slow’
in testcase.yaml. Normally these are only built.

-R, --enable-asserts Build all test cases with assertions enabled.
-Q, --error-on-deprecations Error on deprecation warnings.

-x EXTRA_ARGS, --extra-args EXTRA_ARGS Extra arguments to pass to the build
when compiling test cases. May be called multiple times. These will
be passed in after any sanitycheck-supplied options.

-C, --coverage Scan for unit test coverage with gcov + Icov.

Board Configuration

To build tests for a specific board and to execute some of the tests on real hardware or in an emulation environment
such as QEMU a board configuration file is required which is generic enough to be used for other tasks that require a
board inventory with details about the board and its configuration that is only available during build time otherwise.

The board metadata file is located in the board directory and is structured using the YAML markup language. The
example below shows a board with a data required for best test coverage for this specific board:

identifier: quark_d2000_crb
name: Quark D2000 Devboard
type: mcu
arch: x86
toolchain:
- zephyr
- issm
ram: 8
flash: 32
testing:
default: true
ignore_tags:
- net
- bluetooth

identifier: A string that matches how the board is defined in the build system. This same string is used when building,
for example when calling ‘make’:

make BOARD=quark_d2000_crb

name: The actual name of the board as it appears in marketing material.
type: Type of the board or configuration, currently we support 2 types: mcu, gemu

arch: Architecture of the board

1.8. Subsystems 237

Zephyr Project Documentation, & 7ii 1.9.0

toolchain: The list of supported toolchains that can build this board. This should match one of the values used for
‘ZEPHYR_GCC_VARIANT’ when building on the command line

ram: Available RAM on the board (specified in KB). This is used to match testcase requirements. If not specified we
default to 128KB.

flash: Available FLASH on the board (specified in KB). This is used to match testcase requirements. If not specified
we default to 512KB.

supported: A list of features this board supports. This can be specified as a single word feature or as a variant of a
feature class. For example:

supported:
- pci

This indicates the board does support PCI. You can make a testcase build or run only on such boards, or:

supported:
- netif:eth
— sensor:bmilé

A testcase can both depend on ‘eth’ to only test ethernet or on ‘netif’ to run on any board with a networking
interface.

testing: testing relating keywords to provide best coverage for the features of this board.

default: [TruelFalse]: This is a default board, it will tested with the highest priority and is covered when
invoking the simplified sanitycheck without any additional arguments.

ignore_tags: Do not attempt to build (and therefore run) tests marked with this list of tags.

Test Cases

Test cases are detected by the presence of a ‘testcase.yaml’ or a ‘sample.yaml’ files in the application’s project direc-
tory. This file may contain one or more entries in the test section each identifying a test scenario. The name of the test
case only needs to be unique for the test cases specified in that testcase meta-data.

Test cases are written suing the YAML syntax and share the same structure as samples. The following is an example
test with a few options that are explained in this document.

tests:
- test:
build_only: true
platform whitelist: gemu_cortex_m3 gemu_x86 arduino_101
tags: bluetooth
- test_br:
build_only: true
extra_args: CONF_FILE="prj br.conf"
filter: not CONFIG_DEBUG
platform_exclude: quark_d2000_crb
platform whitelist: gemu_cortex_m3 gemu_x86
tags: bluetooth

A sample with tests will have the same structure with additional information related to the sample and what is being
demonstrated:

sample:
name: hello world
description: Hello World sample, the simplest Zephyr application

238 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

platforms: all
tests:

- test:
build_only: true
tags: samples tests
min_ram: 16

— singlethread:
build_only: true
extra_args: CONF_FILE=prj_single.conf
filter: not CONFIG_BT and not CONFIG_GPIO_SCH
tags: samples tests
min_ram: 16

The full canonical name for each test case is:

<path to test case>/<test entry>

Each test block in the testcase meta data can define the following key/value pairs:

tags: <list of tags> (required) A set of string tags for the testcase. Usually pertains to functional domains but can be
anything. Command line invocations of this script can filter the set of tests to run based on tag.

skip: <TruelFalse> (default False) skip testcase unconditionally. This can be used for broken tests.

slow: <TruelFalse> (default False) Don’t run this test case unless —enable-slow was passed in on the command line.
Intended for time-consuming test cases that are only run under certain circumstances, like daily builds. These
test cases are still compiled.

extra_args: <list of extra arguments> Extra arguments to pass to Make when building or running the test case.

build_only: <TruelFalse> (default False) If true, don’t try to run the test under QEMU even if the selected platform
supports it.

build_on_all: <TruelFalse> (default False) If true, attempt to build test on all available platforms.

depends_on: <list of features> A board or platform can announce what features it supports, this option will enable
the test only those platforms that provide this feature.

min_ram: <integer> minimum amount of RAM needed for this test to build and run. This is compared with infor-
mation provided by the board metadata.

min_flash: <integer> minimum amount of ROM needed for this test to build and run. This is compared with infor-
mation provided by the board metadata.

timeout: <number of seconds> Length of time to run test in QEMU before automatically killing it. Default to 60
seconds.

arch_whitelist: <list of arches, such as x86, arm, arc> Set of architectures that this test case should only be run for.
arch_exclude: <list of arches, such as x86, arm, arc> Set of architectures that this test case should not run on.
platform_whitelist: <list of platforms> Set of platforms that this test case should only be run for.
platform_exclude: <list of platforms> Set of platforms that this test case should not run on.

extra_sections: <list of extra binary sections> When computing sizes, sanitycheck will report errors if it finds extra,
unexpected sections in the Zephyr binary unless they are named here. They will not be included in the size
calculation.

filter: <expression> Filter whether the testcase should be run by evaluating an expression against an environment
containing the following values:

1.8. Subsystems 239

Zephyr Project Documentation, & 7ii 1.9.0

{ ARCH : <architecture>,
PLATFORM : <platform>,
<all CONFIG_x key/value pairs in the test's generated defconfig>,
x*<env>: any environment variable available

The grammar for the expression language is as follows:
expression ::= expression ‘“and’ expression

expression “or”” expression
“not” expression
“(” expression)"
symbol “=="" constant
symbol ”!=" constant
symbol “<” number
symbol “>” number
symbol “>=" number
symbol “<=" number
symbol “in” list
symbol ”:” string
symbol

list ::= “[” list_contents “]”

list_contents ::= constant

99 99

list_contents ”,” constant
constant ::= number
string
For the case where expression ::= symbol, it evaluates to true if the symbol is defined to a non-empty string.

Operator precedence, starting from lowest to highest:

or (left associative) and (left associative) not (right associative) all comparison operators (non-
associative)

arch_whitelist, arch_exclude, platform_whitelist, platform_exclude are all syntactic sugar for these expressions.
For instance

arch_exclude = x86 arc
Is the same as:
filter = not ARCH in [’x86”, “arc”

The °:* operator compiles the string argument as a regular expression, and then returns a true value only if the
symbol’s value in the environment matches. For example, if CONFIG_SOC="quark_se” then

filter = CONFIG_SOC : “quark.*”
‘Would match it.

The set of test cases that actually run depends on directives in the testcase filed and options passed in on the command
line. If there is any confusion, running with -v or —discard-report can help show why particular test cases were skipped.

Metrics (such as pass/fail state and binary size) for the last code release are stored in
scripts/sanity_chk/sanity_last_release.csv. To update this, pass the —all —release options.

240 Chapter 1. B3

Zephyr Project Documentation, % #i 1.9.0

To load arguments from a file, write ‘+° before the file name, e.g., +file_name. File content must be one or more valid
arguments separated by line break instead of white spaces.

Most everyday users will run with no arguments.

USB device stack

The USB device stack is split into three layers:
* USB Device Controller drivers (hardware dependent)
» USB device core driver (hardware independent)

» USB device class drivers (hardware independent)
USB device controller drivers
The Device Controller Driver Layer implements the low level control routines to deal directly with the hardware. All
device controller drivers should implement the APIs described in file usb_dc.h. This allows the integration of new

USB device controllers to be done without changing the upper layers. For now only Quark SE USB device controller
(Designware IP) is supported.

Structures

struct usb_dc_ep_cfg_data {
u8_t ep_addr;
ul6_t ep_mps;
enum usb_dc_ep_type ep_type;
bi

Structure containing the USB endpoint configuration.

¢ ep_addr: endpoint address, the number associated with the EP in the device configuration structure. IN EP
= 0x80 | <endpoint number>. OUT EP = 0x00 | <endpoint number>

* ep_mps: Endpoint max packet size.

e ep_type: Endpoint type, may be Bulk, Interrupt or Control. Isochronous endpoints are not supported for
now.

enum usb_dc_status_code {
USB_DC_ERROR,
USB_DC_RESET,
USB_DC_CONNECTED,
USB_DC_CONFIGURED,
USB_DC_DISCONNECTED,
USB_DC_SUSPEND,
USB_DC_RESUME,
USB_DC_UNKNOWN

bi

Status codes reported by the registered device status callback.
* USB_DC_ERROR: USB error reported by the controller.
e USB_DC_RESET: USB reset.
e USB_DC_CONNECTED: USB connection established - hardware enumeration is completed.

1.8. Subsystems 241

Zephyr Project Documentation, & 7ii 1.9.0

L]

USB_DC_CONFIGURED: USB configuration done.
USB_DC_DISCONNECTED: USB connection lost.
USB_DC_SUSPEND: USB connection suspended by the HOST.
* USB_DC_RESUME: USB connection resumed by the HOST.

e USB_DC_UNKNOWN: Initial USB connection status.

enum usb_dc_ep_cb_status_code {
USB_DC_EP_SETUP,
USB_DC_EP_DATA_OUT,
USB_DC_EP_DATA_IN,

bi

Status Codes reported by the registered endpoint callback.
* USB_DC_EP_SETUP: SETUP packet received.
* USB_DC_EP_DATA_OUT: Out transaction on this endpoint. Data is available for read.
* USB_DC_EP_DATA_IN: In transaction done on this endpoint.

APIs

The following APIs are provided by the device controller driver:

usb_dc_attach () This function attaches USB for device connection. Upon success, the USB PLL is enabled,
and the USB device is now capable of transmitting and receiving on the USB bus and of generating interrupts.

usb_dc_detach () This function detaches the USB device. Upon success the USB hardware PLL is powered
down and USB communication is disabled.

usb_dc_reset () This function returns the USB device to it’s initial state.
usb_dc_set_address () This function sets USB device address.

usb_dc_set_status_callback () This function sets USB device controller status callback. The registered
callback is used to report changes in the status of the device controller. The status code are described by the
usb_dc_status_code enumeration.

usb_dc_ep_configure () This function configures an endpoint. usb_dc_ep_cfg_data structure provides the
endpoint configuration parameters: endpoint address, endpoint maximum packet size and endpoint type.

usb_dc_ep_set_stall () This function sets stall condition for the selected endpoint.
usb_dc_ep_clear_stall () This functions clears stall condition for the selected endpoint
usb_dc_ep_is_stalled() This function check if selected endpoint is stalled.
usb_dc_ep_halt () This function halts the selected endpoint

usb_dc_ep_enable () This function enables the selected endpoint. Upon success interrupts are enabled for the
corresponding endpoint and the endpoint is ready for transmitting/receiving data.

usb_dc_ep_disable () This function disables the selected endpoint. Upon success interrupts are disabled for
the corresponding endpoint and the endpoint is no longer able for transmitting/receiving data.

usb_dc_ep_f£flush () This function flushes the FIFOs for the selected endpoint.

usb_dc_ep_write () This function writes data to the specified endpoint. The supplied usb_ep_callback function
will be called when data is transmitted out.

242 Chapter 1. H3x

Zephyr Project Documentation, % #i 1.9.0

usb_dc_ep_read () This function is called by the Endpoint handler function, after an OUT interrupt has been
received for that EP. The application must only call this function through the supplied usb_ep_callback function.

usb_dc_ep_set_callback () This function sets callback function for notification of data received and avail-
able to application or transmit done on the selected endpoint. The callback status code is described by
usb_dc_ep_cb_status_code.

USB device core layer
The USB Device core layer is a hardware independent interface between USB device controller driver and USB device
class drivers or customer applications. It’s a port of the LPCUSB device stack. It provides the following functionalities:

* Responds to standard device requests and returns standard descriptors, essentially handling ‘Chapter 9° pro-
cessing, specifically the standard device requests in table 9-3 from the universal serial bus specification revision
2.0.

* Provides a programming interface to be used by USB device classes or customer applications. The APIs are
described in the usb_device.h file.

» Uses the APIs provided by the device controller drivers to interact with the USB device controller.

Structures

typedef void (xusb_status_callback) (enum usb_dc_status_code status_code);

Callback function signature for the device status.

typedef void (xusb_ep_callback) (u8_t ep,
enum usb_dc_ep_cb_status_code cb_status);

Callback function signature for the USB Endpoint.

typedef int (xusb_request_handler) (struct usb_setup_packet =xsetup,
int xtransfer_len, u8_t *xpayload_data);

Callback function signature for class specific requests. For host to device direction the ‘len’ and ‘payload_data’ contain
the length of the received data and the pointer to the received data respectively. For device to host class requests, ‘len’
and ‘payload_data’ should be set by the callback function with the length and the address of the data to be transmitted
buffer respectively.

struct usb_ep_cfg_data {
usb_ep_callback ep_cb;
u8_t ep_addr;

bi

This structure contains configuration for a certain endpoint.

* ep_cb: callback function for notification of data received and available to application or transmit done,
NULL if callback not required by application code.

e ep_addr: endpoint address. The number associated with the EP in the device configuration structure.

struct usb_interface_cfg_data {
usb_request_handler class_handler;
usb_request_handler custom_handler;
u8_t =*payload_data;

}i

1.8. Subsystems 243

Zephyr Project Documentation, & 7ii 1.9.0

This structure contains USB interface configuration.
e class_handler: handler for USB Class specific Control (EP 0) communications.

e custom_handler: the custom request handler gets a first chance at handling the request before it is handed
over to the ‘chapter 9’ request handler.

 payload_data: this data area, allocated by the application, is used to store class specific command data and
must be large enough to store the largest payload associated with the largest supported Class’ command
set.

struct usb_cfg_data {
const u8_t xusb_device_description;
usb_status_callback cb_usb_status;
struct usb_interface_cfg_data interface;
u8_t num_endpoints;
struct usb_ep_cfg_data *endpoint;

bi

This structure contains USB device configuration.

» usb_device_description: USB device description, see http://www.beyondlogic.org/usbnutshell/usb5.
shtml#DeviceDescriptors

* cb_usb_status: callback to be notified on USB connection status change
* interface: USB class handlers and storage space.
* num_endpoints: number of individual endpoints in the device configuration

 endpoint: pointer to an array of endpoint configuration structures (usb_cfg_data) of length equal to the
number of EP associated with the device description, not including control endpoints.

The class drivers instantiates this with given parameters using the “usb_set_config” function.

APIs

usb_set_config () This function configures USB device.
usb_deconfig () This function returns the USB device back to it’s initial state

usb_enable () This function enable USB for host/device connection. Upon success, the USB module is no longer
clock gated in hardware, it is now capable of transmitting and receiving on the USB bus and of generating
interrupts.

usb_disable () This function disables the USB device. Upon success, the USB module clock is gated in hardware
and it is no longer capable of generating interrupts.

usb_write () write data to the specified endpoint. The supplied usb_ep_callback will be called when transmission
is done.

usb_read () This function is called by the endpoint handler function after an OUT interrupt has been received for
that EP. The application must only call this function through the supplied usb_ep_callback function.

USB device class drivers

To initialize the device class driver instance the USB device class driver should call usb_set_config() passing as pa-
rameter the instance’s configuration structure.

For example, for CDC_ACM sample application:

244 Chapter 1. B3

http://www.beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors
http://www.beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors

Zephyr Project Documentation, & 7ii 1.9.0

/% Device descriptor */
USB_DEVICE_DESC_SIZE,
USB_DEVICE_DESC,

LOW_BYTE (USB_1_1),
HIGH_BYTE (USB_1_1),
COMMUNICATION_DEVICE_CLASS,
0x00,

0x00,

MAX_PACKET SIZE_EPO,
LOW_BYTE (VENDOR_1ID),
HIGH_BYTE (VENDOR_ID),
LOW_BYTE (CDC_PRODUCT_1ID),
HIGH_BYTE (CDC_PRODUCT_1ID),
1.OW_BYTE (BCDDEVICE_RELNUM),
HIGH BYTE (BCDDEVICE_RELNUM),
0x01,

0x02,

0x03,

CDC_NUM_CONF,

/+ Configuration descriptor #*/
USB_CONFIGURATION_DESC_SIZE,
USB_CONFIGURATION_DESC,
LOW_BYTE (CDC_CONF_SIZE),
HIGH_BYTE (CDC_CONF_SIZE),
CDC_NUM_ITF,

0x01,

0x00,
USB_CONFIGURATION_ATTRIBUTES,
MAX_LOW_POWER,

/+ Interface descriptor */
USB_INTERFACE_DESC_SIZE,
USB_INTERFACE_DESC,

0x00,

0x00,

CDC1_NUM_EP,
COMMUNICATION_DEVICE_CLASS,
ACM_SUBCLASS,
V25TER_PROTOCOL,

0x00,

/* Header Functional
USB_HFUNC_DESC_SIZE,
CS_INTERFACE,
USB_HFUNC_SUBDESC,
LOW_BYTE (USB_1_1),
HIGH_BYTE (USB_1_1),

Descriptor

J *
/%

J *
/%
/%
J *
/%

J *

/%

/%
/%
J *
/%
/%

/%
J *

/%
J *
/ *
/%
J *
/ *

/%
/%
J *
/%
/%
/%
/%
/%
/%

*/
/%
/ *
/ *

/%

static const u8_t cdc_acm_usb_description[] = {

Descriptor size x/
Descriptor type */

USB version in BCD format */
Class */

SubClass - Interface specific x/
Protocol - Interface specific */

Max Packet Size #*/

Vendor Id =/

Product Id */

Device Release Number x/

Index of Manufacturer String Descriptor */
Index of Product String Descriptor */

Index of Serial Number String Descriptor */

*/

Number of Possible Configuration

Descriptor size */
Descriptor type */

Total length in bytes of data returned */
Number of interfaces */

Configuration value #*/

Index of the Configuration string #*/
Attributes x/

Max power consumption

*/

Descriptor size #*/
Descriptor type */
Interface index */
Alternate setting =/
Number of Endpoints +/
Class */
SubClass
Protocol
Index of

*/
*/
the Interface String Descriptor x/

size */
type */
SubType

Descriptor
Descriptor
Descriptor */

CDC Device Release Number #*/

/#* Call Management Functional Descriptor #*/

USB_CMFUNC_DESC_SIZE,
CS_INTERFACE,
USB_CMFUNC_SUBDESC,
0x00,

0x01,

/+ ACM Functional Descriptor #*/

/%
J *
/%
/%
J *

Descriptor size #*/
Descriptor type */
Descriptor SubType */
Capabilities =/

Data Interface x*/

1.8. Subsystems

245

Zephyr Project Documentation, & 7ii 1.9.0

USB_ACMFUNC_DESC_SIZE, /*
CS_INTERFACE, / *
USB_ACMFUNC_SUBDESC, /#

/* Capabilities — Device supports the request

size */

type */
SubType */
combination of:

Descriptor
Descriptor
Descriptor

* Set_Line_Coding,
* Set_Control_Line State,
* Get_Line_Coding
* and the notification Serial_ State
*/
0x02,

/* Union Functional Descriptor x/

USB_UFUNC_DESC_SIZE, /*
CS_INTERFACE, / *
USB_UFUNC_SUBDESC, /*
0x00, /*
0x01, / *
/* Endpoint INT */

USB_ENDPOINT_DESC_SIZE, / *
USB_ENDPOINT_DESC, /*
CDC_ENDP_INT, /*
USB_DC_EP_INTERRUPT, / *

LOW_BYTE (CDC_INTERRUPT_EP_MPS),
HIGH_BYTE (CDC_INTERRUPT_EP_MPS), /*

0x0A, /*
/+ Interface descriptor */

USB_INTERFACE_DESC_SIZE, /%
USB_INTERFACE_DESC, / *
0x01, /%
0x00, /*
CDC2_NUM_EP, /*

COMMUNICATION_DEVICE_CLASS_DATA, /*

0x00, /#
0x00, / *
0x00, / *
/* First Endpoint IN #*/
USB_ENDPOINT_DESC_SIZE, / *
USB_ENDPOINT_DESC, /#
CDC_ENDP_IN, /*
USB_DC_EP_BULK, / *
LOW_BYTE (CDC_BULK_EP_MPS) ,
HIGH_BYTE (CDC_BULK_EP_MPS), /*
0x00, / *
/+ Second Endpoint OUT =/
USB_ENDPOINT_DESC_SIZE, / *
USB_ENDPOINT_DESC, /*
CDC_ENDP_OUT, /%
USB_DC_EP_BULK, / *
LOW_BYTE (CDC_BULK_EP_MPS) ,
HIGH_BYTE (CDC_BULK_EP_MPS), /*
0x00, / *

/% String descriptor language,

only one,

Descriptor size */
Descriptor type x/
Descriptor SubType #*/
Master Interface #*/
Slave Interface */

Descriptor size */
Descriptor type x/
Endpoint address #*/
Attributes =*/

Max packet size */
Interval =/

Descriptor size x/

Descriptor type */

Interface index */

Alternate setting #*/

Number of Endpoints =/

Class #/

SubClass */

Protocol =/

Index of the Interface String Descriptor */

Descriptor size #*/
Descriptor type */
Endpoint address #*/
Attributes */

Max packet size */
Interval =/

Descriptor size #*/
Descriptor type */
Endpoint address x/
Attributes */

Max packet size */
Interval =/

so min size 4 bytes.

* 0x0409 English (US) language code used

246

Chapter 1.

Hx

Zephyr Project Documentation, % #i 1.9.0

*/
USB_STRING_DESC_SIZE, /* Descriptor size */
USB_STRING_DESC, /* Descriptor type */
0x09,
0x04,
/* Manufacturer String Descriptor "Intel" x/
0x0cC,
USB_STRING_DESC,
‘r', 0, 'n', O, 't', 0, 'e', 0, '1', O,
/* Product String Descriptor "CDC-ACM" x*/

0x10,
USB_STRING_DESC,
'‘c', o, 'p', 0, 'c¢', 0, '-', O, 'A', O, 'C', O, 'M', O,
/* Serial Number String Descriptor "00.01" */
0x0cC,
USB_STRING_DESC,
‘o', o, 'o', 0, '.', o0, '0', 0, '1', O,
i
static struct usb_ep_cfg_data cdc_acm_ep_datal[] = {

{
.ep_cb = cdc_acm_int_in,
.ep_addr = CDC_ENDP_INT

.ep_cb = cdc_acm_bulk_out,
.ep_addr = CDC_ENDP_OUT

.ep_cb = cdc_acm_bulk_in,
.ep_addr = CDC_ENDP_IN

}i

static struct usb_cfg_data cdc_acm_config = {

.usb_device_description = cdc_acm_usb_description,
.cb_usb_status = cdc_acm_dev_status_cb,

.interface = {

.class_handler = cdc_acm_class_handle_req,

.custom_handler = NULL,
.payload_data = NULL,
}I
.num_endpoints = CDC1_NUM_EP + CDC2_NUM_EP,
.endpoint = cdc_acm_ep_data
bi

ret = usb_set_config(&cdc_acm_config);
if (ret < 0) {
DBG ("Failed to config USB\n");
return ret;

To enable the USB device for host/device connection:

ret = usb_enable (&cdc_acm_confiqg);
if (ret < 0) {
DBG ("Failed to enable USB\n");

1.8. Subsystems 247

Zephyr Project Documentation, & 7ii 1.9.0

return ret;

The class device requests are forwarded by the USB stack core driver to the class driver through the registered class
handler. For the CDC ACM sample class driver, ‘cdc_acm_class_handle_req’ processes the SET_LINE_CODING,
CDC_SET_CONTROL_LINE_STATE and CDC_GET_LINE_CODING class requests:

int cdc_acm_class_handle_reqg(struct usb_setup_packet =pSetup,
s32_t *len, u8_t =x+data)

struct cdc_acm_dev_data_t % const dev_data = DEV_DATA (cdc_acm_dev) ;

switch (pSetup->bRequest) {
case CDC_SET_LINE_CODING:
memcpy (&dev_data->1line_coding, =xdata, sizeof (dev_data->line_coding));
DBG ("\nCDC_SET_LINE_CODING %d %d %d %d\n",
sys_le32_to_cpu(dev_data->1line_coding.dwDTERate),
dev_data->line_coding.bCharFormat,
dev_data->line_coding.bParityType,
dev_data->1line_coding.bDataBits);
break;

case CDC_SET_CONTROL_LINE_STATE:

dev_data->1line_state = (u8_t)sys_lel6_to_cpu(pSetup->wValue);
DBG ("CDC_SET_CONTROL_LINE_STATE 0x%x\n", dev_data->line_state);
break;

case CDC_GET_LINE_CODING:

~data = (u8_t «) (&dev_data->1line_coding);

xlen = sizeof (dev_data->line_coding);

DBG ("\nCDC_GET_LINE_CODING %d %d %d %d\n",

sys_le32_to_cpu(dev_data->1line_coding.dwDTERate),
dev_data->line_coding.bCharFormat,
dev_data->line_coding.bParityType,
dev_data->line_coding.bDataBits);
break;

default:
DBG ("CDC ACM request 0x%x, value 0x%x\n",
pSetup->bRequest, pSetup->wValue);
return -EINVAL;

return 0;

The class driver should wait for the USB_DC_CONFIGURED device status code before transmitting any data.

To transmit data to the host, the class driver should call usb_write(). Upon completion the registered endpoint callback
will be called. Before sending another packet the class driver should wait for the completion of the previous transfer.

When data is received, the registered endpoint callback is called. usb_read() should be used for retrieving the received
data. It must always be called through the registered endpoint callback. For CDC ACM sample driver this happens via
the OUT bulk endpoint handler (cdc_acm_bulk_out) mentioned in the endpoint array (cdc_acm_ep_data).

Only CDC ACM and DFU class driver examples are provided for now.

248 Chapter 1. B3

CHAPTER 2

RTINS

* glossary

* genindex

249

	目录
	索引和表格

